

Gain More for Less: The Surprising Benefits of QoS Management in Constrained NDN Networks ACM ICN 2019, Macau

<u>Cenk Gündoğan</u>¹ Jakob Pfender² Michael Frey³ Thomas C. Schmidt¹ Felix Shzu-Juraschek³ Matthias Wählisch⁴

¹HAW Hamburg

²Victoria University of Wellington

³Safety IO

⁴Freie Universität Berlin

Always connected, low-cost IoT devices

Resource-constrained: MHz CPU, kB RAM/ROM

- Always connected, low-cost IoT devices
 - Resource-constrained: MHz CPU, kB RAM/ROM

- Saturated resources impact network performance
 - Local bottlenecks leave the network partially underutilized

- Always connected, low-cost IoT devices
 - Resource-constrained: MHz CPU, kB RAM/ROM

- Saturated resources impact network performance
 - Local bottlenecks leave the network partially underutilized
- Overprovisioning of resources to meet requirements ...

- Always connected, low-cost IoT devices
 - Resource-constrained: MHz CPU, kB RAM/ROM

- Saturated resources impact network performance
 - Local bottlenecks leave the network partially underutilized
- Overprovisioning of resources to meet requirements ... is infeasible
 Device complexity, unit price, and energy consumption increases

Always connected, low-cost IoT devices

Resource-constrained: MHz CPU, kB RAM/ROM

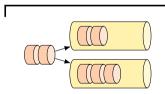
- Saturated resources impact network performance
 - Local bottlenecks leave the network partially underutilized
- Overprovisioning of resources to meet requirements ... is infeasible
 Device complexity, unit price, and energy consumption increases

Quality of Service (QoS) improves resource utilization

Outline

Resources in IP vs. NDN

Distributed QoS Management

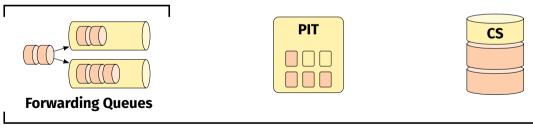

Experimental Evaluation

Conclusion & Outlook

Resources in IP vs. NDN

> Typical IP world resources: link capacities & buffer spaces

IP Resources


Forwarding Queues

Resources in IP vs. NDN

Typical IP world resources: link capacities & buffer spaces

CCNx / NDN provides additional resources:
 Pending Interest Table (PIT), Content Store (CS)

IP Resources

NDN Resources

Distributed QoS Management

QoS Building Blocks

1. Traffic classification

2. QoS treatments

QoS Building Blocks

- 1. Traffic classification
 - ► Longest prefix match (LPM) with pre-defined name↔priority table
 - Alternatively: draft-moiseenko-icnrg-flowclass, I. Moiseenko and D. Oran
- 2. QoS treatments

QoS Building Blocks

- 1. Traffic classification
 - ▶ Longest prefix match (LPM) with pre-defined name↔priority table
 - Alternatively: draft-moiseenko-icnrg-flowclass, I. Moiseenko and D. Oran
- **2**. QoS treatments \leftarrow **focus of this talk**
 - Define quality dimensions
 - Specify resource management rules

Quality Dimensions

\langle Reliable, Prompt \rangle

Toxic gas alerts in underground mines

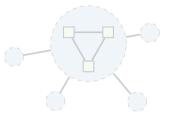
(Reliable, Regular)

 \langle Regular, Prompt \rangle

Regular, Regular >

Temperature readings in a class room

Latency



2. Resource Correlations

3. Distributed Coordination

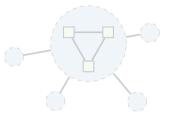
Forwarding Queue Delay *regular* traffic

Pending Interest Table Evict *regular* for *prompt*

Content Store Evict *regular* for *reliable* **CS—PIT Correlation** *Prompt* Data meets no PI ⇒ cached with priority

CS—Forward. Correlation *Prompt* Data dropped ⇒ cached with priority **PIT Coherence** Same config. at all nodes ⇒ Regular < Reliable < Prompt

CS Efficiency Same config. at all nodes ⇒ Regular < Prompt < Reliable


1. Isolated Decisions

2. Resource Correlations

3. Distributed Coordination

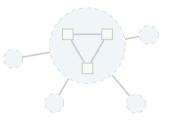
Forwarding Queue Delay *regular* traffic

Pending Interest Table Evict *regular* for *prompt*

Content Store Evict *regular* for *reliable* **CS—PIT Correlation** *Prompt* Data meets no PI ⇒ cached with priority

