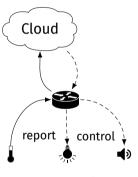


NDN, CoAP, and MQTT: A Comparative Measurement Study in the IoT ACM ICN 2018, Boston

Cenk Gündoğan¹

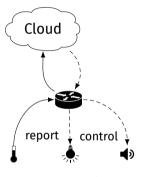
Peter Kietzmann¹

Martine Lenders²

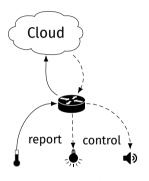

Hauke Petersen² Thomas C. Schmidt¹

Matthias Wählisch²

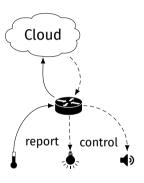
¹HAW Hamburg


²Freie Universität Berlin

- Sensors and actuators connect to clouds
 - Today mainly based on MQTT


Sensor nodes

- Sensors and actuators connect to clouds
 - Today mainly based on MQTT
- ► MQTT
 - Publish-subscribe protocol on TCP
 - Constrained IoT: MQTT-SN on UDP


Sensor nodes

- Sensors and actuators connect to clouds
 - Today mainly based on MQTT
- ► MQTT
 - Publish-subscribe protocol on TCP
 - Constrained IoT: MQTT-SN on UDP
- CoAP
 - Request-response protocol on UDP
 - IETF solution for constrained IoT

Sensor nodes

- Sensors and actuators connect to clouds
 - Today mainly based on MQTT
- MQTT
 - Publish-subscribe protocol on TCP
 - Constrained IoT: MQTT-SN on UDP
- CoAP
 - Request-response protocol on UDP
 - IETF solution for constrained IoT
- ► ICN
 - Promising candidate for future IoT
 - ► Intensifying attention since 2014

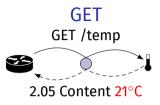
Sensor nodes

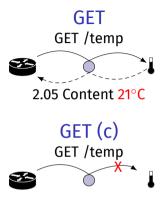
Research Question

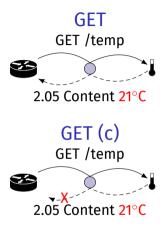
How do these protocols perform and which is most appropriate for the IoT?

