
libcppa
An actor library for C++ with extensible group semantic

libcppa

Dominik Charousset
July 2011

Dominik Charousset (HAW Hamburg) libcppa July 2011 1 / 24

Agenda

1 Motivation

2 Concurrency Approaches

3 The Actor Model

4 libcppa

5 libcppa
Architecture

6 Questions & Answers

Dominik Charousset (HAW Hamburg) libcppa July 2011 2 / 24

Motivation
Herb Sutter: “The Free Lunch Is Over”

http://www.gotw.ca/publications/concurrency-ddj.htm

CPU clock speed stagnates
More cores instead of more
clock speed

⇒ Single-threaded Software
doesn’t benefit from new
hardware

Dominik Charousset (HAW Hamburg) libcppa July 2011 3 / 24

Motivation
Herb Sutter: “The Free Lunch Is Over”

http://www.gotw.ca/publications/concurrency-ddj.htm

CPU clock speed stagnates
More cores instead of more
clock speed

⇒ Single-threaded Software
doesn’t benefit from new
hardware

Dominik Charousset (HAW Hamburg) libcppa July 2011 3 / 24

Motivation
Herb Sutter: “The Free Lunch Is Over” – Consequence

“Software has to double the amount of parallelism
that it can support every two years.”

– Shekhar Y. Borkar (Intel)

Dominik Charousset (HAW Hamburg) libcppa July 2011 4 / 24

Motivation
Multithreading In C-like Languages

A multithreaded environment requires, that each object (in the shared
memory) has to be thread safe
Immutable objects are always thread-safe (if initialization is done)
Stateful objects need synchronization

⇒ The developer is responsible for thread safety! Errors lead to ...
Race conditions
Deadlocks/Lifelocks
Poor scalability due to queueing (Coarse-Grained Locking)

“Mutable stateful objects are the new spaghetti code” – Rich Hickey

Dominik Charousset (HAW Hamburg) libcppa July 2011 5 / 24

Motivation
Multithreading In C-like Languages

A multithreaded environment requires, that each object (in the shared
memory) has to be thread safe
Immutable objects are always thread-safe (if initialization is done)
Stateful objects need synchronization
⇒ The developer is responsible for thread safety! Errors lead to ...

Race conditions
Deadlocks/Lifelocks
Poor scalability due to queueing (Coarse-Grained Locking)

“Mutable stateful objects are the new spaghetti code” – Rich Hickey

Dominik Charousset (HAW Hamburg) libcppa July 2011 5 / 24

Motivation
Multithreading In C-like Languages

A multithreaded environment requires, that each object (in the shared
memory) has to be thread safe
Immutable objects are always thread-safe (if initialization is done)
Stateful objects need synchronization
⇒ The developer is responsible for thread safety! Errors lead to ...

Race conditions
Deadlocks/Lifelocks
Poor scalability due to queueing (Coarse-Grained Locking)

“Mutable stateful objects are the new spaghetti code” – Rich Hickey

Dominik Charousset (HAW Hamburg) libcppa July 2011 5 / 24

Motivation
Multithreading in C-like languages – Example 1

class Subject {
private int value; private List<Listener> listeners = ...;
public interface Listener {

public void stateChanged(int newValue);
}
public synchronized void addListener(Listener listener) {

listeners.add(listener);
}
public synchronized void setValue(int newValue) {

value = newValue;
for (Listener l : listeners) {

l.stateChanged(newValue);
}

}
}

Dominik Charousset (HAW Hamburg) libcppa July 2011 6 / 24

Motivation
Multithreading in C-like languages – Example 1

class FooBar {
private Subject s;
public synchronized void foo() {

...
s.addListener(...);
...

}
public synchronized void bar() {

...
}

}

Dominik Charousset (HAW Hamburg) libcppa July 2011 7 / 24

Motivation
Multithreading in C-like languages – Example 1

Thread1 Thread2

Subject
s

FooBar
fb

Dominik Charousset (HAW Hamburg) libcppa July 2011 8 / 24

Motivation
Multithreading in C-like languages – Example 1

Thread1 Thread2

Subject
s

FooBar
fb

Listener
li

addListener(li)

public void stateChanged(int val) {

 fb.bar();

}

Dominik Charousset (HAW Hamburg) libcppa July 2011 8 / 24

Motivation
Multithreading in C-like languages – Example 1

Thread1 Thread2

FooBar
fb

Listener
li

setValue(...)Subject
s

Dominik Charousset (HAW Hamburg) libcppa July 2011 8 / 24

Motivation
Multithreading in C-like languages – Example 1

Thread1 Thread2

Listener
li

setValue(...)

foo()

stateChanged(...)

