
Native Actors – A Scalable Software Platform
for Distributed, Heterogeneous Environments

Dominik Charousset
dominik.charousset@haw-hamburg.de

iNET RG, Department Informatik
HAW Hamburg

Oct 2013

Agenda

1 Why Focus on Concurrency & Distribution?

2 The Problem With Implicit Sharing

3 The Actor Model
Benefits & Limitations
libcppa – Actors in C++11

4 Performance Evaluation
Overhead of Actor Creation
Performance in a Mixed Scenario
Matrix Multiplication

5 Conclusion & Outlook

Dominik Charousset iNET – HAW Hamburg 2

Challenges of Modern Systems

Developers face not one, but multiple trends:
More cores on both desktop & mobile plattforms

SIMD components: GPUs can vastly outperform CPUs
Cloud computing: “Infrastructure as a service”
Heterogeneous Environments: From motes to high-end servers

⇒ Parallelization, specialization & distribution

Dominik Charousset iNET – HAW Hamburg 3

Challenges of Modern Systems

Developers face not one, but multiple trends:
More cores on both desktop & mobile plattforms
SIMD components: GPUs can vastly outperform CPUs

Cloud computing: “Infrastructure as a service”
Heterogeneous Environments: From motes to high-end servers

⇒ Parallelization, specialization & distribution

Dominik Charousset iNET – HAW Hamburg 3

Challenges of Modern Systems

Developers face not one, but multiple trends:
More cores on both desktop & mobile plattforms
SIMD components: GPUs can vastly outperform CPUs
Cloud computing: “Infrastructure as a service”

Heterogeneous Environments: From motes to high-end servers
⇒ Parallelization, specialization & distribution

Dominik Charousset iNET – HAW Hamburg 3

Challenges of Modern Systems

Developers face not one, but multiple trends:
More cores on both desktop & mobile plattforms
SIMD components: GPUs can vastly outperform CPUs
Cloud computing: “Infrastructure as a service”
Heterogeneous Environments: From motes to high-end servers

⇒ Parallelization, specialization & distribution

Dominik Charousset iNET – HAW Hamburg 3

Challenges of Modern Systems

Developers face not one, but multiple trends:
More cores on both desktop & mobile plattforms
SIMD components: GPUs can vastly outperform CPUs
Cloud computing: “Infrastructure as a service”
Heterogeneous Environments: From motes to high-end servers

⇒ Parallelization, specialization & distribution

Dominik Charousset iNET – HAW Hamburg 3

Performance & Composability

In order to make use of parallel hardware, we need to ...
Split application logic into many tasks
Minimize overhead for launching tasks and collecting results

In order to compose systems, we need to ...
Make use of distributed & heterogeneous resources
Collect results transparently

⇒ Late binding of software components to resources

Dominik Charousset iNET – HAW Hamburg 4

Performance & Composability

In order to make use of parallel hardware, we need to ...
Split application logic into many tasks
Minimize overhead for launching tasks and collecting results

In order to compose systems, we need to ...
Make use of distributed & heterogeneous resources
Collect results transparently

⇒ Late binding of software components to resources

Dominik Charousset iNET – HAW Hamburg 4

Performance & Composability

In order to make use of parallel hardware, we need to ...
Split application logic into many tasks
Minimize overhead for launching tasks and collecting results

In order to compose systems, we need to ...
Make use of distributed & heterogeneous resources
Collect results transparently

⇒ Late binding of software components to resources

Dominik Charousset iNET – HAW Hamburg 4

Agenda

1 Why Focus on Concurrency & Distribution?

2 The Problem With Implicit Sharing

3 The Actor Model
Benefits & Limitations
libcppa – Actors in C++11

4 Performance Evaluation
Overhead of Actor Creation
Performance in a Mixed Scenario
Matrix Multiplication

5 Conclusion & Outlook

Dominik Charousset iNET – HAW Hamburg 5

The Problem With Implicit Sharing

Implicit sharing is still the dominant programming model
Multiple threads can share objects in process-wide memory
Concurrent access to stateful objects needs synchronization
Challenges are ...

Race conditions (“solved” by locks)
Deadlocks/Lifelocks (caused by locks)
Poor scalability due to queueing (Coarse-Grained Locking)
High complexity (Fine-Grained Locking)

Locks are not composable

Dominik Charousset iNET – HAW Hamburg 6

The Problem With Implicit Sharing

Implicit sharing is still the dominant programming model
Multiple threads can share objects in process-wide memory
Concurrent access to stateful objects needs synchronization
Challenges are ...