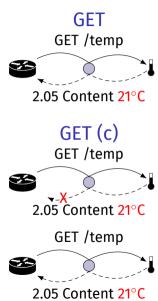
Outline

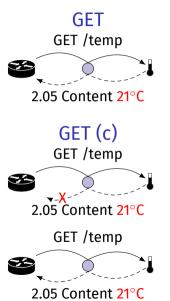
Protocol Overview

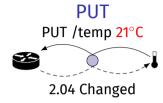

Metrics & Experiment Setup

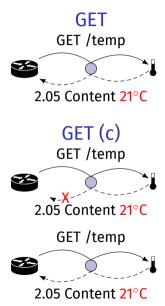

Evaluation

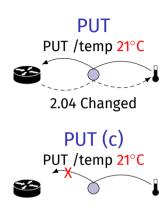

Single-hop: Push vs. Pull Protocols

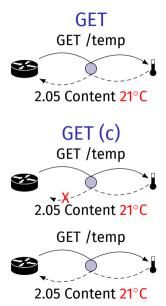

Multi-hop: Reliability and Protocol Performance

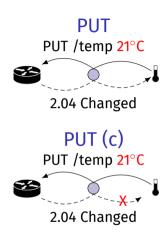

Conclusion & Outlook

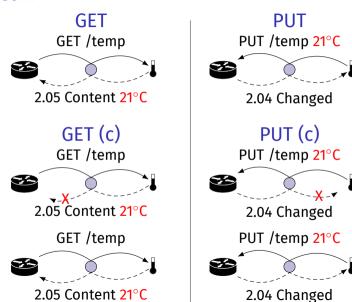


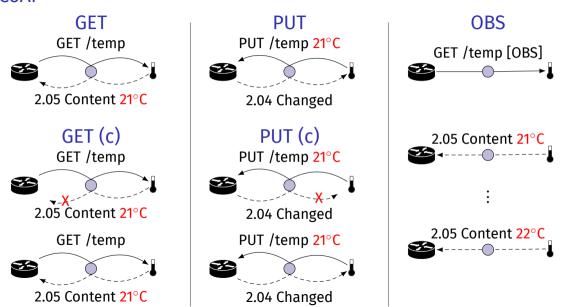


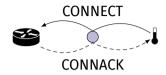


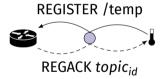


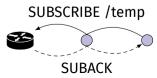


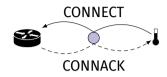


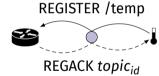


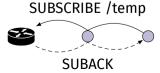


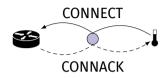


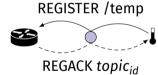


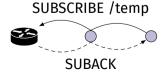


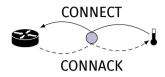


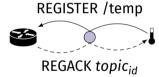


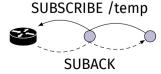


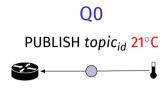


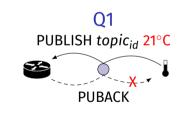


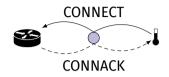


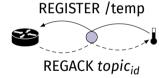


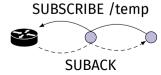


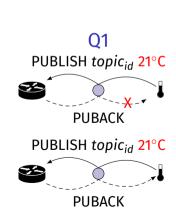


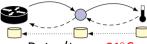


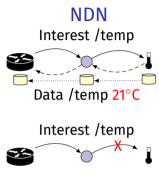




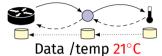




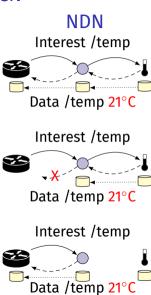


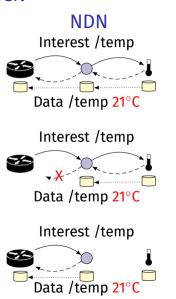


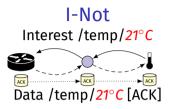
NDN

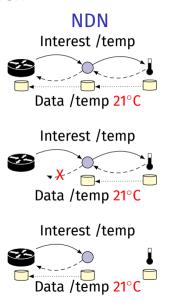

Interest /temp

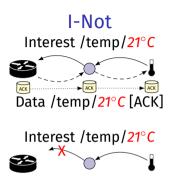
Data /temp 21°C

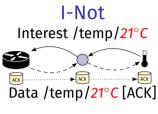


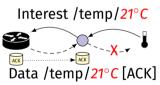


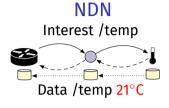


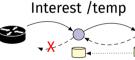

Interest /temp



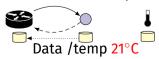


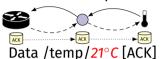






NDN Interest /temp Data /temp 21°C Interest /temp Data /temp 21°C Interest /temp Data /temp 21°C

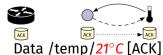



Data /temp 21°C

Interest /temp

I-Not

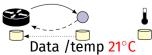
Interest /temp/21°C



Interest /temp/21°C

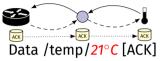
Data /temp/21°C [ACK]

