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EU Legislation in Progress

European Parliament

The NIS2 Directive

A high common level of cybersecurity in the EU
OVERVIEW

The Network and Information Security (NIS) Directive is the first piece of EU-wide legislation on
cybersecurity, and its specific aim was to achieve a high common level of cybersecurity across the
Member States. While it increased the Member States' cybersecurity capabilities, its implementation
proved difficult, resulting in fragmentation at different levels across the internal market.

To respond to the growing threats posed with digitalisation and the surge in cyber-attacks, the
Commission has submitted a proposal to replace the NIS Directive and thereby strengthen the
security requirements, address the security of supply chains, streamline reporting obligations, and
mtroduce more smngent supervnsory measures and stricter enforcement requirements, including
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Do observatories agree on trends in DDoS?

Analysis of 10 longitudinal DDoS datasets.
Spanning all major DDoS measurement methods.

Correlating attack trends across industry and academia.
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Common DDoS Attack Types

Direct-path attack (spoofed)
Direct-path attack (non-spoofed)

Reflection-amplification attack (spoofed)




Prevention and Mitigation of DDoS Attacks

Reduce attack vectors Take down booters
Examples: Disable “get monlist” (NTP) or Coordinated takedowns of booter by law
>ANY” (DNS) requests. enforcement.

Validate source address Filter attack traffic

Spoofer project, industry efforts, ... Industry exists around DDoS protection.
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Prevention and Mitigation of DDoS Attacks

Reduce attack vectors Take down booters
Examples: Disable “get monlist” (NTP) or Coordinated takedowns of booter by law
>ANY” (DNS) requests. enforcement.
BUT: Attack vectors remain. BUT: Booters reappear after a while.
Validate source address Filter attack traffic
Spoofer project, industry efforts, ... Industry exists around DDoS protection.
BUT: Spoofable networks remain. BUT: Standardized solutions for cooperative

filtering struggle with adoption.



Prevention and Mitigation of DDoS Attacks

Reduce attack vectors Take down booters

DDoS attacks persist.
How well do we understand the
threat landscape?

uuuuuu BUT: Stanaararzea SoTatrons 10T cooperatt
filtering struggle with adoption.
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Our DDoS Observatories

On-path Networks
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Our DDoS Observatories

Honeypots
Entities
- ? @ @ Attacker
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@ Direct-path attack (non-spoofed)
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Our DDoS Observatories

UCSD NT NT DP 12M IPs
ORION NT NT DP 500k IPs
Netscout Flow DP RA Confidential
Akamai Prolexic Flow DP RA Confidential
IXP Blackholing Flow DP, RA Confidential
AmpPot HP RA ~30 IPs
Hopscotch HP RA 65 IPs

10 Datasets from 7 observatories.
4.5-years measurement: ‘19 - mid 23.
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Mormalized Attacks

Normalized Attacks

Direct-path Attacks

Long-term DDoS Trends
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Direct-path Attacks

Long-term DDoS Trends
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Direct-path Attacks

Long-term DDoS Trends

Both rise at similar
scales — but have

different peaks.
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Reflection-amplification Attacks

Long-term DDoS Trends
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Normalized Attacks

Normalized Attacks

Reflection-amplification Attacks
Long-term DDoS Trends
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Normalized Attacks
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Mormalized Attacks

Mormalized Attacks

Reflection-amplification Attacks
Long-term DDoS Trends
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Reflection-amplification Attacks

Long-term DDoS Trends
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4F ... 12-Weeks EWMA —L— Lin. Reg. (2021+) (+0.05%)

5| — Lin.Reg. (all) (-0.31%) — Lin. Reg. (2022+) (+0.06%)




Reflection-amplification Attacks

Long-term DDoS Trends

Normalized Attacks

Normalized Attacks

Honeypot: AmpPot
5 T
— Weekly Attacks Lin. Reg. (2020+) (-0.33%)
4F ... 12-Weeks EWMA —L— Lin. Reg. (2021+) (-0.20%)

. —— Lin. Reg. (all) {-0.02%)

—— Lin. Reg. (2022+) (+0.41%)

2021 2022 2023
Time [W]

Honeypot: Hopscotch

- Weekly Attacks
4F ... 12-Weeks EWMA
. —— Lin. Reqg. (all) {-0.31%)

Lin. Reg. (2020+) (-0.41%)
—4— Lin. Reg. (2021+) (+0.05%)
—— Lin. Reg. (2022+) (+0.06%)




Reflection-amplification Attacks

Long-term DDoS Trends

Similar only between
2019 and 2021 - still
with diverging details.