Race conditions (“solved” by locks)
Deadlocks/Lifelocks (caused by locks)
Poor scalability due to queueing (Coarse-Grained Locking)
High complexity (Fine-Grained Locking)

Locks are not composable

Dominik Charousset iNET – HAW Hamburg 6

The Problem With Implicit Sharing

Implicit sharing is still the dominant programming model
Multiple threads can share objects in process-wide memory
Concurrent access to stateful objects needs synchronization
Challenges are ...

Race conditions (“solved” by locks)
Deadlocks/Lifelocks (caused by locks)
Poor scalability due to queueing (Coarse-Grained Locking)
High complexity (Fine-Grained Locking)

Locks are not composable

Dominik Charousset iNET – HAW Hamburg 6

Agenda

1 Why Focus on Concurrency & Distribution?

2 The Problem With Implicit Sharing

3 The Actor Model
Benefits & Limitations
libcppa – Actors in C++11

4 Performance Evaluation
Overhead of Actor Creation
Performance in a Mixed Scenario
Matrix Multiplication

5 Conclusion & Outlook

Dominik Charousset iNET – HAW Hamburg 7

The Actor Model

Actors are concurrent entities, that ...
Communicate via message passing
Do not share state
Can create (“spawn”) new actors
Can monitor other actors
Can be freely distributed

Dominik Charousset iNET – HAW Hamburg 8

Benefits of the Actor Model

High-level, explicit communication: no locks, no implicit sharing
Applies to both concurrency and distribution

Divide workload by spawning actors
Network-transparent messaging

Known to provide strong failure semantics (e.g. Erlang)
A lightweight implementation allows millions of active actors

Dominik Charousset iNET – HAW Hamburg 9

Current Limitations of the Actor Model

Actors have not yet entered the native programming domain

Original actor model not ready for Internet scale
Loosely coupled orchestration missing
No semantics for contacting unknowns
1:1 communication only, no publish/subscribe layer
Security model for loosely coupled systems undefined

Actor systems need to include heterogeneous components
Lack of GPGPU programming support
No transparent integration of specialized HW components

Actor systems not available for embedded systems

Dominik Charousset iNET – HAW Hamburg 10

Current Limitations of the Actor Model

Actors have not yet entered the native programming domain
Original actor model not ready for Internet scale

Loosely coupled orchestration missing
No semantics for contacting unknowns
1:1 communication only, no publish/subscribe layer
Security model for loosely coupled systems undefined

Actor systems need to include heterogeneous components
Lack of GPGPU programming support
No transparent integration of specialized HW components

Actor systems not available for embedded systems

Dominik Charousset iNET – HAW Hamburg 10

Current Limitations of the Actor Model

Actors have not yet entered the native programming domain
Original actor model not ready for Internet scale

Loosely coupled orchestration missing
No semantics for contacting unknowns
1:1 communication only, no publish/subscribe layer
Security model for loosely coupled systems undefined

Actor systems need to include heterogeneous components
Lack of GPGPU programming support
No transparent integration of specialized HW components

Actor systems not available for embedded systems

Dominik Charousset iNET – HAW Hamburg 10

Current Limitations of the Actor Model

Actors have not yet entered the native programming domain
Original actor model not ready for Internet scale

Loosely coupled orchestration missing
No semantics for contacting unknowns
1:1 communication only, no publish/subscribe layer
Security model for loosely coupled systems undefined

Actor systems need to include heterogeneous components
Lack of GPGPU programming support
No transparent integration of specialized HW components

Actor systems not available for embedded systems

Dominik Charousset iNET – HAW Hamburg 10

libcppa – Actors in C++11

libcppa is an actor system for C++11

Internal DSL for pattern matching of messages
Efficient program execution

Low memory footprint
Fast, lock-free mailbox implementation

Targets both low-end and high-performance computing
Embedded HW, e.g., running
Server systems & cluster

Transparent integration of OpenCL-based actors

Dominik Charousset iNET – HAW Hamburg 11

libcppa – Actors in C++11

libcppa is an actor system for C++11
Internal DSL for pattern matching of messages

Efficient program execution
Low memory footprint
Fast, lock-free mailbox implementation

Targets both low-end and high-performance computing
Embedded HW, e.g., running
Server systems & cluster

Transparent integration of OpenCL-based actors

Dominik Charousset iNET – HAW Hamburg 11

libcppa – Actors in C++11

libcppa is an actor system for C++11
Internal DSL for pattern matching of messages
Efficient program execution

Low memory footprint
Fast, lock-free mailbox implementation

Targets both low-end and high-performance computing
Embedded HW, e.g., running
Server systems & cluster