Interest /temp/21°C

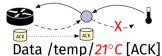

NDN Interest /temp Data /temp 21°C

Interest /temp

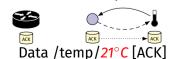
**


Data /temp 21°C

Interest /temp



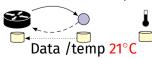
I-Not


Interest /temp/21°C

Interest /temp/21°C

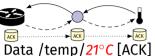
Interest /temp/21°C

HoPP

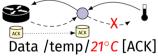

NDN Interest /temp Data /temp 21°C

Interest /temp

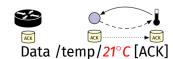
X

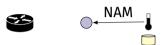

Data /temp 21°C

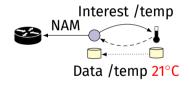
Interest /temp

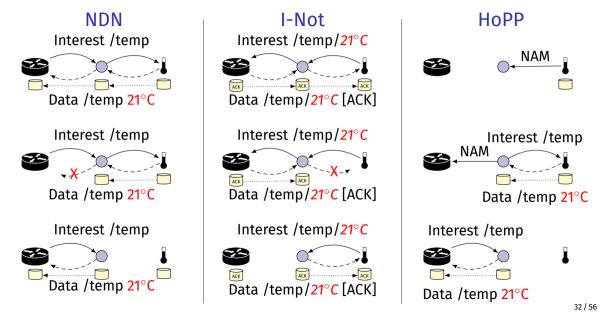


I-Not


Interest /temp/21°C


Interest /temp/21°C




Interest /temp/21°C

HoPP

Properties at a Glance

	Current IoT Protocols				ICN Protocols		
	CoAP			MQTT-SN	NDN	I-Not	HoPP
	GET	PUT	OBS				
Transport	UDP	UDP	UDP	UDP	_	_	_
Push	×	1	1	/	×	1	×
Pull	✓	×	×	×	✓	×	✓
Pub/Sub	×	×	✓	✓	×	×	✓
Flow Control	×	×	×	×	1	×	1
Reliability	(c)	(c)	X	(Q1)	✓	✓	✓

Experimentation

Implementations

- ► CoAP: gcoap
- ► MQTT-SN: asymcute
- ► On top of UDP/IPv6

- NDN v0.2
- ► HoPP & I-Not (extensions)
- On top of link layer

Metrics

- Network stack sizes
- ► Time to content arrival
- Link stress
- Goodput
- Network utilization (control vs data plane)
- Energy consumption
- Security overhead

Metrics

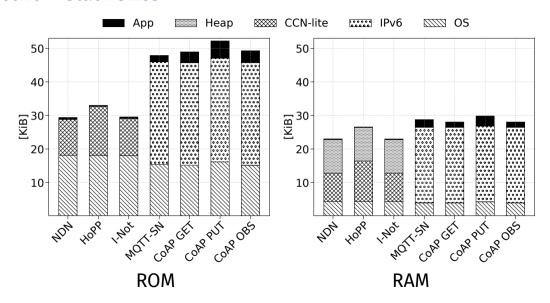
- Network stack sizes
- ► Time to content arrival
- Link stress
- ► Goodput
- Network utilization (control vs data plane)
- ► Energy consumption
- Security overhead

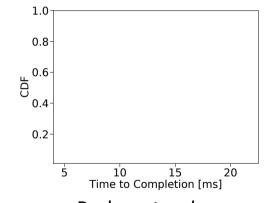
Experiment Setup

IOT-Lab Testbed ARM Cortex-M3 64 kB RAM & 512 kB ROM IEEE 802.15.4 radio CSMA/CA

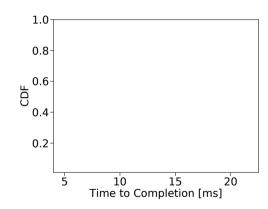
Retransmissions: Link layer: 4×2 –10 ms Network layer: 4×2 s

Single-hop

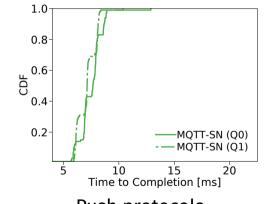

▶ 1 gateway + 1 IoT node

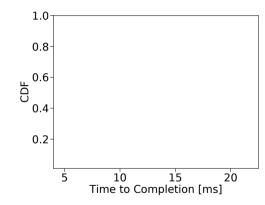

Multi-hop

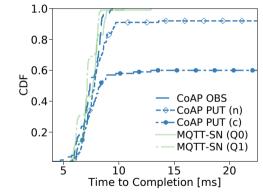
- ▶ 1 gateway + 50 IoT nodes
- Max. hop distance: 6

