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Common IoT Deployments

I Always connected, low-cost IoT devices
I Resource-constrained: MHz CPU, kB RAM/ROM

I Saturated resources impact network performance
I Local bottlenecks leave the network partially underutilized

I Overprovisioning of resources to meet requirements . . .

is infeasible
I Device complexity, unit price, and energy consumption increases

Quality of Service (QoS) improves resource utilization
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Resources in IP vs. NDN

I Typical IP world resources: link capacities & bu�er spaces

I CCNx / NDN provides additional resources:
Pending Interest Table (PIT), Content Store (CS)

Forwarding Queues

IP Resources

PIT CS

NDN Resources
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Distributed QoS Management



QoS Building Blocks

1. Tra�ic classification

I Longest prefix match (LPM) with pre-defined name↔priority table
I Alternatively: dra�-moiseenko-icnrg-flowclass, I. Moiseenko and D. Oran

2. QoS treatments

⇐ focus of this talk
I Define quality dimensions
I Specify resource management rules
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Quality Dimensions

Latency

Re
lia

bi
lit

y

〈 Regular, Prompt 〉

〈 Reliable, Prompt 〉

〈 Regular, Regular 〉

〈 Reliable, Regular 〉
Toxic gas alerts

in underground mines

Temperature readings
in a class room
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Resource Management Rules
1. Isolated Decisions 2. Resource Correlations 3. Distributed Coordination

Forwarding Queue
Delay regular tra�ic

Pending Interest Table
Evict regular for prompt

Content Store
Evict regular for reliable

CS—PIT Correlation
Prompt Data meets no PI
⇒ cached with priority

CS—Forward. Correlation
Prompt Data dropped
⇒ cached with priority

PIT Coherence
Same config. at all nodes
⇒ Regular < Reliable < Prompt

CS E�iciency
Same config. at all nodes
⇒ Regular < Prompt < Reliable
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Experimental Evaluation



Experimental Evaluation Setup

Hardware: M3 Node in IoT Lab testbed
So�ware: RIOT with CCN-lite
Network: Multi-hop topology with 31 nodes

Gateway

M3 Node (ARM Cortex-M3)
64 kB RAM / 512 kB ROM
802.15.4 radio transceiver
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Scenario Descriptions

Mixed Sensors and Actuators

I Gateway requests device-specific temperature readings every 10 s ± 2 s
I Actuators request device-specific state from gateway every 5 s ± 1 s

Sensing and Lighting Control

I Actuators request group-specific instructions from gateway every 5 s ± 1 s

In
te

re
st

Gateway Tra�ic

In
te

re
st

Actuators Tra�ic

In
te

re
st

Actuators Tra�ic
cache hit

cache hit
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Evaluation Metrics

Success Throughput Latency
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Evaluation Metrics: Success Rates

Success Throughput Latency
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Nodal Success Rates for Actuators Tra�ic

0 20 40 60 80 100

Success Rate [%]

Regular

QoS Coordinated
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Overall Success Rates
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Evaluation Metrics: Throughput Evolution

Success Throughput Latency
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Throughput Evolution for Unprioritized Tra�ic
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Goodput Evolution
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Evaluation Metrics: Completion Time

Success Throughput Latency
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Nodal Completion Time for Actuators Tra�ic
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Conclusion & Outlook

Takeaways
I PIT and cache space have prevailing e�ects on overall network performance

I QoS in NDN is not confined to simple resource trading

I Treating Interest as well as Data messages allows for resource correlations

I Unprioritized tra�ic benefits from resource coordination

Next Steps
I Investigate further correlations between PIT, CS, and bu�er spaces

I Elaborate on the choice of quality dimensions and service levels

39 / 39