Transparent integration of OpenCL-based actors

Dominik Charousset iNET – HAW Hamburg 11

libcppa – Actors in C++11

libcppa is an actor system for C++11
Internal DSL for pattern matching of messages
Efficient program execution

Low memory footprint
Fast, lock-free mailbox implementation

Targets both low-end and high-performance computing
Embedded HW, e.g., running
Server systems & cluster

Transparent integration of OpenCL-based actors

Dominik Charousset iNET – HAW Hamburg 11

libcppa – Actors in C++11

libcppa is an actor system for C++11
Internal DSL for pattern matching of messages
Efficient program execution

Low memory footprint
Fast, lock-free mailbox implementation

Targets both low-end and high-performance computing
Embedded HW, e.g., running
Server systems & cluster

Transparent integration of OpenCL-based actors

Dominik Charousset iNET – HAW Hamburg 11

Classes vs. Actors

class KeyValStore {
public:

void set(Key k, Val v);
Val get(Key k) const;

};

Method invocation

Race conditions likely

Concurrent performance
is a function of
developer skill

become (
on(atom("set"), arg_match)
>> [=](Key k, Val v) { },
on(atom("get"), arg_match)
>> [=](Key k) { }

);

Message passing

Data race impossible

Supports massively
parallel access &
remote invocation

Dominik Charousset iNET – HAW Hamburg 12

Classes vs. Actors

class KeyValStore {
public:

void set(Key k, Val v);
Val get(Key k) const;

};

Method invocation

Race conditions likely

Concurrent performance
is a function of
developer skill

become (
on(atom("set"), arg_match)
>> [=](Key k, Val v) { },
on(atom("get"), arg_match)
>> [=](Key k) { }

);

Message passing

Data race impossible

Supports massively
parallel access &
remote invocation

Dominik Charousset iNET – HAW Hamburg 12

Classes vs. Actors

class KeyValStore {
public:

void set(Key k, Val v);
Val get(Key k) const;

};

Method invocation

Race conditions likely

Concurrent performance
is a function of
developer skill

become (
on(atom("set"), arg_match)
>> [=](Key k, Val v) { },
on(atom("get"), arg_match)
>> [=](Key k) { }

);

Message passing

Data race impossible

Supports massively
parallel access &
remote invocation

Dominik Charousset iNET – HAW Hamburg 12

Classes vs. Actors

class KeyValStore {
public:

void set(Key k, Val v);
Val get(Key k) const;

};

Method invocation

Race conditions likely

Concurrent performance
is a function of
developer skill

become (
on(atom("set"), arg_match)
>> [=](Key k, Val v) { },
on(atom("get"), arg_match)
>> [=](Key k) { }

);

Message passing

Data race impossible

Supports massively
parallel access &
remote invocation

Dominik Charousset iNET – HAW Hamburg 12

Classes vs. Actors

class KeyValStore {
public:

void set(Key k, Val v);
Val get(Key k) const;

};

Method invocation

Race conditions likely

Concurrent performance
is a function of
developer skill

become (
on(atom("set"), arg_match)
>> [=](Key k, Val v) { },
on(atom("get"), arg_match)
>> [=](Key k) { }

);

Message passing

Data race impossible

Supports massively
parallel access &
remote invocation

Dominik Charousset iNET – HAW Hamburg 12

Agenda

1 Why Focus on Concurrency & Distribution?

2 The Problem With Implicit Sharing

3 The Actor Model
Benefits & Limitations
libcppa – Actors in C++11

4 Performance Evaluation
Overhead of Actor Creation
Performance in a Mixed Scenario
Matrix Multiplication

5 Conclusion & Outlook

Dominik Charousset iNET – HAW Hamburg 13

Measurements

Benchmarks are based on the following implementations:

cppa C++ (GCC 4.7.2) with libcppa
scala Scala 2.10 with the Akka library

erlang Erlang 5.9.1

System setup:
Two hexa-core Intel Xeon 2.27GHz
JVM configured with a maximum of 4GB of RAM
We vary the number of CPU cores from 2 to 12

Dominik Charousset iNET – HAW Hamburg 14

Overhead of Actor Creation

Fork/join workflow to compute 2N

Each fork step spawns two new actors
Join step sums up messages from children
Each actor at the leaf sends 1 to parent

Benchmark creates ≈ 1,000,000 actors (N = 20)

Dominik Charousset iNET – HAW Hamburg 15

Overhead of Actor Creation

2 4 6 8 1 0 1 2
0

5

1 0

1 5

2 0

2 5
Tim

e [
s]

