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Motivation

Herb Sutter: “The Free Lunch Is Over”

@ CPU clock speed stagnates
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Motivation

Herb Sutter: “The Free Lunch Is Over” — Consequence

“Software has to double the amount of parallelism

that it can support every two years.”
— Shekhar Y. Borkar (Intel)
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Motivation

Multithreading In C-like Languages

e A multithreaded environment requires, that each object (in the shared
memory) has to be thread safe

e Immutable objects are always thread-safe (if initialization is done)

o Stateful objects need synchronization
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Multithreading In C-like Languages

e A multithreaded environment requires, that each object (in the shared
memory) has to be thread safe
e Immutable objects are always thread-safe (if initialization is done)

o Stateful objects need synchronization
= The developer is responsible for thread safety! Errors lead to ...

e Race conditions
o Deadlocks/Lifelocks
o Poor scalability due to queueing (Coarse-Grained Locking)

“Mutable stateful objects are the new spaghetti code” — Rich Hickey
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Motivation

Multithreading in C-like languages — Example 1

class Subject {

private int value; private List<Listener> listeners =

public interface Listener {
public void stateChanged(int newValue);

}

public synchronized void addListener(Listener listener) {
listeners.add(listener);

}

public synchronized void setValue(int newValue) {
value = newValue;
for (Listemer 1 : listeners) {

1.stateChanged(newValue) ;

}
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Motivation

Multithreading in C-like languages — Example 1

class FooBar {
private Subject s;
public synchronized void foo() {

s.addListener(...);

3

public synchronized void bar() {

}
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Motivation

Multithreading in C-like languages — Example 1

Threadl Thread2

.)

v setValue(...){ ]

stateChanged(...)

addListener(..

[ } foo()
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Motivation

Multithreading in C-like languages — Example 1

Programming with locks increases complexity and error-proneness.
o Libraries (objects) with locks are no longer black boxes

@ The user have to know about implementation details
(“which method uses which lock?")
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Motivation

Multithreading in C-like languages — Example 2

class Foo { // immutable
static Foox ptr;
static Foox instance() {
// lst test

if (ptr = nullptr) {
Lock lock;
// 2nd test
if (ptr = nullptr)
ptr = new Foo;

}

return ptr;
¥

!/
}

Adapted from: “C++ and the Perils of Double-Checked Locking” (Meyers & Alexandrescu, 2004)
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Motivation

Multithreading in C-like languages — Example 2

class Foo { // immutable Problem:
static Foox ptr; “ptr = new Foo” is not atomic:
static Foox instance() { 1. Allocate memory
// lst test ’
if (ptr — nullptr) { 2. Call constructor of Foo
Lock lock; 3. Assign memory address to ptr
// 2nd test
if (ptr = nullptr)
ptr = new Foo;
}
return ptr;
¥
/]

}

Adapted from: “C++ and the Perils of Double-Checked Locking” (Meyers & Alexandrescu, 2004)
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Motivation

Multithreading in C-like languages — Example 2

class Foo { // immutable Problem:

static Foox ptr; “ptr = new Foo" is not atomic:
static Foox instance() { 1. Allocate memory

Ist test
// 2. Call constructor of Foo

if (ptr = nullptr) {
Lock lock; 3. Assign memory address to ptr
// 2nd test
if (ptr == nullptr) If 3 happens before 2, a second
ptr = new Foo; .
1 thread might deallocate ptr before
return ptr; the constructor was called

by (undefined behavior).

!/
}

Adapted from: “C++ and the Perils of Double-Checked Locking” (Meyers & Alexandrescu, 2004)
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Motivation

Multithreading in C-like languages — Example 2

Concurrency with low-level primitives requires a lot of expert knowledge.
@ Seemingly correct code can lead to undefined behavior
@ Almost impossible to verify by testing

@ An implementation can be thread-safe on a uniprocessor machine
(“timeslice-based parallelism”) but can lead to race conditions on a
multiprocessor machine (true hardware concurrency)
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Concurrency Approaches

Transactional Memory

Race condition free shared memory
Reads & writes are atomic and transactional
“all or nothing” writes

Readers don't interfere writers and vice versa

In hardware or software (e.g. Clojure)
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Concurrency Approaches

Join-Calculus (JoCaml)

1. def fruit(f) & cake(c) = print_endline (£7‘“ >~ ¢) ; O
val fruit : string Join.chan = <abstr>
val cake : string Join.chan = <abstr>

2. spawn fruit ‘‘apple’ & cake ‘‘pie”’

3. spawn fruit ‘‘apple’” & fruit ‘“lime’’ & cake ‘‘pie’” & cake ‘‘torte”

@ Join-calculus is a member of the 7 calculus family

@ Processes communicate (synchronize) via ports
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Concurrency Approaches

Join-Calculus (JoCaml)

1. def fruit(f) & cake(c) = print_endline (£7‘“ >~ ¢) ; O
val fruit : string Join.chan = <abstr>
val cake : string Join.chan = <abstr>

2. spawn fruit ‘‘apple’ & cake ‘‘pie”’

3. spawn fruit ‘‘apple’” & fruit ‘“lime’’ & cake ‘‘pie’” & cake ‘‘torte”

@ Join-calculus is a member of the 7 calculus family
@ Processes communicate (synchronize) via ports

@ Source code example:
1. Define two ports and the guarded process print_endline ...
2. Prints ‘‘apple pie”
3. Prints ‘“‘apple pie’’, ‘‘lime torte’’ or ‘‘apple torte’’, ‘lime pie’’
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Concurrency Approaches

Summary

There are basically two approaches:
e Provide a safe (free of race conditions) shared memory

@ Model concurrent tasks/processes as independent components,
communicating via messages/channels/ports
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Concurrency Approaches

Summary

There are basically two approaches:

e Provide a safe (free of race conditions) shared memory
e Clojure
o Intel C++ STM Compiler
o ...