Mormalized Attacks

Normalized Attacks

Mo = m w
T

Honeypot: AmpPot

| ]
— Weekly Attacks Lin. Reg. (20204+) (-0.33%) :
| 12-Weeks EWMA —~— Lin. Reg. (2021+) (-0.20%) |
t — Lin. Req. (all) (-0.02%) —— Lin. Reg. (2022+) (+0.41%) |
M4 |
. ]
11 0 ]
L [ . :

19 2020 2021 2022 2023

Time [W]

Honeypot: Hopscotch

- Weekly Attacks Lin. Reg. (2020+) (-0.41%)

S 12-Weeks EWMA —=— Lin. Reg. (2021+) (+0.05%)

| —— Lin. Reg. (all) (-0.31%) — Lin. Reg. (2022+) (+0.06%)
|




Nomalized Attacks

Nomalized Attacks

Reflection-amplification Attacks
Long-term DDoS Trends

Flow data: Netscout

5 T T
—— Weekly Attacks Lin. Reg. (2020+) (-0.19%) :
4F . 12-Weeks EWMA —A— Lin. Reg. (2021+) (-0.26%) :
3 — Lin. Reg. (all) (+0.07%) — Lin. Reg. (2022+) (+0.30%) i
1 ]
2F . L
1 WM : :
| |
0 ! : : L 1
2019 2020 2021 2022 2023
Time [W]
Flow data: Akamai Prolexic
5 T
—— Weekly Attacks Lin. Reg. (2020+) (-0.15%) |
4F . 12-Weeks EWMA —A— Lin. Reg. (2021+) (-0.66%) | :
5| — Lin. Reg. (all) (-0.04%) — Lin. Reg. (2022+) (-0.21%) |

tgl------

—_ = = = = = = = = = =

Normalized Attacks

Normalized Attacks

Honeypot: AmpPot
5 T T
— Weekly Attacks Lin. Reg. (2020+) (-0.33%) . :
4F ... 12-Weeks EWMA —k— Lin. Reg. (2021+) (-0.20%) I 3
51 — Lin. Req. (all) (-0.02%) — Lin. Reg. (2022+) (+0.41%) I 3
i
|
1

|
|
|
|
|
™

2020

2021
Time [W]

Honeypot: Hopscotch

— Weekly Attacks
4F ... 12-Weeks EWMA

. —— Lin. Reqg. (all) {-0.31%)

Lin. Reg. (2020+) (-0.41%)
—4— Lin. Reg. (2021+) (+0.05%)
—— Lin. Reg. (2022+) (+0.06%)




Nomalized Attacks

Nomalized Attacks

Reflection-amplification Attacks

T

Flow data: Netscout Honeypot: AmpPot
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Trend Summary

Observatories only partially agree

on long-term trends.

Attack Type Observatories Used in This Paper (2019-2023)
Network Telescopes Flow Data Honeypots A Increase
UCSD Orion Netscout Akamai IXP Hopscotch AmpPot NewKid ’ Unchanged
Direct-path A A A 4 A n/a n/a n/a V' Decrease

Reflection-Ampl.  n/a n/a A 4 A 4 \ 4 4 A




Trend Summary ©~©/V /o]
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* providers

We also analyzed 24 DDoS reports from 22

industry vendors (see our artifact).