CS—Forward. Correlation *Prompt* Data dropped ⇒ cached with priority **PIT Coherence** Same config. at all nodes ⇒ Regular < Reliable < Prompt

CS Efficiency Same config. at all nodes ⇒ Regular < Prompt < Reliable


1. Isolated Decisions

2. Resource Correlations

3. Distributed Coordination

Forwarding Queue Delay *regular* traffic

Pending Interest Table Evict *regular* for *prompt*

Content Store Evict *regular* for *reliable*

CS—**PIT** Correlation

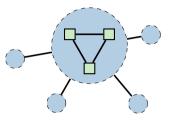
Prompt Data meets no PI \Rightarrow cached with priority

CS—Forward. Correlation

Prompt Data dropped \Rightarrow cached with priority

PIT Coherence Same config. at all nodes ⇒ Regular < Reliable < Prompt

CS Efficiency Same config. at all nodes ⇒ Regular < Prompt < Reliable


1. Isolated Decisions

2. Resource Correlations

3. Distributed Coordination

Forwarding Queue Delay *regular* traffic

Pending Interest Table Evict *regular* for *prompt*

Content Store Evict *regular* for *reliable*

CS—**PIT** Correlation

Prompt Data meets no PI \Rightarrow cached with priority

CS—Forward. Correlation

Prompt Data dropped \Rightarrow cached with priority

PIT Coherence

Same config. at all nodes \Rightarrow Regular < Reliable < Prompt

CS Efficiency

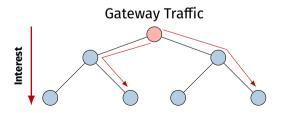
Same config. at all nodes \Rightarrow Regular < Prompt < Reliable

Experimental Evaluation

Experimental Evaluation Setup

Hardware: M3 Node in IoT Lab testbed Software: RIOT with CCN-lite Network: Multi-hop topology with 31 nodes

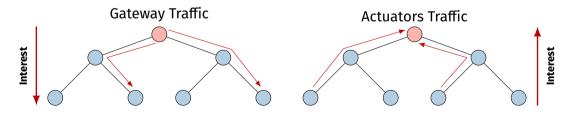
M3 Node (ARM Cortex-M3) 64 kB RAM / 512 kB ROM 802.15.4 radio transceiver


Mixed Sensors and Actuators

Sensing and Lighting Control

Mixed Sensors and Actuators

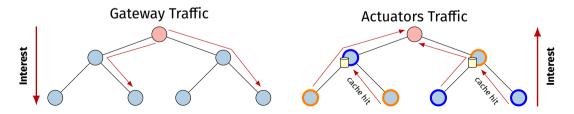
 $\blacktriangleright\,$ Gateway requests device-specific temperature readings every 10 s \pm 2 s


Sensing and Lighting Control

Mixed Sensors and Actuators

- $\blacktriangleright\,$ Gateway requests device-specific temperature readings every 10 s \pm 2 s
- \blacktriangleright Actuators request **device-specific** state from gateway every **5** s \pm **1** s

Sensing and Lighting Control

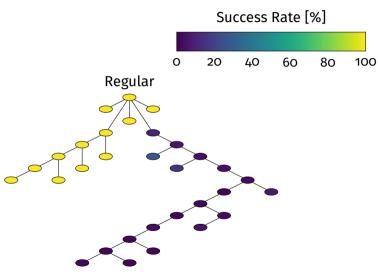


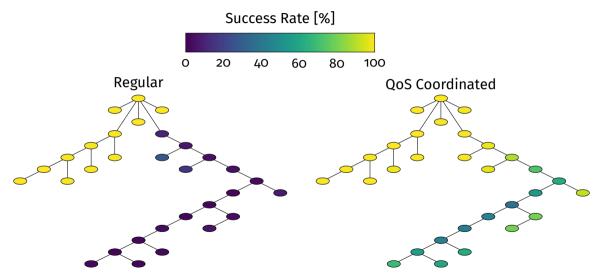
Mixed Sensors and Actuators

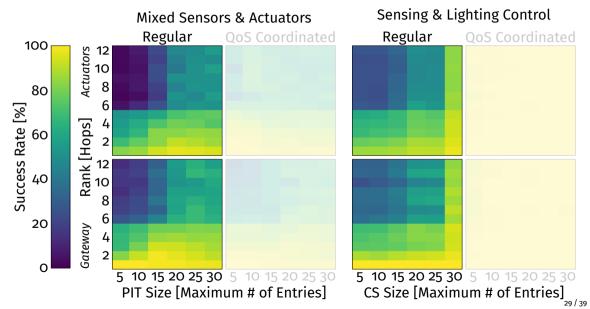
- $\blacktriangleright\,$ Gateway requests device-specific temperature readings every 10 s \pm 2 s
- Actuators request device-specific state from gateway every 5 s \pm 1 s