N u m b e r o f C o r e s [#]

 s c a l a
 e r l a n g
 c p p a

Dominik Charousset iNET – HAW Hamburg 16

Overhead of Actor Creation

2 4 6 8 1 0 1 2
0

5

1 0

1 5

2 0

2 5

Tim
e [

s]

N u m b e r o f C o r e s [#]

 s c a l a
 e r l a n g
 c p p a

c p p a s c a l a e r l a n g
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

Re
sid

en
t S

et
Siz

e [
MB

]

x
9 9 t h p e r c e n t i l e1 s t p e r c e n t i l e

9 5 t h p e r c e n t i l e5 t h p e r c e n t i l e
x

M e d i a n

7 5 t h p e r c e n t i l e2 5 t h p e r c e n t i l e

M e a n

All three implementations scale up to large actor systems
Scala and Erlang remain almost constant from 8 cores onwards
libcppa performs best, but slows down after 8 cores

Dominik Charousset iNET – HAW Hamburg 16

Performance in a Mixed Scenario

Mixed operations under work load
20 rings of 50 actors each
Token-forwarding on each ring until 1,000 iterations are reached
20 re-creations per ring
One prime factorization per (re)-created ring to add work load

Dominik Charousset iNET – HAW Hamburg 17

Performance in a Mixed Scenario

2 4 6 8 1 0 1 2
0

5 0
1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0
4 5 0
5 0 0
5 5 0

Tim
e [

s]

N u m b e r o f C o r e s [#]

 s c a l a
 e r l a n g
 c p p a

Dominik Charousset iNET – HAW Hamburg 18

Performance in a Mixed Scenario

2 4 6 8 1 0 1 2
0

5 0
1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0
4 5 0
5 0 0
5 5 0

Tim
e [

s]

N u m b e r o f C o r e s [#]

 s c a l a
 e r l a n g
 c p p a

c p p a s c a l a e r l a n g
0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

Re
sid

en
t S

et
Siz

e [
MB

]
All three implementations exhibit comparable scaling behavior
JVM performs compute-intensive tasks faster than Erlang’s VM

Tail-recursive prime factorization in Scala as fast as C++ version

libcppa performs best & uses significantly fewer memory

Dominik Charousset iNET – HAW Hamburg 18

Matrix Multiplication

Simple multiplication algorithm using three nested loops
Implemented

Using threads
Using actors
Using an OpenCL kernel

C++ implementation is parallelized on the most inner loop
Creates Rows·Columns threads or actors

Dominik Charousset iNET – HAW Hamburg 19

Matrix Multiplication

Setup: 12 cores, Linux, 1000x1000 matrices

Single-threaded 9.029 s
Actors

2.428 s

OpenCL

0.288 s

Threads

... exception: “std::system_error”;
per default, 1M threads are not supported

Threads do not scale up to large numbers
Number of actors only limited by available memory

Dominik Charousset iNET – HAW Hamburg 20

Matrix Multiplication

Setup: 12 cores, Linux, 1000x1000 matrices

Single-threaded 9.029 s
Actors 2.428 s
OpenCL

0.288 s

Threads

... exception: “std::system_error”;
per default, 1M threads are not supported

Threads do not scale up to large numbers
Number of actors only limited by available memory

Dominik Charousset iNET – HAW Hamburg 20

Matrix Multiplication

Setup: 12 cores, Linux, 1000x1000 matrices

Single-threaded 9.029 s
Actors 2.428 s
OpenCL 0.288 s
Threads

... exception: “std::system_error”;
per default, 1M threads are not supported

Threads do not scale up to large numbers
Number of actors only limited by available memory

Dominik Charousset iNET – HAW Hamburg 20

Matrix Multiplication

Setup: 12 cores, Linux, 1000x1000 matrices

Single-threaded 9.029 s
Actors 2.428 s
OpenCL 0.288 s
Threads ... exception: “std::system_error”;

per default, 1M threads are not supported

Threads do not scale up to large numbers
Number of actors only limited by available memory

Dominik Charousset iNET – HAW Hamburg 20

Matrix Multiplication

Setup: 12 cores, Linux, 1000x1000 matrices

Single-threaded 9.029 s
Actors 2.428 s
OpenCL 0.288 s
Threads ... exception: “std::system_error”;

per default, 1M threads are not supported

Threads do not scale up to large numbers
Number of actors only limited by available memory

