
Towards a Scalable Programming Platform for

Distributed Actors with Debugging Support

Dominik Charousset
dominik.charousset@haw-hamburg.de

iNET RG, Department Informatik
HAW Hamburg

August 2014

Parallel Execution No Longer Optional

Increasing number of cores, even on mobiles

Specialized HW components are already widely deployed
Infrastructure software runs in elastic, virtualized environments

) Established programming paradigms often too low level

Dominik Charousset iNET – HAW Hamburg 2

Parallel Execution No Longer Optional

Increasing number of cores, even on mobiles
Specialized HW components are already widely deployed

Infrastructure software runs in elastic, virtualized environments
) Established programming paradigms often too low level

Dominik Charousset iNET – HAW Hamburg 2

Parallel Execution No Longer Optional

Increasing number of cores, even on mobiles
Specialized HW components are already widely deployed
Infrastructure software runs in elastic, virtualized environments

) Established programming paradigms often too low level

Dominik Charousset iNET – HAW Hamburg 2

Parallel Execution No Longer Optional

Increasing number of cores, even on mobiles
Specialized HW components are already widely deployed
Infrastructure software runs in elastic, virtualized environments

) Established programming paradigms often too low level

Dominik Charousset iNET – HAW Hamburg 2

The Actor Model of Computation

Actors are isolated, concurrent software entities

Message passing based on logical addresses
Actors can dynamically create—“spawn”—new actors
Error propagation & hierarchical fault management

Dominik Charousset iNET – HAW Hamburg 3

The Actor Model of Computation

Actors are isolated, concurrent software entities
Message passing based on logical addresses

Actors can dynamically create—“spawn”—new actors
Error propagation & hierarchical fault management

Dominik Charousset iNET – HAW Hamburg 3

The Actor Model of Computation

Actors are isolated, concurrent software entities
Message passing based on logical addresses
Actors can dynamically create—“spawn”—new actors

Error propagation & hierarchical fault management

Dominik Charousset iNET – HAW Hamburg 3

The Actor Model of Computation

Actors are isolated, concurrent software entities
Message passing based on logical addresses
Actors can dynamically create—“spawn”—new actors
Error propagation & hierarchical fault management

Dominik Charousset iNET – HAW Hamburg 3

Previous Work

Extend the actor model with publish/subscribe semantics
Original actor model only foresees 1:1 communication
Internet scale requires loose coupling

libcppa – A scalable, native actor library in C++
High-performance and embedded environments require efficiency
Lightweight actors allow millions of active actors

Integrated heterogeneous hardware components into libcppa

GPUs can outperform CPUs by orders of magnitude
Transparent integration of OpenCL allows flexible deployment

Dominik Charousset iNET – HAW Hamburg 4

Previous Work

Extend the actor model with publish/subscribe semantics
Original actor model only foresees 1:1 communication
Internet scale requires loose coupling

libcppa – A scalable, native actor library in C++
High-performance and embedded environments require efficiency
Lightweight actors allow millions of active actors

Integrated heterogeneous hardware components into libcppa

GPUs can outperform CPUs by orders of magnitude
Transparent integration of OpenCL allows flexible deployment

Dominik Charousset iNET – HAW Hamburg 4

Previous Work

Extend the actor model with publish/subscribe semantics
Original actor model only foresees 1:1 communication
Internet scale requires loose coupling

libcppa – A scalable, native actor library in C++
High-performance and embedded environments require efficiency
Lightweight actors allow millions of active actors

Integrated heterogeneous hardware components into libcppa

GPUs can outperform CPUs by orders of magnitude
Transparent integration of OpenCL allows flexible deployment

Dominik Charousset iNET – HAW Hamburg 4

Agenda

1 Recent Activities

2 Type-safe Message Passing

3 Scheduling Infrastructure

4 Runtime Inspection & Debugging

5 Conclusion & Outlook

Dominik Charousset iNET – HAW Hamburg 5

Recent Activities – Rebranding

All activities are now bundled as “CAF: C++ Actor Framework”

More than just a library
libcppa was split into libcaf_core and libcaf_io

New components were added as optional submodules
Launched new project homepage actor-framework.org

Moved repository to github.com/actor-framework

Adoption in academia and industry

Dominik Charousset iNET – HAW Hamburg 6

Recent Activities – Demo at SIGCOMM

Cooperation with UC Berkeley
CAF as platform for scalable network forensics (VAST)

Dominik Charousset iNET – HAW Hamburg 7

Recent Activities – Actors in the IoT

Programming the IoT is challenging
Constrained HW devices require efficient, resource-aware SW
Unreliable networking capabilities
Inherently distributed work flows

