

Hyung-Taek Lim

REAL-TIME COMMUNICATION IN AN IP/ETHERNET-BASED IN-CAR NETWORK

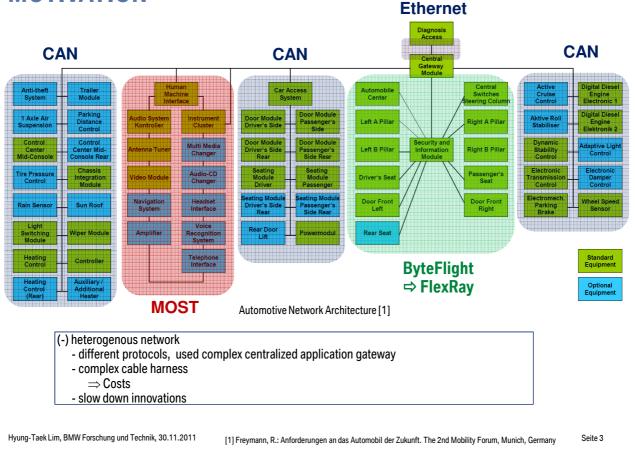
Forschung und Technik.

OUTLINE

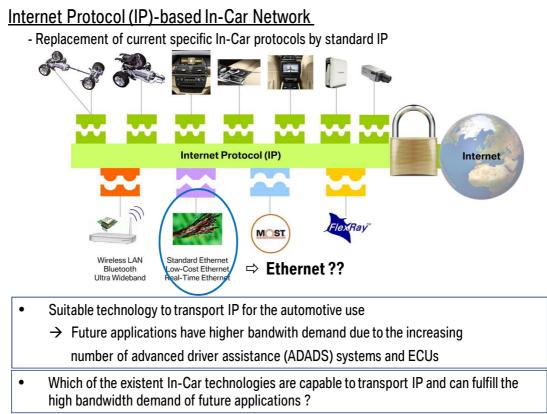
1. Introduction and Scope

- Motivation
- Vision and Challenges for the future In-Car network
- Ethernet in a Vehicle
- Reverse Engineering of current bus systems: CAN and FlexRay
- Methodology

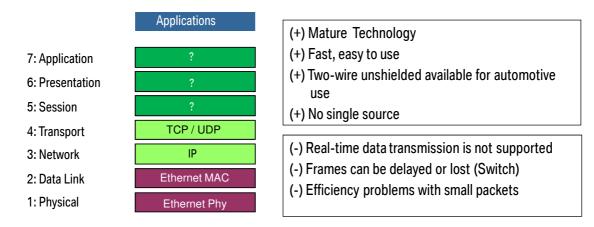
2. Solutions 1/2: Standard Switched Ethernet


- Influence of the Topologies
- Non Prioritized (1) vs. Prioritized Network (2)

3. Solution 3: IEEE 802.1 Ethernet AVB


- Background Information
- Evaluation of an Ethernet AVB based In-Car Network
- Summary
- 4. Future Work **Publications**

Seite 2


MOTIVATION

VISION AND CHALLENGES

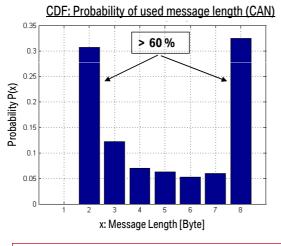
LEGACY ETHERNET

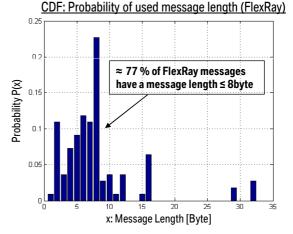
Ethernet is currently used only for two areas:

- Diagnosis and flashing (OBD)
- Remote disc access (CIC⇔RSE)