Dominik Charousset iNET – HAW Hamburg 20

Agenda

1 Why Focus on Concurrency & Distribution?

2 The Problem With Implicit Sharing

3 The Actor Model
Benefits & Limitations
libcppa – Actors in C++11

4 Performance Evaluation
Overhead of Actor Creation
Performance in a Mixed Scenario
Matrix Multiplication

5 Conclusion & Outlook

Dominik Charousset iNET – HAW Hamburg 21

Conclusion

State of libcppa:
Open source (GPLv2) in Version 0.7
Hosted on GitHub since Mar 04, 2011
Runs on GCC ≥ 4.7 and Clang ≥ 3.2 (Linux & Mac)
Offers initial support for publish/subscribe communication
Integrates OpenCL by creating actors from OpenCL kernels

Deployment:
Cooperation with UC Berkeley (research group of Vern Paxson)

Actor-based realtime intrusion detection system

Ongoing negotiation to bundle libcppa with Boost libraries
Currently porting libcppa to ARM & embedded systems

Dominik Charousset iNET – HAW Hamburg 22

Conclusion

State of libcppa:
Open source (GPLv2) in Version 0.7
Hosted on GitHub since Mar 04, 2011
Runs on GCC ≥ 4.7 and Clang ≥ 3.2 (Linux & Mac)
Offers initial support for publish/subscribe communication
Integrates OpenCL by creating actors from OpenCL kernels

Deployment:
Cooperation with UC Berkeley (research group of Vern Paxson)

Actor-based realtime intrusion detection system

Ongoing negotiation to bundle libcppa with Boost libraries
Currently porting libcppa to ARM & embedded systems

Dominik Charousset iNET – HAW Hamburg 22

Open Research Questions

Distributed scheduling & load balancing
Can one derive migration strategies from communication patterns?
How to design a distributed workload management for actors?

Loosely coupled communication scenarios for actors
How to define a scalable publish/subscribe layer for actors?
How to orchestrate multiple independent actor systems?
Which security design is appropriate for loosely coupled actors?
How to propagate errors in non-hierarchical actor systems?

Message routing & composability
How to define efficient routing of messages?
How to process or transform types in in routed messages?
How should errors be handled & reported?

Dominik Charousset iNET – HAW Hamburg 23

Open Research Questions

Distributed scheduling & load balancing
Can one derive migration strategies from communication patterns?
How to design a distributed workload management for actors?

Loosely coupled communication scenarios for actors
How to define a scalable publish/subscribe layer for actors?
How to orchestrate multiple independent actor systems?
Which security design is appropriate for loosely coupled actors?
How to propagate errors in non-hierarchical actor systems?

Message routing & composability
How to define efficient routing of messages?
How to process or transform types in in routed messages?
How should errors be handled & reported?

Dominik Charousset iNET – HAW Hamburg 23

Open Research Questions

Distributed scheduling & load balancing
Can one derive migration strategies from communication patterns?
How to design a distributed workload management for actors?

Loosely coupled communication scenarios for actors
How to define a scalable publish/subscribe layer for actors?
How to orchestrate multiple independent actor systems?
Which security design is appropriate for loosely coupled actors?
How to propagate errors in non-hierarchical actor systems?

Message routing & composability
How to define efficient routing of messages?
How to process or transform types in in routed messages?
How should errors be handled & reported?

Dominik Charousset iNET – HAW Hamburg 23

Publications[1][2][3]

Dominik Charousset, Sebastian Meiling, Thomas C. Schmidt, and
Matthias Wählisch.
A Middleware for Transparent Group Communication of Globally
Distributed Actors.
In Middleware Posters 2011, New York, USA, Dec. 2011. ACM, DL.

Dominik Charousset, Thomas C. Schmidt, and Matthias Wählisch.
Actors and Publish/Subscribe: An Efficient Approach to Scalable
Distribution in Data Centers.
In Proc. of the ACM SIGCOMM CoNEXT. Student Workshop, New
York, Dec. 2012. ACM.

Dominik Charousset and Thomas C. Schmidt.
libcppa - Designing an Actor Semantic for C++11.
In Proc. of C++Now, 2013.

Dominik Charousset iNET – HAW Hamburg 24

Thank you for your attention!