HUAWEI
®
radware
Attack Type Observatories Used in This Paper (2019-2023) Industry Reports (#)
Network Telescopes Flow Data Honeypots (= 2022)
UCSD Orion Netscout Akamai IXP Hopscotch AmpPot NewKid
Direct-path A A A L 2 A n/a n/a n/a A(5), ¥(0)

Reflection-Ampl.  n/a n/a A \ 4 A 4 \ 4 4 A A(2), V(3)
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Trend Summary

Why do observatories disagree?
Do they see similar DDoS events?

Attack Type Observatories Used in This Paper (2019-2023) Industry Reports (#)
Network Telescopes Flow Data Honeypots (= 2022)
UCSD Orion Netscout Akamai IXP Hopscotch AmpPot NewKid

Direct-path A A A A n/a n/a n/a A(5), ¥(0)

Reflection-Ampl.  n/a n/a A \ 4 v A A(2), V(3)
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Target Visibility Across Observatories

Academia

Each observatory contributes new targets.

UCSD, Hopscotch, AmpPot each exclusively observe 20% (among academia).

A very small number of targets i1s observed by all four: 0.55%.
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Target Visibility Across Observatories

Academia

Each observatory contributes new targets.
UCSD, Hopscotch, AmpPot each exclusively observe 20% (among academia).

A very small number of targets i1s observed by all four: 0.55%.

Industry
Industry confirms few targets seen by each respective observatory
from academia: Netscout: 2%-7%, Akamai Prolexic: 0.02%-0.06%

Overlap with targets observed by all four observatories from
academia is 10x higher at 20% and 0.2%! "



Target Visibility Across Observatories

Academia

Details in the UpSet plots of the paper!

W Both Attack Types (RA & DP) 20 4 Confirmed by Industry (Netscout) Confirmed by Industry {Akamai}
. g . = = 0.20 1

mmmmmmmmmm

OUVCTTap WitiT CargSCTS UDUSCT VCUO Uy ait TUUT UDU3STCT VatUTTICS TTUTTI
academia is 10x higher at 20% and 0.2%!



Target Visibility Across Observatories

Academia

Data sharing is required for a thorough
view onto the DDoS landscape!

)

Overlap with targets observed by all four observatories from
academia is 10x higher at 20% and 0.2%!



Conclusion

We compared 4.5 years of DDoS attack data from 7 observatories.
Differences in trends and targets show limitations of individual views.

Data sharing required for a comprehensive understanding of DDoS.
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Conclusion

We compared 4.5 years of DDoS attack data from 7 observatories.
Differences in trends and targets show limitations of individual views.

Data sharing required for a comprehensive understanding of DDoS.

DDoS research tries to make global inferences based on a local view.

Acknowledging this limitation is important for accurate interpretation
and accurate comparison.

Let’s collaborate to achieve a comprehensive view of DDoS!
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Thank you! @@

Artifact: https://ddoscovery.github.io e

Me: raphael.hiesgen@haw-hamburg. de@ FEah

Conclusion

We compared 4.5 years of DDoS attack data from 7 observatories.
Differences in trends and targets show limitations of individual views.

Data sharing required for a comprehensive understanding of DDoS.

DDoS research tries to make global inferences based on a local view.

Acknowledging this limitation is important for accurate interpretation
and accurate comparison.

Let’s collaborate to achieve a comprehensive view of DDoS!
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Industry and Academic DDoS Assessments
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Abstract

Motivated by the impressive but diffuse scope of DDoS research
and reporting, we undertake a multistakeholder (joint industry-
academic) analysis to seek convergence across the best available
macroscopic views of the relative trends in two dominant classes
of attacks — direct-path attacks and reflection-amplification at-
tacks. We first analyze 24 industry reports to extract trends and
(in)consistencies across observations by commercial stakeholders
in 2022. We then analyze ten data sets spanning industry and aca-
demic sources, across four years (2019-2023), to find and explain
discrepancies based on data sources, vantage points, methods, and
parameters. Our method includes a new approach: we share an
aggregated list of DDoS targets with industry players who return
the results of joining this list with their proprietary data sources to
reveal gaps in visibility of the academic data sources. We use aca-
demic data sources to explore an industry-reported relative drop in
spoofed reflection-amplification attacks in 2021-2022. Our study il-

hall 4 d

La Jolla, CA, USA

of the DDoS landscape. We hope our results inform not only future
academic and industry pursuits but also emerging policy efforts to
reduce systemic Internet security vulnerabilities.