Currently: no real-time applications; Ethernet without any QoS mechanisms

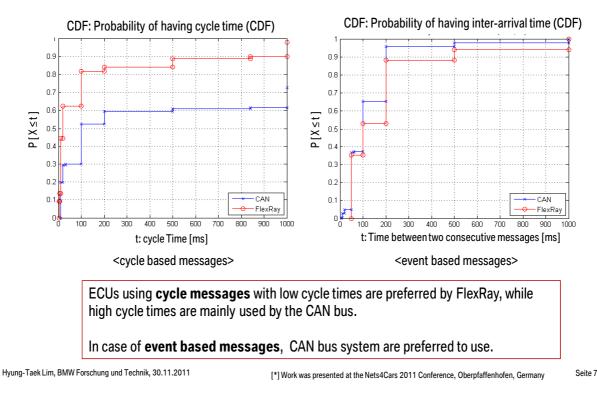
Hyung-Taek Lim, BMW Forschung und Technik, 30.11.2011


Seite 5


REVERSE ENGINEERING OF CAN, FLEXRAY [*]

Trace Analysis:

Analysis of control messages based on real In-Car CAN and FlexRay data derived from a BMW vehicle


- (1) Message length and their distribution
- (2) Cycle Times Time between two consecutive messages for cycle based messages

Most of the in-car control messages have a message length less than 8 Byte. A single UDP packet with a minimum payload size of 20 bytes will cover 95% of the in-car control message length.

REVERSE ENGINEERING OF CAN, FLEXRAY -2-[*]

(2) Cycle Times – Time between two consecutive messages for cycle based messages

RESEARCH WORK AND METHODOLOGY

Three essential aspects are considered in our work:

No.	Ethernet Types	Methodology		
		Simulation based Evaluation	Prototyping Evaluation	
1	Switched Ethernet without Prio. (,Legacy')	Finished	Finished	
2	Switched Ethernet with Prio	Finished	Finished	
3	IEEE 802.1 Audio Video-Bridging (AVB)	Ongoing	Ongoing	

Do the different Ethernet types support real-time communications and fulfill QoS-requirements in terms of **bandwidth** and **end-to-end delay** by a given topology and applications ?

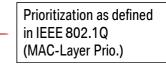
RESEARCH WORK AND METHODOLOGY

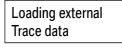
Three essential aspects are considered in our work:

	Na	Ethomet	Methodology		
No.		Ethernet Types	Simulation based Evaluation	Prototyping Evaluation	
	1	Switched Ethernet without Prio. (,Legacy')	Finished	Finished	
	2	Switched Ethernet with Prio	Finished	Finished	
	3	IEEE 802.1 Audio Video-Bridging (AVB)	Ongoing	Ongoing	

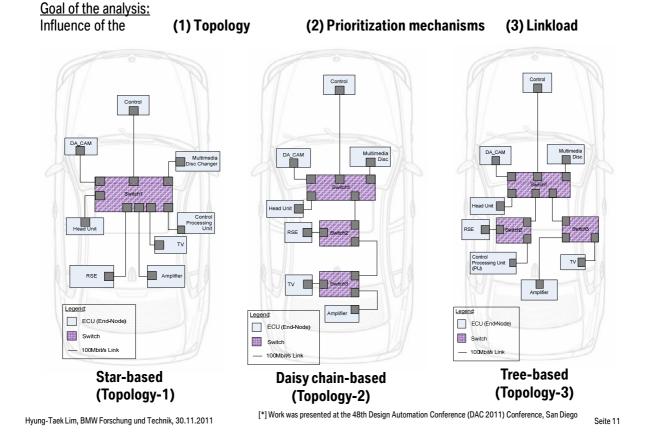
Hyung-Taek Lim, BMW Forschung und Technik, 30.11.2011

Seite 9


INTRODUCTION: OMNET++


- Network Simulation Tool
- component-based, modular and open-architecture discrete event network simulator.
- Specific application areas are implemented by various simulation models and frameworks, most of them <u>open source</u>.