Developer blog: http://libcppa.org

Sources: https://github.com/Neverlord/libcppa

iNET working group: http://inet.cpt.haw-hamburg.de

Dominik Charousset iNET – HAW Hamburg 25

Multiply Matrices

static constexpr size_t matrix_size = /*...*/;

// always rows == columns == matrix_size
class matrix {
public:
float& operator ()(size_t row , size_t column);
const vector <float >& data() const;
// ...

private:
vector <float > m_data; // glorified vector

};

Dominik Charousset iNET – HAW Hamburg 26

Multiply Matrices – Simple Loop

matrix simple_multiply(const matrix& lhs ,
const matrix& rhs) {

matrix result;
for (size_t r = 0; r < matrix_size; ++r) {

for (size_t c = 0; c < matrix_size; ++c) {
// each calculation can run independently
result(r, c) = dot_product(lhs , rhs , r, c);

}
}
return move(result);

}

Dominik Charousset iNET – HAW Hamburg 27

Multiply Matrices – std::async

matrix async_multiply(const matrix& lhs ,
const matrix& rhs) {

matrix result;
vector <future <void >> futures;
futures.reserve(matrix_size * matrix_size);
for (size_t r = 0; r < matrix_size; ++r) {

for (size_t c = 0; c < matrix_size; ++c) {
futures.push_back(async(launch ::async , [&,r,c] {

result(r, c) = dot_product(lhs , rhs , r, c);
}));

}
}
for (auto& f : futures) f.wait ();
return move(result);

}

Dominik Charousset iNET – HAW Hamburg 28

Multiply Matrices – libcppa Actors

matrix actor_multiply(const matrix& lhs ,
const matrix& rhs) {

matrix result;
for (size_t r = 0; r < matrix_size; ++r) {

for (size_t c = 0; c < matrix_size; ++c) {
spawn([&,r,c] {

result(r, c) = dot_product(lhs , rhs , r, c);
});

}
}
await_all_others_done ();
return move(result);

}

Dominik Charousset iNET – HAW Hamburg 29

Multiply Matrices – OpenCL Actors

static constexpr const char* source = R"__(
__kernel void multiply(__global float* lhs ,

__global float* rhs ,
__global float* result) {

size_t size = get_global_size (0);
size_t r = get_global_id (0);
size_t c = get_global_id (1);
float dot_product = 0;
for (size_t k = 0; k < size; ++k)

dot_product += lhs[k+c*size] * rhs[r+k*size];
result[r+c*size] = dot_product;

}
)__";

Dominik Charousset iNET – HAW Hamburg 30

Multiply Matrices – OpenCL Actors

matrix opencl_multiply(const matrix& lhs ,
const matrix& rhs) {

// function signature
auto worker = spawn_cl <float* (float* ,float*)>(

// code , kernel name & dimensions
source , "multiply",
{matrix_size , matrix_size });

// ordinary message passing
send(worker , lhs.data(), rhs.data ());
matrix result;
receive(on_arg_match >> [&](fvec& res_vec) {

result = move(res_vec);
});
return move(result);

}

Dominik Charousset iNET – HAW Hamburg 31

Network Transparency

Network

Node A Node B
Actor 1 Actor 2

MM2

Dominik Charousset iNET – HAW Hamburg 32

Network Transparency

Network

Node A Node B
Actor 1 Actor 2

MM2

was made accessible via
network by calling

publish(actor2, port)

middleman (MM)
transparently handles
network connections &

serialization

Dominik Charousset iNET – HAW Hamburg 32

Network Transparency

Network

Node A Node B
Actor 1 Actor 2

MM2System

re
m

ot
eA

ct
or

(h
os

t,p
or

t)

Dominik Charousset iNET – HAW Hamburg 32

Network Transparency

Network

Node A Node B
Actor 1 Actor 2

MM2MM1

Actor 2
Proxy

Dominik Charousset iNET – HAW Hamburg 32

Network Transparency

Network

Node A Node B
Actor 1 Actor 2

MM2MM1

Actor 2
Proxy

serialize deserialize

Dominik Charousset iNET – HAW Hamburg 32

Network Transparency

Network

Node A Node B
Actor 1 Actor 2

MM2MM1

Actor 2
Proxy

serialize deserialize

Actor 1
Proxy

Dominik Charousset iNET – HAW Hamburg 32

Network Transparency

Network

Node A Node B
Actor 1 Actor 2

MM2MM1

Actor 2
Proxy

serialize deserialize

Actor 1
Proxy

Dominik Charousset iNET – HAW Hamburg 32

Message Processing

case 1

input: M pattern 1 matched M

case 2pattern 2 matched M

else

receive
next

message

case Npattern N matched M

else

else

Typical actor loop

Dominik Charousset iNET – HAW Hamburg 33

Message Processing

case 1

input: M pattern 1 matched M

case 2pattern 2 matched M

else

receive
next

message

case Npattern N matched M

else

else

Messages are copy-on-write tuples of any size
Messages are buffered at the actor in a FIFO-ordered mailbox
Actors set a partial function f as (replaceable) message handler
Runtime skips each message M if f (M) is undefined
Unmatched (skipped) messages remain in the actor’s mailbox
Each receive operation begins with the oldest element