Subject
s

FooBar
fb

Dominik Charousset (HAW Hamburg) libcppa July 2011 8 / 24

Motivation
Multithreading in C-like languages – Example 1

Thread1 Thread2

Listener
li

setValue(...)

foo()

 stateChanged(...)

 bar()

ad
dL

is
te

ne
r(

..
.)

Subject
s

FooBar
fb

Dominik Charousset (HAW Hamburg) libcppa July 2011 8 / 24

Motivation
Multithreading in C-like languages – Example 1

Programming with locks increases complexity and error-proneness.
Libraries (objects) with locks are no longer black boxes
The user have to know about implementation details
(“which method uses which lock?”)

Dominik Charousset (HAW Hamburg) libcppa July 2011 9 / 24

Motivation
Multithreading in C-like languages – Example 2

c l a s s Foo { // immutable
s t a t i c Foo∗ p t r ;
s t a t i c Foo∗ i n s t a n c e () {

// 1 s t t e s t
i f (p t r == n u l l p t r) {

Lock l o c k ;
// 2nd t e s t
i f (p t r == n u l l p t r)

p t r = new Foo ;
}
r e t u r n p t r ;

}
// . . .

}

Problem:
“ptr = new Foo” is not atomic:
1. Allocate memory
2. Call constructor of Foo
3. Assign memory address to ptr

If 3 happens before 2, a second
thread might deallocate ptr before
the constructor was called
(undefined behavior).

Adapted from: “C++ and the Perils of Double-Checked Locking” (Meyers & Alexandrescu, 2004)

Dominik Charousset (HAW Hamburg) libcppa July 2011 10 / 24

Motivation
Multithreading in C-like languages – Example 2

c l a s s Foo { // immutable
s t a t i c Foo∗ p t r ;
s t a t i c Foo∗ i n s t a n c e () {

// 1 s t t e s t
i f (p t r == n u l l p t r) {

Lock l o c k ;
// 2nd t e s t
i f (p t r == n u l l p t r)

p t r = new Foo ;
}
r e t u r n p t r ;

}
// . . .

}

Problem:
“ptr = new Foo” is not atomic:
1. Allocate memory
2. Call constructor of Foo
3. Assign memory address to ptr

If 3 happens before 2, a second
thread might deallocate ptr before
the constructor was called
(undefined behavior).

Adapted from: “C++ and the Perils of Double-Checked Locking” (Meyers & Alexandrescu, 2004)

Dominik Charousset (HAW Hamburg) libcppa July 2011 10 / 24

Motivation
Multithreading in C-like languages – Example 2

c l a s s Foo { // immutable
s t a t i c Foo∗ p t r ;
s t a t i c Foo∗ i n s t a n c e () {

// 1 s t t e s t
i f (p t r == n u l l p t r) {

Lock l o c k ;
// 2nd t e s t
i f (p t r == n u l l p t r)

p t r = new Foo ;
}
r e t u r n p t r ;

}
// . . .

}

Problem:
“ptr = new Foo” is not atomic:
1. Allocate memory
2. Call constructor of Foo
3. Assign memory address to ptr

If 3 happens before 2, a second
thread might deallocate ptr before
the constructor was called
(undefined behavior).