OMNeT++ with the INET-Framework


- Framework for wired and wireless TCP/IP based simulations (contains most of the standard protocols from OSI-Layer L1 – L7)
- some limitations for my purposes
 - 1. No Prioritization mechanism:
 - data traffic is not classified by different priorities.
 - all applications are considered as best effort
 - the switches use only a single output queue and a First-In-First-Out (FIFO) scheduler
 - 2. Data Traffic based on statistical models:
 - packet size and sending rate are set by statistical distribution functions

Framework modified [*]

SWITCHED ETHERNET-BASED IN-CAR NETWORK [*]

IN-CAR APPLICATIONS: TRAFFIC CHARACTERISTICS

Traffic Type	UDP Packet Length [Byte]	Sending Rate[ms]	Bandwidth [Mbit/s]	Prio	Max. End-to-End Delay [ms]
Control	18	uniform (10,100)	<1	3	10 [1,2]
Driver Assistance CAM	1472	0.5	24	2	45 [2]
Navigation	1400	0.7	16	1	100
MM Video	1400	0.28	40	0	150
MM Audio	1400	1.4	8	0	150
TV Video	1400	uniform (0.56,1.12)	10-20	0	150
TV Audio	1400	2.33	4.8	0	150

[1] R. Steffen, R. Bogenberger, M. Rahmani, J. Hillebrand, W. Hintermaier, and A. Winckler, Design and Realization of an IP-based In-Car Network Architecture, The First Annual International Symposium on Vehicular Computing Systems, Dublin, July 2008.

[2] M. Rahmani, R. Steen, K. Tappayuthpijarn, G. Giordano, R. Bogenberger, and E. Steinbach, Performance Analysis of Different Network Topologies for In-Vehicle Audio and Video Communication, The 4th International Telecommunication Networking WorkShop on QoS in Multiservice IP Networks(QoS-IP 2008), Venice, Italy, Feb 2008.

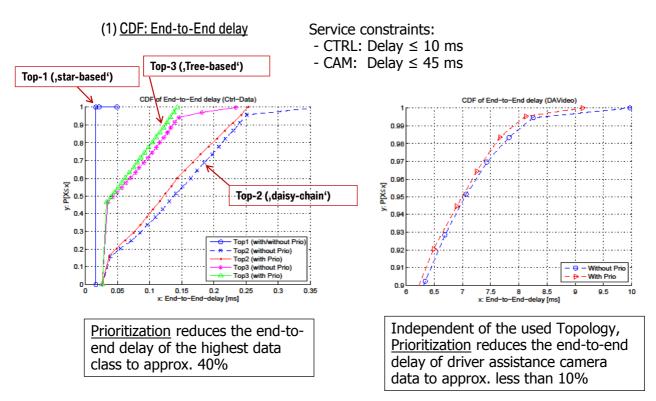
PERFORMANCE EVALUATION [*]

System Model

Assumptions

- 1) Ethernet Link Bandwidth: 100Mbit/s - Ethernet is based on the 100Base-TX standard
- 2) Quality-of-Service (QoS) with Prioritization mechanism as specified in IEEE 802.1Q (VLAN-tag)
 - 4 Queues per output Port:
 - ⇒ Prio3 (highest Priority): Strict Priority Scheduler
 - \Rightarrow Prio2 .. Prio1: Weighted Fair Queuing (WFQ)
- 3) MAC Transmission Queue Size: 100 Frames
- 4) Switch Processing Time: 3µs [1]

Metrics


-End-to-End delay

[1] M. Rahmani, R. Steen, K. Tappayuthpijarn, G. Giordano, R. Bogenberger, and E. Steinbach, *Performance Analysis of Different Network Topologies for In-Vehicle Audio and Video Communication*, The 4th International Telecommunication Networking WorkShop on QoS in Multiservice IP Networks(QoS-IP 2008), Venice, Italy, Feb 2008.