) Profound domain knowledge required

Dominik Charousset iNET – HAW Hamburg 8

Recent Activities – Actors in the IoT

Actor programming as foundation for IoT applications
The IoT is inherently based on message passing
Native implementation can scale down to embedded devices
High level of abstraction improves reusability and testability

Program logic independent from deployment
Actors can be developed & tested locally
Extensible network layer allows to adapt CAF to the IoT

Specific challenges in CAF
Error detection & propagation in connectionless networks
Adapt to limited frame sizes (6LoWPAN)
Transactional message passing using CoAP

Dominik Charousset iNET – HAW Hamburg 9

Recent Activities – Actors in the IoT

Actor programming as foundation for IoT applications
The IoT is inherently based on message passing
Native implementation can scale down to embedded devices
High level of abstraction improves reusability and testability

Program logic independent from deployment
Actors can be developed & tested locally
Extensible network layer allows to adapt CAF to the IoT

Specific challenges in CAF
Error detection & propagation in connectionless networks
Adapt to limited frame sizes (6LoWPAN)
Transactional message passing using CoAP

Dominik Charousset iNET – HAW Hamburg 9

Agenda

1 Recent Activities

2 Type-safe Message Passing

3 Scheduling Infrastructure

4 Runtime Inspection & Debugging

5 Conclusion & Outlook

Dominik Charousset iNET – HAW Hamburg 10

Type-safe Message Passing

The original model1 defines actors in terms of
Message passing primitives
Patterns specifed to dispatch on the content of incoming data

) Dynamic type checking
Coding errors occur at runtime
Non-local dependencies are hard to track manually
Extensive integration testing required

1Carl Hewitt, Peter Bishop, and Richard Steiger. A Universal Modular ACTOR Formalism for Artificial
Intelligence.
In Proceedings of the 3rd IJCAI, pages 235–245, San Francisco, CA, USA, 1973. Morgan Kaufmann
Publishers Inc.

Dominik Charousset iNET – HAW Hamburg 11

Type-safe Message Passing

Lift type system of C++ and make it applicable to actor interfaces
Compiler statically checks protocols between actors
Protocol violation cannot occur at runtime
Compiler verifies both incoming and outgoing messages:
using math =

typed_actor <

replies_to <int , int >::with <int >,

replies_to <float >::with <float , float >>;

// ...

auto ms = typed_spawn (...);

sync_send(ms, 10, 20). then(

[](float result) {

// compiler error: result is int , not float

}

);

Dominik Charousset iNET – HAW Hamburg 12

Agenda

1 Recent Activities

2 Type-safe Message Passing

3 Scheduling Infrastructure

4 Runtime Inspection & Debugging

5 Conclusion & Outlook

Dominik Charousset iNET – HAW Hamburg 13

Scheduling Infrastructure

CAF aims at scaling to millions of actors on hundreds of processors
Actors cannot be implemented as threads
Running in userspace prohibits preemption

Previous design deployed a centralized cooperative scheduler
Short-lived tasks cause significant runtime overhead
Central job queue is a bottleneck
Could schedule actors for real-time with a priori knowledge 2

) Decentralized approach required to scale to manycore systems

2M.L. Dertouzos and AK. Mok. Multiprocessor Online Scheduling of Hard-Real-Time Tasks.
Software Engineering, IEEE Transactions on, 15(12):1497–1506, Dec 1989

Dominik Charousset iNET – HAW Hamburg 14

Scheduling Infrastructure

CAF aims at scaling to millions of actors on hundreds of processors
Actors cannot be implemented as threads
Running in userspace prohibits preemption
Previous design deployed a centralized cooperative scheduler

Short-lived tasks cause significant runtime overhead
Central job queue is a bottleneck
Could schedule actors for real-time with a priori knowledge 2

) Decentralized approach required to scale to manycore systems

2M.L. Dertouzos and AK. Mok. Multiprocessor Online Scheduling of Hard-Real-Time Tasks.
Software Engineering, IEEE Transactions on, 15(12):1497–1506, Dec 1989

Dominik Charousset iNET – HAW Hamburg 14

Scheduling Infrastructure

CAF aims at scaling to millions of actors on hundreds of processors
Actors cannot be implemented as threads
Running in userspace prohibits preemption
Previous design deployed a centralized cooperative scheduler

Short-lived tasks cause significant runtime overhead
Central job queue is a bottleneck
Could schedule actors for real-time with a priori knowledge 2

) Decentralized approach required to scale to manycore systems

2M.L. Dertouzos and AK. Mok. Multiprocessor Online Scheduling of Hard-Real-Time Tasks.
Software Engineering, IEEE Transactions on, 15(12):1497–1506, Dec 1989

Dominik Charousset iNET – HAW Hamburg 14

Scheduling Infrastructure

Divide & conquer with libcppa (central scheduling)