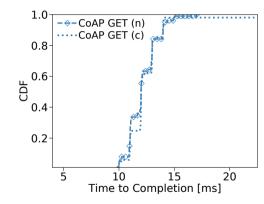

Evaluation

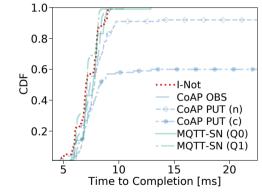
Network Stack Sizes

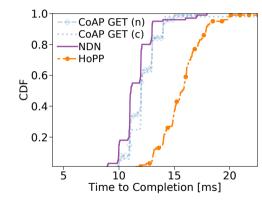



Push protocols


Pull protocols

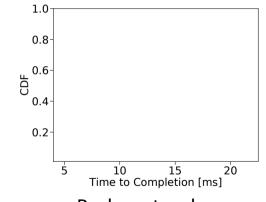

Push protocols


Pull protocols

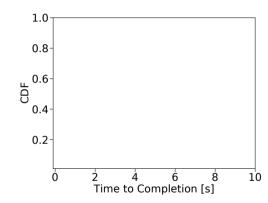

Push protocols

Pull protocols

Push protocols

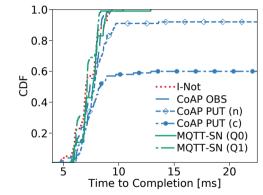


Pull protocols

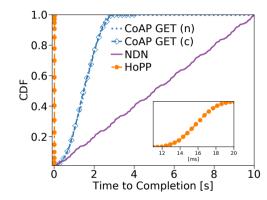

Takeaways

- Without network layer repair
 - Push protocols complete below 10 ms
 - Pull protocols double completion time
- With network layer repair
 - Reliability layer increases completion time to seconds
 - Retransmissions may induce additional link stress

Time to content arrival for unscheduled publishing every [1 ... 3] s, content request every 1 s



Push protocols



Pull protocols

Time to content arrival for unscheduled publishing every [1 ... 3] s, content request every 1 s

Push protocols

Pull protocols

Problem of Stateful Forwarding in NDN

- Interests arrive at higher rate than content
 - ⇒ Open PIT states accumulate
- PIT size very limited in constrained IoT scenario
- Two possible strategies:
 - Discard newly arriving Interests
 - Overwrite PIT states
 - \Rightarrow Leads to delays or loss

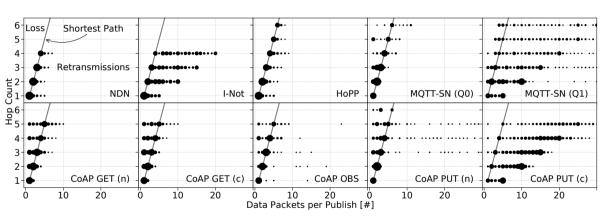
Multi-hop: Characteristics

- ► Radio interference
- Additional link- & network-layer retransmissions
- ► Higher link stress

Single-hop vs. Multi-hop: Content Arrival

Single-hop (50 ms) Multi-hop (5 s)

Single-hop vs. Multi-hop: Content Arrival

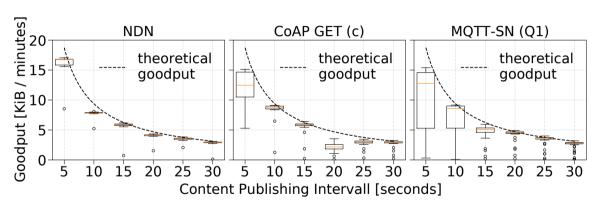

	Single-hop (50 ms)		
	Avg. Delay [ms]	Success [%]	
Unreliable IP	8.0	97	
Reliable IP	305.0	99	
I-Not	7.2	100	
NDN & HoPP	13.6	100	
	Max. Delay [ms]	Protocol	
Unreliable IP	30.6	CoAP PUT (n)	
Reliable IP	5000.0	CoAP PUT (c)	
NDN & HoPP	27.9	HoPP	

Single-hop vs. Multi-hop: Content Arrival

	Single-hop (50 ms)		Multi-hop (<mark>5 s</mark>)	
	Avg. Delay [ms]	Success [%]	Avg. Delay [s]	Success [%]
Unreliable IP	8.0	97	0.03	57
Reliable IP	305.0	99	3.83	78
I-Not	7.2	100	1.98	68
NDN & HoPP	13.6	100	0.60	98
	Max. Delay [ms]	Protocol	Max. Delay [s]	Protocol
Unreliable IP	30.6	CoAP PUT (n)	0.2	CoAP GET (n)
Reliable IP	5000.0	CoAP PUT (c)	16.3	CoAP PUT (c)
NDN & HoPP	27.9	HoPP	13.7	HoPP


Multi-hop: Link Stress

Link traversal vs. shortest path using a 15 s publishing interval


Multi-hop: Goodput

Goodput summaries

Multi-hop: Goodput

Goodput summaries for reliable protocols

Conclusion & Outlook

Takeaways

- ▶ All protocols are challenged by the constrained wireless IoT
 - Reliable transfer often fails
 - End-to-end acknowledgments stress lossy links
- NDN and HoPP are most robust and stable
 - ► Hop-wise caching enhances transport efficiency
 - NDN susceptible to PIT state overflow

Future Work

- Analyze flow control aspects with controlled cross-traffic
- Deploy protocols with full security features enabled