Hyung-Taek Lim, BMW Forschung und Technik, 30.11.2011

Seite 13

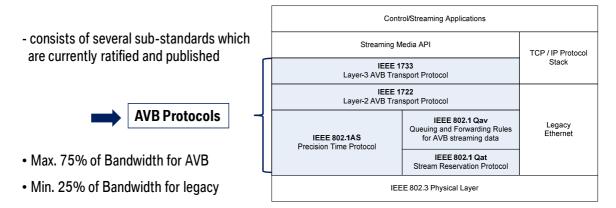
RESULT: PERFORMANCE ANALYSIS

SUMMARY: PERFORMANCE ANALYSIS

- <u>Prioritization mechanism</u> at a MAC-Layer as defined in the IEEE 802.1p/q standard can considerably improve the performance in terms of the end-to-end delay
 - ⇒ Application constraints of the in-car applications are fulfilled
- The <u>star-based topology</u> has the best performance in terms of the minimum end-to-end delay.
- Are there any mechanisms at Layer-2 to support a <u>deterministic behavior</u> of applications in a switched Ethernet network ?
 - frames should arrived at the destination within a certain time
 - high synchronization accuracy
 - low jitter

⇒ IEEE 802.1 Audio/Video Bridging (AVB) standard

Hyung-Taek Lim, BMW Forschung und Technik, 30.11.2011


Seite 15

IEEE 802.1 ETHERNET AUDIO/VIDEO BRIDGING (AVB)

- IEEE 802.1 AVB:
 - Specifications that will allow time-synchronized low latency streaming services

and QoS through 802 networks (Switched Ethernet, WLAN)

- Mechanisms on Layer2 (MAC-Layer)
- The Standard guarantees
 - <u>Maximum latency</u> of 2ms over 7 Hops (Class A) or 50ms (Class B)
 - Synchronization accuracy of less than 1us over 7 Hops

BACKGROUND INFORMATION: ETHERNET AVB -1-

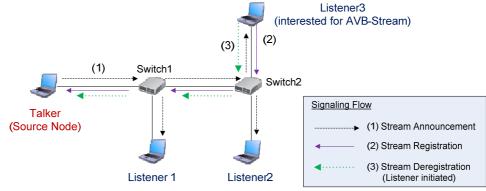
IEEE 802.1AS – Time Synchronization Protocol

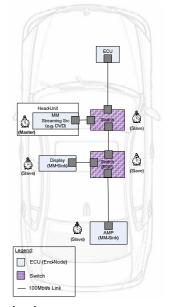
- Synchronization of distributed nodes in a switched Ethernet network to achieve two goals:
- 1. Common Time Basis/Reference Clock
 - Synchronization of distributed, networked ECUs (Audio/Video: Lip Sync)
 - Coordination multiple ECUs
- 2. Meets jitter requirements
 - Guarantees timely execution
 - Administration free protocol

- Sync Process is executed by two steps:

- (1) Selection of the best master clock (BMC) in a network
- (2) Start of the synchronization by the BMC (grandmaster)
 - Measurement only between two adjacent systems
 - Clock drifts between AVB systems and the grandmaster are determined

Hyung-Taek Lim, BMW Forschung und Technik, 30.11.2011

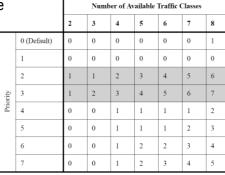

BACKGROUND INFORMATION: ETHERNET AVB -2-


IEEE 802.1Qat – Stream Reservation Protocol

- Signaling protocol to reserve the required bandwidth for a specific stream (AVB-Stream) over the network

- Signaling process is executed by three steps:

- 1. Stream Announcement by a source node ('Talker')
- 2. Stream Registration by a sink node ('Listener')
- 3. Stream Deregistration
 - Initiation by a source node
 - Initiation by a sink node



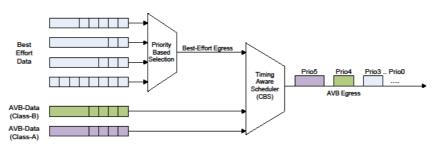
Seite 17

BACKGROUND INFORMATION: ETHERNET AVB -3-

IEEE 802.1 Qav – Queuing and Forwarding Rules

- Mechanisms for switches to guarantee time-sensitive data transmission in terms of delay, jitter and frame loss requirements
- Based on the IEEE 802.1Q standard which allows a seperation of the network traffic into different classes by proritization mechanisms
 - Following two mechanisms are specifed:
 - 1) Mapping of the IEEE 802.1Q priority values to AVB
 - AVB frames have always the highest priority value