Adapted from: “C++ and the Perils of Double-Checked Locking” (Meyers & Alexandrescu, 2004)

Dominik Charousset (HAW Hamburg) libcppa July 2011 10 / 24

Motivation
Multithreading in C-like languages – Example 2

Concurrency with low-level primitives requires a lot of expert knowledge.
Seemingly correct code can lead to undefined behavior
Almost impossible to verify by testing
An implementation can be thread-safe on a uniprocessor machine
(“timeslice-based parallelism”) but can lead to race conditions on a
multiprocessor machine (true hardware concurrency)

Dominik Charousset (HAW Hamburg) libcppa July 2011 11 / 24

Concurrency Approaches
Transactional Memory

Race condition free shared memory
Reads & writes are atomic and transactional
“all or nothing” writes
Readers don’t interfere writers and vice versa
In hardware or software (e.g. Clojure)

Dominik Charousset (HAW Hamburg) libcppa July 2011 12 / 24

Concurrency Approaches
Join-Calculus (JoCaml)

1. def fruit(f) & cake(c) = print_endline (fˆ“ ”ˆ c) ; 0
val fruit : string Join.chan = <abstr>
val cake : string Join.chan = <abstr>

2. spawn fruit “apple” & cake “pie”

3. spawn fruit “apple” & fruit “lime” & cake “pie” & cake “torte”

Join-calculus is a member of the π calculus family
Processes communicate (synchronize) via ports

Source code example:
1. Define two ports and the guarded process print_endline ...
2. Prints “apple pie”
3. Prints “apple pie”, “lime torte” or “apple torte”, “lime pie”

Dominik Charousset (HAW Hamburg) libcppa July 2011 13 / 24

Concurrency Approaches
Join-Calculus (JoCaml)

1. def fruit(f) & cake(c) = print_endline (fˆ“ ”ˆ c) ; 0
val fruit : string Join.chan = <abstr>
val cake : string Join.chan = <abstr>

2. spawn fruit “apple” & cake “pie”

3. spawn fruit “apple” & fruit “lime” & cake “pie” & cake “torte”

Join-calculus is a member of the π calculus family
Processes communicate (synchronize) via ports
Source code example:
1. Define two ports and the guarded process print_endline ...
2. Prints “apple pie”
3. Prints “apple pie”, “lime torte” or “apple torte”, “lime pie”

Dominik Charousset (HAW Hamburg) libcppa July 2011 13 / 24

Concurrency Approaches
Summary

There are basically two approaches:
Provide a safe (free of race conditions) shared memory

Clojure
Intel C++ STM Compiler
...

Model concurrent tasks/processes as independent components,
communicating via messages/channels/ports

Erlang (resp. the Actor Model in general)
Google Go (channel based communication)
...

Dominik Charousset (HAW Hamburg) libcppa July 2011 14 / 24

Concurrency Approaches
Summary

There are basically two approaches:
Provide a safe (free of race conditions) shared memory

Clojure
Intel C++ STM Compiler
...

Model concurrent tasks/processes as independent components,
communicating via messages/channels/ports

Erlang (resp. the Actor Model in general)
Google Go (channel based communication)
...

Dominik Charousset (HAW Hamburg) libcppa July 2011 14 / 24

Concurrency Approaches
Summary

There are basically two approaches:
Provide a safe (free of race conditions) shared memory

Clojure
Intel C++ STM Compiler
...

Model concurrent tasks/processes as independent components,
communicating via messages/channels/ports

Erlang (resp. the Actor Model in general)
Google Go (channel based communication)
...

Dominik Charousset (HAW Hamburg) libcppa July 2011 14 / 24

Concurrency Approaches
Summary

We have to enable “average programmers” to write both (multiprocessor)
safe and scalable applications.

No shared memory or transactional memory
Explicit communication of independent software components
(channels, ports, ...) instead of implicit communication via shared
memory segments and locks
High-level concepts with reasonable metaphors

Dominik Charousset (HAW Hamburg) libcppa July 2011 15 / 24

The Actor Model
Definition

Actors are self-contained, concurrent computation entities, that ...
Communicate only via (asynchronous) message passing
Don’t share memory
Can create (“spawn”) new Actors

Dominik Charousset (HAW Hamburg) libcppa July 2011 16 / 24

The Actor Model
Benefits

Race conditions are avoided by design (no shared memory comm.)

High-level, explicit communication
Applies to both concurrency and distribution
(network transparency thanks to message passing)
Inspired several implementations either as basis for languages
(Erlang) or as library/framework (Scala, Kilim, Retlang, ...)