2 4 6 8 10 12
0

5

10

15

20

25

Ti
m

e
[s

]

Number of Cores [#]

 libcppa
 scala
 erlang

libcppa reached maximum performance
on 8 cores for divide & conquer algorithms

Dominik Charousset iNET – HAW Hamburg 15

Scheduling Infrastructure

Decentralized scheduling using Work Stealing3

One job queue and worker per core
Worker tries stealing work items from others when idle
Stealing is a rare event for most work loads4

Widely known variant of work stealing: fork-join

But: A priori knowledge cannot be exploited (no global view)

3Robert D. Blumofe and Charles E. Leiserson. Scheduling Multithreaded Computations by Work Stealing.
J. ACM, 46(5):720–748, September 1999.
4Vivek Kumar, Daniel Frampton, Stephen M. Blackburn, David Grove, and Olivier Tardieu. Work-stealing
Without the Baggage.
In Proceedings of the ACM International Conference on Object Oriented Programming Systems Languages
and Applications, OOPSLA ’12, pages 297–314, New York, NY, USA, 2012. ACM.

Dominik Charousset iNET – HAW Hamburg 16

Scheduling Infrastructure

Victim
Worker 1

Thief
Worker 2 Worker P

Queue 1 Queue 2 Queue P

Job 1

Job 2

Job 3

…

Job N

Job 3

Steal

Dominik Charousset iNET – HAW Hamburg 17

Scheduling Infrastructure

Framework has no a priori knowledge ! Work Stealing as default
Developers can deploy custom scheduler using
template <class Policy = work_stealing >

void set_scheduler(size_t num_workers = ...,

size_t max_msgs = indefinite);

max_msgs restricts nr. of messages actors can consume at once
Low value increases fairness and avoids bursts
High value minimizes queue access, usually maximizing throughput

Policy can be implemented to exploit a priori knowledge, if possible
Using Work Stealing, CAF scales up to at least 64 cores

Dominik Charousset iNET – HAW Hamburg 18

Scheduling Infrastructure

Mixed operations under work load with CAF

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

50

100

150

200

250

300

350

 ActorFoundry
 CAF
 Charm
 Erlang
 ScalaTi

m
e

[s
]

Number of Cores [#]
Dominik Charousset iNET – HAW Hamburg 19

Agenda

1 Recent Activities

2 Type-safe Message Passing

3 Scheduling Infrastructure

4 Runtime Inspection & Debugging

5 Conclusion & Outlook

Dominik Charousset iNET – HAW Hamburg 20

Runtime Inspection & Debugging

Debugging of distributed systems is inherently complex
Non-trivial program flow, no global clock, diverging states, etc.
Recording messages is crucial for on-line or post-mortem debugging
Erroneous behavior can be reproduced using message replaying 5

Visualization tools can help understanding complex errors 6

Neither approach has been used to analyze distributed actors

5Dennis Michael Geels, Gautam Altekar, Scott Shenker, and Ion Stoica. Replay debugging for distributed
applications.
In Proc. of USENIX’06 Ann. Tech. Conf., pages 289–300. USENIX Assoc., 2006.
6Terry Stanley, Tyler Close, and Mark S Miller. Causeway: A message-oriented distributed debugger.
Technical Report HPL-2009-78, HP Laboratories, 2009.

Dominik Charousset iNET – HAW Hamburg 21

Runtime Inspection & Debugging

Nexus

Frontend
(e.g. shell)

Node A
P1

…
…

Node N
PN

actor
A

actor
B

actor
C

actor
D

Dominik Charousset iNET – HAW Hamburg 22

Runtime Inspection & Debugging

Nexus

Frontend
(e.g. shell)

Node A
P1

…
…

Node N
PN

actor
A

actor
B

actor
C

actor
D

Dominik Charousset iNET – HAW Hamburg 22

Runtime Inspection & Debugging

Nexus

Frontend
(e.g. shell)

Node A
P1

…
…

Node N
PN

actor
A

actor
B

actor
C

actor
D

P1 … PN

Probes

Intercept & forward three kinds of messages to the Nexus:
Activity events: incoming & outgoing messages
Error events: network & system failures
Runtime statistics: periodic collection of CPU load, etc.