AVB Frames (Class-A; Class-B)


Hyung-Taek Lim, BMW Forschung und Technik, 30.11.2011

Seite 19

BACKGROUND INFORMATION: ETHERNET AVB -4-

IEEE 802.1Qav – Queuing and Forwarding Rules

- 2) Queuing Algorithms for AVB- and non AVB-frame
 - Two different scheduling algorithms to transmit AVB and non AVB (legacy Ethernet) frames in a network
 - a) Strict Priority Algorithm for Legacy Ethernet
 - b) Credit Based Shaper Algorithm for AVB
 - Each AVB-Class (A or B) has certain credits
 - A Transmission is only allowed when a credit is >=0
 - For each transmission the credit is decreased at a rate of sendSlope
 - <u>Otherwise</u>: credit is increased at a rate of idleSlope ⇒ Transmission of legacy Ethernet frames

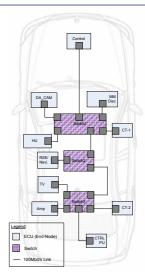
RESEARCH WORK

Three essential aspects are considered in our work:

No	Ethernet Types	Methodology		
No.		Simulation based Evaluation	Prototyping Evaluation	
للسبي	Switched Ethernet without Prio. ('Legacy')	Finished	Finished	
2	Switched Ethernet with Prio.	Finished	Finished	
3	IEEE 802.1 Audio Video-Bridging (AVB)	Ongoing	Ongoing	

Hyung-Taek Lim, BMW Forschung und Technik, 30.11.2011

Seite 21


EVALUATION OF ETHERNET AVB [*]

Research Questions:

- 1. Is the IEEE 802.1 Ethernet AVB standard able to guarantee the latency, jitter and synchronization requirement of streaming data even in high load situations ?
- 2. Do control data transmitted with legacy Ethernet frames meet the application constraints in terms of the maximum latency and frame loss rate ?

System Model

- Topology: daisy-chain with 3 switches in a network
- Applications
 - 1) Driver Assistance Camera Data (AVB: Class A)
 - 2) TV Streaming Data (AVB: Class B)
 - 3) MM Streaming Data (AVB: Class B)
 - 4) Control Data
 - 5) Navigation Data
 - 6) Bulk Data
- Metrics:
 - Maximum Latency
 - Jitter
 - Frame Loss Rate

EVALUATION OF ETHERNET AVB – SYSTEM MODEL

Assumptions

- Ethernet Link: 100Mbit/s
- Static clock drifts of the ECUs without BMCA
 - Grandmaster (node with best clock): HeadUnit
 - Each nodes have static clock drifts
- Six Different Traffic Classes
 - Six Queues per output port (2 AVB + 4 Legacy Ethernet)

Traffic Characteristics

Traffic Type	Ethernet Payload [Byte]	Sending Rate [ms]	Bandwidth [Mbit/s]	Prio
Driver Assistance CAM	390	0.125	27.6	Class A (Prio5)
TV Streaming	700	0.250	23.7	Class B
MM Streaming	700	0.125	47.5	(Prio4)
Control	46	uniform (10,100)	70 e-3 700e-3	3
Bulk	1428	00.168	[0,25,50,70]	1
Navigation	1000	5	1.667	2

Hyung-Taek Lim, BMW Forschung und Technik, 30.11.2011

Seite 23

EVALUATION OF ETHERNET AVB – RESULT

AVB Class-A Control Data Metric (Control \rightarrow CTRL_PU) (DA_CAM→HU) 70% 0% Add. Load 0% 25% 50% 25% 50% 70% 0.095 0.434 0.391 22.40 2.0003 2.0004 2.0003 2.0003 Max Latency [ms] Max Jitter 0.059 0.372 0.285 12.39 0.0003 0.0004 0.0003 0.0004 [ms] 0 0 0 0.584 0 0 0 0 Frame Loss Rate Max. Latency of AVB Data Max. Latency of Control Data 21 DACAM (Class A) End-to-End delay [ms] End-to-End delay [ms] 58 % for our requirement Иах. Лах. Requirement given by Toyota → 100us [*] Additional Background Load [%] Additional Background Load [%]