Dominik Charousset (HAW Hamburg) libcppa July 2011 17 / 24

The Actor Model
Benefits

Race conditions are avoided by design (no shared memory comm.)
High-level, explicit communication

Applies to both concurrency and distribution
(network transparency thanks to message passing)
Inspired several implementations either as basis for languages
(Erlang) or as library/framework (Scala, Kilim, Retlang, ...)

Dominik Charousset (HAW Hamburg) libcppa July 2011 17 / 24

The Actor Model
Benefits

Race conditions are avoided by design (no shared memory comm.)
High-level, explicit communication
Applies to both concurrency and distribution
(network transparency thanks to message passing)

Inspired several implementations either as basis for languages
(Erlang) or as library/framework (Scala, Kilim, Retlang, ...)

Dominik Charousset (HAW Hamburg) libcppa July 2011 17 / 24

The Actor Model
Benefits

Race conditions are avoided by design (no shared memory comm.)
High-level, explicit communication
Applies to both concurrency and distribution
(network transparency thanks to message passing)
Inspired several implementations either as basis for languages
(Erlang) or as library/framework (Scala, Kilim, Retlang, ...)

Dominik Charousset (HAW Hamburg) libcppa July 2011 17 / 24

libcppa
Why C++?

Thousands of active developers and huge, existing code bases
Still no high-level concurrency abstraction in C++11

New language features (lambda expression, variadic templates, ...)
ease development of libraries as internal DSL

Dominik Charousset (HAW Hamburg) libcppa July 2011 18 / 24

libcppa
Goals

An actor library for C++ as internal DSL

Network transparency (ease distribution)
Pattern matching for messages
Extensible group (N:M) communication API

In-process (event handling)
Inter-process (services, system-wide events)
Network layer multicast (IP, Overlay, H∀Mcast, ...)

Lightweight, scheduled Actors

Dominik Charousset (HAW Hamburg) libcppa July 2011 19 / 24

libcppa
Goals

An actor library for C++ as internal DSL
Network transparency (ease distribution)

Pattern matching for messages
Extensible group (N:M) communication API

In-process (event handling)
Inter-process (services, system-wide events)
Network layer multicast (IP, Overlay, H∀Mcast, ...)

Lightweight, scheduled Actors

Dominik Charousset (HAW Hamburg) libcppa July 2011 19 / 24

libcppa
Goals

An actor library for C++ as internal DSL
Network transparency (ease distribution)
Pattern matching for messages

Extensible group (N:M) communication API
In-process (event handling)
Inter-process (services, system-wide events)
Network layer multicast (IP, Overlay, H∀Mcast, ...)

Lightweight, scheduled Actors

Dominik Charousset (HAW Hamburg) libcppa July 2011 19 / 24

libcppa
Goals

An actor library for C++ as internal DSL
Network transparency (ease distribution)
Pattern matching for messages
Extensible group (N:M) communication API

In-process (event handling)
Inter-process (services, system-wide events)
Network layer multicast (IP, Overlay, H∀Mcast, ...)

Lightweight, scheduled Actors

Dominik Charousset (HAW Hamburg) libcppa July 2011 19 / 24

libcppa
Goals

An actor library for C++ as internal DSL
Network transparency (ease distribution)
Pattern matching for messages
Extensible group (N:M) communication API

In-process (event handling)
Inter-process (services, system-wide events)
Network layer multicast (IP, Overlay, H∀Mcast, ...)

Lightweight, scheduled Actors

Dominik Charousset (HAW Hamburg) libcppa July 2011 19 / 24

libcppa
Actor Scheduling

Actors are lighweight tasks, scheduled in a thread pool

uninitialized

ready

blocked

running

detached

exited

Small overhead for spawn/delete operations

Dominik Charousset (HAW Hamburg) libcppa July 2011 20 / 24

libcppa
Group Communication

c l a s s group : // . . .
{

// . . . v i r t u a l member f u n c t i o n s . . .
s t a t i c group ∗ get (const s t d : : s t r i n g& module_name ,

const s t d : : s t r i n g& g r o u p_ i d e n t i f i e r) ;
s t a t i c vo i d add_module (module ∗) ;

} ;

Actors can join and leave groups
A group is identified by module name + group identifier

Users can add new modules (e.g. for “ip”, “H∀Mcast”, ...)