Dominik Charousset iNET – HAW Hamburg 23

Runtime Inspection & Debugging

Nexus

Frontend
(e.g. shell)

Node A
P1

…
…

Node N
PN

actor
A

actor
B

actor
C

actor
D

Nexus

The Nexus

Provides global view of the distributed system
Receives & collects events from Probes
Statefully configures verbosity of Probes

Dominik Charousset iNET – HAW Hamburg 24

Runtime Inspection & Debugging

Nexus

Frontend
(e.g. shell)

Node A
P1

…
…

Node N
PN

actor
A

actor
B

actor
C

actor
D

Frontend
(e.g. shell)

Frontend application categories

Observing agents: monitoring & threshold-based alerts
Supervising agents: active manipulation of running app.
Monitoring & visualization: access to aggregate state
) For instance, an interactive inspection shell

Dominik Charousset iNET – HAW Hamburg 25

Interactive Inspection Shell

Allows users to inspect distributed system
In global mode:

Show all participating nodes
Global view to the system, e.g., total number of actors

In node mode:
Access to statistics such as RAM usage, CPU load, etc.
Direct interaction with actors on that node

Dominik Charousset iNET – HAW Hamburg 26

Agenda

1 Recent Activities

2 Type-safe Message Passing

3 Scheduling Infrastructure

4 Runtime Inspection & Debugging

5 Conclusion & Outlook

Dominik Charousset iNET – HAW Hamburg 27

Conclusion

CAF is a robust, scalable platform for actor programming
Ongoing effort to scale

Down to IoT devices
Up to many cores and nodes

Interactive shell: first step towards debugging distributed actors

Dominik Charousset iNET – HAW Hamburg 28

Open Research Questions

Scheduling & distributed load balancing
Can we lift realtime capabilities of underlying OS for actors?
What are efficient algorithms for actor migration strategies?

Embedded hardware & communication infrastructure in the IoT
How to support fault tolerance in self-healing networks?
What is the minimal overhead (RAM, CPU, energy consumption)?

Security considerations
How to achieve identity-based cryptography for actors?
Opportunistic encryption feasible for CAF in the IoT?

Dominik Charousset iNET – HAW Hamburg 29

Open Research Questions

Scheduling & distributed load balancing
Can we lift realtime capabilities of underlying OS for actors?
What are efficient algorithms for actor migration strategies?

Embedded hardware & communication infrastructure in the IoT
How to support fault tolerance in self-healing networks?
What is the minimal overhead (RAM, CPU, energy consumption)?

Security considerations
How to achieve identity-based cryptography for actors?
Opportunistic encryption feasible for CAF in the IoT?

Dominik Charousset iNET – HAW Hamburg 29

Open Research Questions

Scheduling & distributed load balancing
Can we lift realtime capabilities of underlying OS for actors?
What are efficient algorithms for actor migration strategies?

Embedded hardware & communication infrastructure in the IoT
How to support fault tolerance in self-healing networks?
What is the minimal overhead (RAM, CPU, energy consumption)?

Security considerations
How to achieve identity-based cryptography for actors?
Opportunistic encryption feasible for CAF in the IoT?

Dominik Charousset iNET – HAW Hamburg 29

Open Research Questions

Scheduling & distributed load balancing
Can we lift realtime capabilities of underlying OS for actors?
What are efficient algorithms for actor migration strategies?

Embedded hardware & communication infrastructure in the IoT
How to support fault tolerance in self-healing networks?
What is the minimal overhead (RAM, CPU, energy consumption)?

Security considerations
How to achieve identity-based cryptography for actors?
Opportunistic encryption feasible for CAF in the IoT?

Dominik Charousset iNET – HAW Hamburg 29

Publications

Dominik Charousset, Thomas C. Schmidt, Raphael Hiesgen, and Matthias

Wählisch. Native Actors – A Scalable Software Platform for Distributed,
Heterogeneous Environments.
In Proc. of the 4rd ACM SIGPLAN Conference on Systems, Programming,
and Applications (SPLASH ’13), Workshop AGERE!, New York, NY, USA,
Oct. 2013. ACM

Matthias Vallentin, Dominik Charousset, Thomas C. Schmidt, Vern Paxson,

and Matthias Wählisch. Native Actors: How to Scale Network Forensics.
In Proc. of ACM SIGCOMM, Demo Session, New York, August 2014. ACM

Raphael Hiesgen, Dominik Charousset, and Thomas C. Schmidt. Embedded
Actors – Towards Distributed Programming in the IoT.
In Proc. of the 4th IEEE Int. Conf. on Consumer Electronics - Berlin,
ICCE-Berlin’14, Piscataway, NJ, USA, Sep. 2014. IEEE Press

Dominik Charousset iNET – HAW Hamburg 30

Thank you for your attention!

Homepage: http://actor-framework.org

Sources: https://github.com/actor-framework

iNET Working Group: http://inet.cpt.haw-hamburg.de

Dominik Charousset iNET – HAW Hamburg 31

	Recent Activities
	Type-safe Message Passing
	Scheduling Infrastructure
	Runtime Inspection & Debugging
	Conclusion & Outlook