Dominik Charousset iNET – HAW Hamburg 33

Fault Tolerance – Linking Actors

alice

exit message
(non-normal exit reason)

link

bob

quit()

Dominik Charousset iNET – HAW Hamburg 34

Fault Tolerance – Linking Actors

alice

exit message
(non-normal exit reason)

link

bob

quit()

Actors can link their lifetime
Errors are propagated through exit messages
When receiving an exit message:

Actors fail for the same reason per default
Actors can trap exit messages to handle failure manually

Build systems where all actors are alive or have collectively failed

Dominik Charousset iNET – HAW Hamburg 34

Performance for N:1 Communication

1 receiving actor
20 threads, each sending 1,000,000 messages
Mailbox of receiving actor acts as a shared resource

Dominik Charousset iNET – HAW Hamburg 35

Performance for N:1 Communication

2 4 6 8 1 0 1 2
0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0
5 5

Tim
e [

s]

N u m b e r o f C o r e s [#]

 s c a l a
 e r l a n g
 c p p a

Dominik Charousset iNET – HAW Hamburg 36

Performance for N:1 Communication

2 4 6 8 1 0 1 2
0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0
5 5

Tim
e [

s]

N u m b e r o f C o r e s [#]

 s c a l a
 e r l a n g
 c p p a

libcppa exhibits no concurrency penalty for up to 12 cores
Erlang is at best 2–3 times slower than libcppa

Akka’s scheduling suboptimal for N:1 communication

Dominik Charousset iNET – HAW Hamburg 36

Partial Functions in libcppa

partial_function f {
 on("hello") >> [] {
 cout << "hello!" << endl;
 },
 on(atom("hello")) >> [] {
 cout << "atom(hello)!" << endl;
 },
 on_arg_match >> [](int a, int b) {
 cout << a << ", " << b << endl;
 },
 on("hello", arg_match) >> [](const string& name) {
 cout << "hello " << name << "!" << endl;
 }
};

assert(not f(make_any_tuple(42)));
assert(f(make_any_tuple("hello")));

Dominik Charousset iNET – HAW Hamburg 37

Partial Functions in libcppa

partial_function f {
 on("hello") >> [] {
 cout << "hello!" << endl;
 },
 on(atom("hello")) >> [] {
 cout << "atom(hello)!" << endl;
 },
 on_arg_match >> [](int a, int b) {
 cout << a << ", " << b << endl;
 },
 on("hello", arg_match) >> [](const string& name) {
 cout << "hello " << name << "!" << endl;
 }
};

assert(not f(make_any_tuple(42)));
assert(f(make_any_tuple("hello")));

callback that should be
invoked on a match; could
take a string as argument

matches tuples with
one (string) element of

value "hello"

Dominik Charousset iNET – HAW Hamburg 37

Partial Functions in libcppa

partial_function f {
 on("hello") >> [] {
 cout << "hello!" << endl;
 },
 on(atom("hello")) >> [] {
 cout << "atom(hello)!" << endl;
 },
 on_arg_match >> [](int a, int b) {
 cout << a << ", " << b << endl;
 },
 on("hello", arg_match) >> [](const string& name) {
 cout << "hello " << name << "!" << endl;
 }
};

assert(not f(make_any_tuple(42)));
assert(f(make_any_tuple("hello")));

atoms are constants, calculated
at compile time from short

strings (max 10 characters)

Dominik Charousset iNET – HAW Hamburg 37

Partial Functions in libcppa

partial_function f {
 on("hello") >> [] {
 cout << "hello!" << endl;
 },
 on(atom("hello")) >> [] {
 cout << "atom(hello)!" << endl;
 },
 on_arg_match >> [](int a, int b) {
 cout << a << ", " << b << endl;
 },
 on("hello", arg_match) >> [](const string& name) {
 cout << "hello " << name << "!" << endl;
 }
};

assert(not f(make_any_tuple(42)));
assert(f(make_any_tuple("hello")));

deduce types from callback
signature ➔ match tuples with

two integers

Dominik Charousset iNET – HAW Hamburg 37

Partial Functions in libcppa

partial_function f {
 on("hello") >> [] {
 cout << "hello!" << endl;
 },
 on(atom("hello")) >> [] {
 cout << "atom(hello)!" << endl;
 },
 on_arg_match >> [](int a, int b) {
 cout << a << ", " << b << endl;
 },
 on("hello", arg_match) >> [](const string& name) {
 cout << "hello " << name << "!" << endl;
 }
};

assert(not f(make_any_tuple(42)));
assert(f(make_any_tuple("hello")));

deduce second half of types from
callback signature ➔ match tuples with

two strings if first element is "hello"