Control and AVB data depending on the background Load

EVALUATION OF ETHERNET AVB – SUMMARY

The simulation based performance Evaluation of the AVB protocols shows:

- (1) The latency and frame loss of AVB streaming data are <u>independent</u> of the network load.
 - All applications modeled as AVB Class-A/B frames have the latency less or equal than specified values (2ms for Class-A; 50ms for Class-B)
- (2) The performance of control data in an AVB-network <u>depends</u> strongly on the network load.
 - In order to guarantee the hard latency requirement of 100us, the additional background load should be less or equal than 15%.
 - The IEEE 802.1 Ethernet AVB standard improves definitely the performances of multimedia and applications for driver assistance purposes.
 A deterministic behavior of these applications are achieved.
 - In order to fulfill the hard real-time requirements of control data additional scheduling and prioritization mechanisms are required.

Hyung-Taek Lim, BMW Forschung und Technik, 30.11.2011

PUBLICATIONS - 2011 -

	-	Hyung-Taek Lim , Kay Weckemann, Daniel Herrscher: Performance Study of an In-Car Switched Ethernet Network Without Prioritization.
		Springer Lecture Notes on Computer Science, Proc. of the 3rd International Workshop on Communication Technologies for Vehicles, March 2011, Oberpfaffenhofen, Germany.
	_	Hyung-Taek Lim, Lars Völker, Daniel Herrscher:
		Challenges in a Future IP/Ethernet-based In-Car Network for Real-Time Applications. Proc. of DAC 2011,
		The 48th Design Automation Conference (DAC) 2011, June 2011, San Diego, USA.
Published	_	Kay Weckemann; Hyung-Taek Lim , Daniel Herrscher:
olis		Practical Experiences on a Communication Middleware for IP-based In-Car Networks.
Puł		Proc. of the Fifth International Conference on COMmunication System softWAre and middlewaRE (COMSWARE), July 2011, Verona, Italy.
	_	Hyung-Taek Lim, Benjamin Krebs, Lars Völker, Peter Zahrer:
		Inter-Domain Communication in an IP/Ethernet-based In-Car Network,
		Proc. of the 36th IEEE Conference on Local Computer Networks (LCN), October 2011, Bonn, Germany.
	_	Hyung-Taek Lim , Daniel Herrscher, Lars Völker, Martin Johannes Waltl: IEEE 802.1AS Time Synchronization in a switched Ethernet based In-Car Network,
		Proc. of the 3rd IEEE Vehicular Networking Conference (VNC) 2011, November 2011, Amsterdam, The Netherlands.
	_	Hyung-Taek Lim, Daniel Herrscher, Firas Chaari
		IEEE 802.1 Ethernet Audio/Video Bridging in an In-Car Network,
Submitted		Proc. of the 75th IEEE Vehicular Technology Conference: VTC2012-Spring, Yokohama, Japan.
hm	-	Hyung-Taek Lim, Daniel Herrscher, Martin Johannes Waltl, Firas Chaari
Su		Performance Analysis of the IEEE 802.1 Ethernet Audio/Video Bridging Standard,
		SimuTools 2012, The 5th International ICST Conference on Simulation Tools and Techniques, Sirmione- Desenzano, Italy

Questions ? Any Comments ?

thank you.

Research and Technology.

INNOVATIONEN GESTALTEN - STEIGEN SIE EIN

- Möglichkeiten zur Mitarbeit bei BMW Forschung und Technik
 - Praktikum (nach Bedarf)
 - Diplom-/Masterarbeit (6 Monate)
 - Dissertation (3 Jahre)
- Arbeit vor Ort bei BMW, wissenschaftliche Betreuung durch Uni
- Bevorzugt Informatiker, Elektrotechniker oder verwandte Studiengänge E-Mail: <u>hyung-taek.lim@bmw.de</u>

Thank You

Research and Technology.

Hyung-Taek Lim, BMW Forschung und Technik, 05.12.2011

Seite 29