Dominik Charousset (HAW Hamburg) libcppa July 2011 21 / 24

libcppa
Group Communication

c l a s s group : // . . .
{

// . . . v i r t u a l member f u n c t i o n s . . .
s t a t i c group ∗ get (const s t d : : s t r i n g& module_name ,

const s t d : : s t r i n g& g r o u p_ i d e n t i f i e r) ;
s t a t i c vo i d add_module (module ∗) ;

} ;

Actors can join and leave groups
A group is identified by module name + group identifier

Users can add new modules (e.g. for “ip”, “H∀Mcast”, ...)

Dominik Charousset (HAW Hamburg) libcppa July 2011 21 / 24

libcppa
Network Transparency

Network

Node A Node B
Actor 1 Actor 2

MM2

Send a message to a remote (“published”) actor

Dominik Charousset (HAW Hamburg) libcppa July 2011 22 / 24

libcppa
Network Transparency

Network

Node A Node B
Actor 1 Actor 2

MM2System

re
m

ot
eA

ct
or

(h
os

t,p
or

t)

Send a message to a remote (“published”) actor

Dominik Charousset (HAW Hamburg) libcppa July 2011 22 / 24

libcppa
Network Transparency

Network

Node A Node B
Actor 1 Actor 2

MM2MM1

Actor 2
Proxy

Send a message to a remote (“published”) actor

Dominik Charousset (HAW Hamburg) libcppa July 2011 22 / 24

libcppa
Network Transparency

Network

Node A Node B
Actor 1 Actor 2

MM2MM1

Actor 2
Proxy

serialize deserialize

Send a message to a remote (“published”) actor

Dominik Charousset (HAW Hamburg) libcppa July 2011 22 / 24

libcppa
Network Transparency

Network

Node A Node B
Actor 1 Actor 2

MM2MM1

Actor 2
Proxy

serialize deserialize

Actor 1
Proxy

Send a message to a remote (“published”) actor

Dominik Charousset (HAW Hamburg) libcppa July 2011 22 / 24

libcppa
Network Transparency

Network

Node A Node B
Actor 1 Actor 2

MM2MM1

Actor 2
Proxy

serialize deserialize

Actor 1
Proxy

Send a message to a remote (“published”) actor

Dominik Charousset (HAW Hamburg) libcppa July 2011 22 / 24

libcppa
Example

#in c l u d e "cppa/cppa . hpp"
us i ng namespace cppa ;

vo id p ing () ;
vo id pong (ac to r_pt r p ing_actor) ;

i n t main (i n t , char ∗∗)
{

spawn (pong , spawn (p ing)) ;
awa i t_a l l_others_done () ;
r e t u r n 0 ;

}

Dominik Charousset (HAW Hamburg) libcppa July 2011 23 / 24

libcppa
Example

vo id p ing ()
{

r ece i ve_ loop
(

on<atom ("Pong") , i n t >() >> [] (i n t v a l u e)
{

r e p l y (atom ("Ping ") , v a l u e + 1) ;
}

) ;
}

Dominik Charousset (HAW Hamburg) libcppa July 2011 24 / 24

libcppa
Example

vo id pong (ac to r_pt r p ing_actor)
{

l i n k (p ing_actor) ;
// k i c k o f f
p ing_actor << make_tuple (atom ("Pong") , 0) ;
// or : send (p ing_actor , atom ("Pong ") , 0) ;
r ece i ve_ loop
(

on<atom ("Ping ") , i n t >(9) >> [] ()
{

// t e rm i n a t e w i th non−normal e x i t r e a son
q u i t (e x i t_ r ea son : : u s e r_de f i n ed) ;

} ,
on<atom ("Ping ") , i n t >() >> [] (i n t v a l u e)
{

r e p l y (atom ("Pong") , v a l u e + 1) ;
}

) ;
}

Dominik Charousset (HAW Hamburg) libcppa July 2011 25 / 24

Questions & Answers

Thank you for your attention!

Questions?

Dominik Charousset (HAW Hamburg) libcppa July 2011 26 / 24

	Motivation
	Concurrency Approaches
	The Actor Model
	libcppa
	libcppa
	Architecture

	Questions & Answers