CCS Concepts

» Networks — Denial-of-service attacks; Network measure-
ment; + Social and profe 1 topics — G | regula-
tions.
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1 Introduction
Distributed Denial-of-Service (DDoS) attacks were first reported
around 2000 [22, 143] and continue to cause substantial damage,
with cycles of new attack ies and novel i b
While hundreds of scientific studies and p

P
Is have provided

For more details, see our paper.
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Netscout: Attack Shift

Attacks [%]

100

80 -

2019

N MNetscout (Direct-Path)

Metscout (Reflection-Amplification) f

2020 2021 2022 2023
Time [W]
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All Attack Trends

ORION NT
UCS5D NT
IXP Blackholing

- Akamai Prolexic
o Metscout Atlas

Metscout Atlas
E Akamai Prolexic
IXP Blackholing
Hopscotch HP
AmpPot HP
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Momalized Attacks
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Targets Across Academic Observatories

ORION OUFfOUF academic
uesb observatories.

Hopscotch
AmpPot




Targets Across Observatories

Target tuples (date, IP address)

seen by each observatory.

4.915%4 ORION

n.axjN ucsnD
arsaxJ il Hopscotch
w3 AmpPot

10M ©
Target Sets [#]
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Targets Across Academic Observatories

All combinations of observatories.

2015 ORION @
e ucsb @ 2 @ & @ E: E
arsax[ Hopscotch I : E
s Ul  AmpPot ® o0 ® o ® ®

1oM 0
Target Sets [#]




Targets Across Academic Observatories

&M E_I"'“E

Target tuples only seen by

*
g am- the observatories marked in
“oami the matrix below.

4915 ORION
svez ucso ~ @ i ] E
4?.54&&_ angr_ntch I : E
wnx Nl  AmpPot ®®
10M 0

Target Sets [#]



Targets Across Academic Observatories

M Example: 21.41% (~6M) target
g am- tuples were only observed
“ami by AmpPot.

a.01%] ORION ®

svs2 ucsb @
arsaxJ il Hopscotch
e 31+ N AmpPot

1oM 0
Target Sets [#]
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Targets Across Academic Observatories

BM - 26.81% 2% £4%

N Both Attack Types (RA & DP)
4141%g 719 Reflection-Amplification
B Direct-Path (rand. spoofed)

Targets [#]
£ an
= =

)
=

3.34%
0- 0.52% 0.11%0.13%0.02%0.02% . 0.28%0_06%0_24%0, 16%0,55%

4915 ORION ®
sLs2: N ucsD 9 I : E
arsax[ Hopscotch I : E
4. 31% | AmpPot

oM 0O
Target Sets [#]




Targets Across Academic Observatories

ol BEm Both Attack Types (RA & DP)

M | Reflection-Amplification
™y BEm Direct-Path (rand. spoofed)
£ am
=
=

3.34%

4815 ORIO
n.axjN UcsC
arsa% [N Hopscotc
O — Each observatory

10M O

Target Sets [#] contributed new targets!
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Targets Across Academic Observatories

8M - 26.81% 25 £4%,

BN Both Attack Types (RA & DP)
&M 4141 Reflection-Amplification
B Direct-Path (rand. spoofed)

Only 0.55% (156k) of target

tuples were seen by all
observatories.
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A Quick Look at Industry

Confirmed by Industry {Netscout)
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A Quick Look at Industry

Confirmed by Industry {Netscout)
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A Quick Look at Industry

A small target overlap with
individual observatories.
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Relative Targd




A QlliCk Loo Larger overlap among attacks
observed by all of them.

0 Confirmed by Industry {(Netscout)
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Industry Target Overlap with Academia
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Target Overlap Timeseries : Honeypots
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Target Overlap Timeseries: Telescopes
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