Sensing and Lighting Control

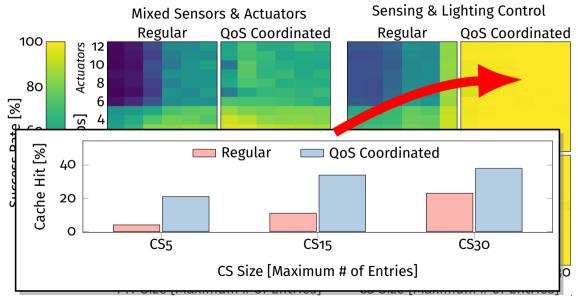
> Actuators request group-specific instructions from gateway every 5 s \pm 1 s


Evaluation Metrics

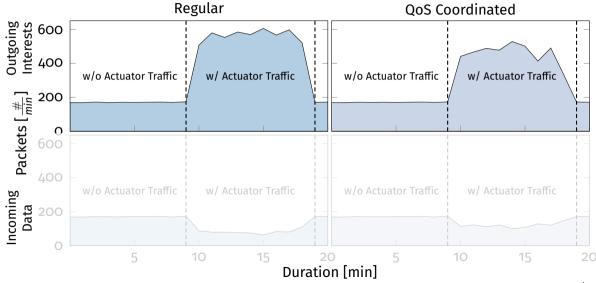

Evaluation Metrics: Success Rates

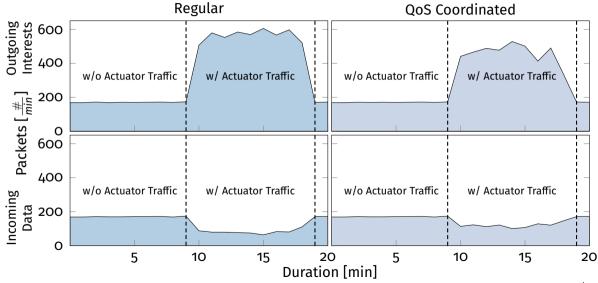

Nodal Success Rates for Actuators Traffic

Nodal Success Rates for Actuators Traffic

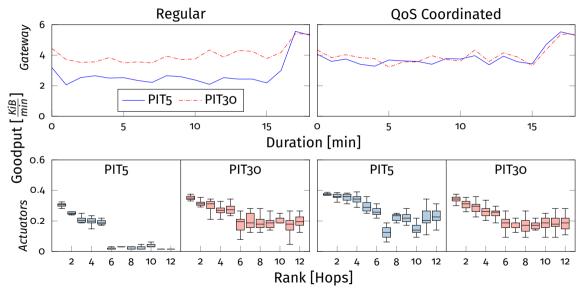

Overall Success Rates

Overall Success Rates

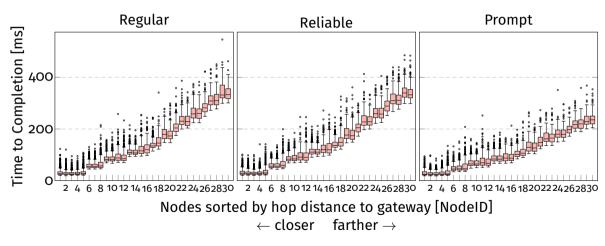

Overall Success Rates


Evaluation Metrics: Throughput Evolution

Throughput Evolution for Unprioritized Traffic


Throughput Evolution for Unprioritized Traffic

Goodput Evolution


Goodput Evolution

Evaluation Metrics: Completion Time

Nodal Completion Time for Actuators Traffic

Conclusion & Outlook

Takeaways

- > PIT and cache space have prevailing effects on overall network performance
- QoS in NDN is not confined to simple resource trading
- > Treating Interest as well as Data messages allows for resource correlations
- Unprioritized traffic benefits from resource coordination

Next Steps

- Investigate further correlations between PIT, CS, and buffer spaces
- Elaborate on the choice of quality dimensions and service levels