Dominik Charousset iNET – HAW Hamburg 37

Partial Functions in libcppa

partial_function f {
 on("hello") >> [] {
 cout << "hello!" << endl;
 },
 on(atom("hello")) >> [] {
 cout << "atom(hello)!" << endl;
 },
 on_arg_match >> [](int a, int b) {
 cout << a << ", " << b << endl;
 },
 on("hello", arg_match) >> [](const string& name) {
 cout << "hello " << name << "!" << endl;
 }
};

assert(not f(make_any_tuple(42)));
assert(f(make_any_tuple("hello")));

libcppa's pattern matching is defined
only for any_tuple, because it requires

runtime type information

Dominik Charousset iNET – HAW Hamburg 37

Minimal Actor Example

void math_server() {
 become (
 on(atom("plus"), arg_match) >> [](int a, int b) {
 reply(atom("result"), a + b);
 }
);
}
void math_client(actor_ptr ms) {
 sync_send(ms, atom("plus"), 40, 2).then(
 on(atom("result"), arg_match) >> [=](int result){
 cout << "40 + 2 = " << result << endl;
 }
);
}
int main() {
 spawn(math_client, spawn(math_server));
 // ...
}

Dominik Charousset iNET – HAW Hamburg 38

Minimal Actor Example

void math_server() {
 become (
 on(atom("plus"), arg_match) >> [](int a, int b) {
 reply(atom("result"), a + b);
 }
);
}
void math_client(actor_ptr ms) {
 sync_send(ms, atom("plus"), 40, 2).then(
 on(atom("result"), arg_match) >> [=](int result){
 cout << "40 + 2 = " << result << endl;
 }
);
}
int main() {
 spawn(math_client, spawn(math_server));
 // ...
}

set partial function as message
handler; handler is used until

replaced or actor is done

Dominik Charousset iNET – HAW Hamburg 38

Minimal Actor Example

void math_server() {
 become (
 on(atom("plus"), arg_match) >> [](int a, int b) {
 reply(atom("result"), a + b);
 }
);
}
void math_client(actor_ptr ms) {
 sync_send(ms, atom("plus"), 40, 2).then(
 on(atom("result"), arg_match) >> [=](int result){
 cout << "40 + 2 = " << result << endl;
 }
);
}
int main() {
 spawn(math_client, spawn(math_server));
 // ...
}

send a message and then
wait for response

 (using a "one-shot handler")

Dominik Charousset iNET – HAW Hamburg 38

Minimal Actor Example

void math_server() {
 become (
 on(atom("plus"), arg_match) >> [](int a, int b) {
 reply(atom("result"), a + b);
 }
);
}
void math_client(actor_ptr ms) {
 sync_send(ms, atom("plus"), 40, 2).then(
 on(atom("result"), arg_match) >> [=](int result){
 cout << "40 + 2 = " << result << endl;
 }
);
}
int main() {
 spawn(math_client, spawn(math_server));
 // ...
}

this actor "loops" forever
(or until it is forced to quit)

Dominik Charousset iNET – HAW Hamburg 38

Minimal Actor Example

void math_server() {
 become (
 on(atom("plus"), arg_match) >> [](int a, int b) {
 reply(atom("result"), a + b);
 }
);
}
void math_client(actor_ptr ms) {
 sync_send(ms, atom("plus"), 40, 2).then(
 on(atom("result"), arg_match) >> [=](int result){
 cout << "40 + 2 = " << result << endl;
 }
);
}
int main() {
 spawn(math_client, spawn(math_server));
 // ...
}

this actor sends one
message and receives one

messages

Dominik Charousset iNET – HAW Hamburg 38

Minimal Actor Example

void math_server() {
 become (
 on(atom("plus"), arg_match) >> [](int a, int b) {
 reply(atom("result"), a + b);
 }
);
}
void math_client(actor_ptr ms) {
 sync_send(ms, atom("plus"), 40, 2).then(
 on(atom("result"), arg_match) >> [=](int result){
 cout << "40 + 2 = " << result << endl;
 }
);
}
int main() {
 spawn(math_client, spawn(math_server));
 // ...
}

usage example

Dominik Charousset iNET – HAW Hamburg 38

	Why Focus on Concurrency & Distribution?
	The Problem With Implicit Sharing
	The Actor Model
	Benefits & Limitations
	libcppa – Actors in C++11

	Performance Evaluation
	Overhead of Actor Creation
	Performance in a Mixed Scenario
	Matrix Multiplication

	Conclusion & Outlook