@ Model concurrent tasks/processes as independent components,

communicating via messages/channels/ports

o Erlang (resp. the Actor Model in general)

e Google Go (channel based communication)
o ...
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Concurrency Approaches

Summary

We have to enable “average programmers” to write both (multiprocessor)
safe and scalable applications.

@ No shared memory or transactional memory

@ Explicit communication of independent software components
(channels, ports, ...) instead of implicit communication via shared
memory segments and locks

@ High-level concepts with reasonable metaphors
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The Actor Model

Definition

Actors are self-contained, concurrent computation entities, that ...
e Communicate only via (asynchronous) message passing
@ Don't share memory

e Can create (“spawn”) new Actors
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The Actor Model

Benefits

@ Race conditions are avoided by design (no shared memory comm.)

Dominik Charousset (HAW Hamburg) libcppa July 2011 17 / 24



The Actor Model

Benefits

@ Race conditions are avoided by design (no shared memory comm.)

e High-level, explicit communication

Dominik Charousset (HAW Hamburg) libcppa July 2011 17 / 24



The Actor Model

Benefits

@ Race conditions are avoided by design (no shared memory comm.)
e High-level, explicit communication

@ Applies to both concurrency and distribution
(network transparency thanks to message passing)

Dominik Charousset (HAW Hamburg) libcppa July 2011 17 / 24



The Actor Model

Benefits

@ Race conditions are avoided by design (no shared memory comm.)
e High-level, explicit communication

@ Applies to both concurrency and distribution
(network transparency thanks to message passing)

@ Inspired several implementations either as basis for languages
(Erlang) or as library/framework (Scala, Kilim, Retlang, ...)
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libcppa

Why C++7?

@ Thousands of active developers and huge, existing code bases
@ Still no high-level concurrency abstraction in C++11

o New language features (lambda expression, variadic templates, ...)
ease development of libraries as internal DSL
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@ An actor library for C++ as internal DSL
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An actor library for C++ as internal DSL

Network transparency (ease distribution)
Pattern matching for messages

Extensible group (N:M) communication API

o In-process (event handling)
o Inter-process (services, system-wide events)
o Network layer multicast (IP, Overlay, HVMcast, ...)
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An actor library for C++ as internal DSL

Network transparency (ease distribution)
Pattern matching for messages

Extensible group (N:M) communication API

o In-process (event handling)
o Inter-process (services, system-wide events)
o Network layer multicast (IP, Overlay, HVMcast, ...)

Lightweight, scheduled Actors
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libcppa

Actor Scheduling

@ Actors are lighweight tasks, scheduled in a thread pool

uninitialized detached

blocked

@ Small overhead for spawn/delete operations
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libcppa

Group Communication

@ Actors can join and leave groups
@ A group is identified by module name + group identifier

@ Users can add new modules (e.g. for “ip”, “HVMcast”, ...)
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libcppa

Group Communication

class group : //

{
// ... virtual member functions ...
static groupx get(const std::string& module name,
const std::string& group identifier);
static void add module(modulex);
+

@ Actors can join and leave groups
@ A group is identified by module name + group identifier

@ Users can add new modules (e.g. for “ip”, “HVMcast”, ...)
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libcppa

Network Transparency

Node A Node B

— e —

e m e

| Network

Send a message to a remote (“published”) actor
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libcppa

Network Transparency
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libcppa

Network Transparency
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libcppa

Network Transparency

Node A

Actor 2
Proxy

serialize

Actor 1
Proxy

deserialize

Network

Send a message to a remote (“published”) actor
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libcppa

Example

#include "cppa/cppa.hpp"
using namespace cppa;

void ping();
void pong(actor ptr ping_ actor);

int main(int, charxx)

{
spawn (pong, spawn(ping));
await_all others done();
return 0;

}
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libcppa

Example

void ping()
{

receive loop

(

on<atom("Pong"), int>() >> [](int value)

{
¥

reply (atom("Ping"), value + 1);

);
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libcppa

Example
void pong(actor ptr ping actor)

link (ping _actor);

// kickoff

ping actor << make tuple(atom("Pong"), 0);
// or: send(ping actor, atom("Pong"), 0);
receive loop

(
on<atom("Ping"), int>(9) >> []()

// terminate with non—normal exit reason
quit(exit_reason::user defined);

T

on<atom("Ping"), int>() >> [](int value)

{
}

reply (atom("Pong"), value + 1);

)
}
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Questions & Answers

Thank you for your attention!

Questions?
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