libcppa

An actor library for C++ with extensible group semantic

libcppa

Dominik Charousset
July 2011

Dominik Charousset (HAW Hamburg) libcppa July 2011 1/24

© Motivation

© Concurrency Approaches
© The Actor Model

@ libcppa

© libcppa

@ Architecture

© Questions & Answers

Dominik Charousset (HAW Hamburg) libcppa July 2011 2 /24

Motivation

Herb Sutter: “The Free Lunch Is Over”

@ CPU clock speed stagnates

10,000,000

@ More cores instead of more
clock speed

Dual-Core Itanium 2

Intel CPU Trends

(sources: Intel, Wikipedia, K. Olukotun)

1,000,000

100,000

10,000

1,000

100

@ Clock speed (MKz)
aPower (W)
@ pert/Clock (1)

T
0

1970 1975 1980 1985 1990 1995 2000 2005 2010

http://www.gotw.ca/publications/concurrency-ddj.htm

Dominik Charousset (HAW Hamburg) libcppa July 2011 3/24

Motivation

Herb Sutter: “The Free Lunch Is Over”

@ CPU clock speed stagnates

@ More cores instead of more
Dual-Core Itanium 2 . /

—/~ clock speed
Intel CPU Trends

(sources: Intel, Wikipedia, K. Olukotun) y

10,000,000

1,000,000

= Single-threaded Software
"-{ doesn’t benefit from new

_[_T hardware

100,000

10,000

1,000

100

@ Clock speed (MKz)
aPower (W)

@ pert/Clock (1)

T

0
1970 1975 1980 1985 1990 1995 2000 2005 2010

http://www.gotw.ca/publications/concurrency-ddj.htm

Dominik Charousset (HAW Hamburg) libcppa July 2011 3/24

Motivation

Herb Sutter: “The Free Lunch Is Over” — Consequence

“Software has to double the amount of parallelism

that it can support every two years.”
— Shekhar Y. Borkar (Intel)

Dominik Charousset (HAW Hamburg) libcppa July 2011 4 /24

Motivation

Multithreading In C-like Languages

e A multithreaded environment requires, that each object (in the shared
memory) has to be thread safe

e Immutable objects are always thread-safe (if initialization is done)

o Stateful objects need synchronization

Dominik Charousset (HAW Hamburg) libcppa July 2011 5/ 24

Motivation

Multithreading In C-like Languages

e A multithreaded environment requires, that each object (in the shared
memory) has to be thread safe

e Immutable objects are always thread-safe (if initialization is done)

o Stateful objects need synchronization
= The developer is responsible for thread safety! Errors lead to ...

e Race conditions
o Deadlocks/Lifelocks
o Poor scalability due to queueing (Coarse-Grained Locking)

Dominik Charousset (HAW Hamburg) libcppa July 2011 5/ 24

Motivation

Multithreading In C-like Languages

e A multithreaded environment requires, that each object (in the shared
memory) has to be thread safe
e Immutable objects are always thread-safe (if initialization is done)

o Stateful objects need synchronization
= The developer is responsible for thread safety! Errors lead to ...

e Race conditions
o Deadlocks/Lifelocks
o Poor scalability due to queueing (Coarse-Grained Locking)

“Mutable stateful objects are the new spaghetti code” — Rich Hickey

Dominik Charousset (HAW Hamburg) libcppa July 2011 5/ 24

Motivation

Multithreading in C-like languages — Example 1

class Subject {

private int value; private List<Listener> listeners =

public interface Listener {
public void stateChanged(int newValue);

}

public synchronized void addListener(Listener listener) {
listeners.add(listener);

}

public synchronized void setValue(int newValue) {
value = newValue;
for (Listemer 1 : listeners) {

1.stateChanged(newValue) ;

}

Dominik Charousset (HAW Hamburg) libcppa July 2011 6 /24

Motivation

Multithreading in C-like languages — Example 1

class FooBar {
private Subject s;
public synchronized void foo() {

s.addListener(...);

3

public synchronized void bar() {

}

Dominik Charousset (HAW Hamburg) libcppa July 2011 7/ 24

Motivation

Multithreading in C-like languages — Example 1

Threadl Thread2

FooBar
fb

Dominik Charousset (HAW Hamburg) libcppa July 2011 8 /24

Motivation

Multithreading in C-like languages — Example 1

Threadl Thread2
public void stateChanged(int val) { .

%B:bar();

l }addListener(liL, Subject Y,/

FooBar

(5
- :
o n :
N
N
<
d

Dominik Charousset (HAW Hamburg) libcppa July 2011 8 /24

Motivation

Multithreading in C-like languages — Example 1

Threadl Thread2

D v setValue(...){]

FooBar

—
o

Dominik Charousset (HAW Hamburg) libcppa July 2011 8 /24

Motivation

Multithreading in C-like languages — Example 1

Threadl Thread2

v setValue(...){]

stateChanged(...)

[} foo() ‘-

Dominik Charousset (HAW Hamburg) libcppa July 2011 8 /24

Motivation

Multithreading in C-like languages — Example 1

Threadl Thread2

.)

v setValue(...){]

stateChanged(...)

addListener(..

[} foo()

Dominik Charousset (HAW Hamburg) libcppa July 2011 8 /24

Motivation

Multithreading in C-like languages — Example 1

Programming with locks increases complexity and error-proneness.
o Libraries (objects) with locks are no longer black boxes

@ The user have to know about implementation details
(“which method uses which lock?")

Dominik Charousset (HAW Hamburg) libcppa July 2011 9/ 24

Motivation

Multithreading in C-like languages — Example 2

class Foo { // immutable
static Foox ptr;
static Foox instance() {
// lst test

if (ptr = nullptr) {
Lock lock;
// 2nd test
if (ptr = nullptr)
ptr = new Foo;

}

return ptr;
¥

!/
}

Adapted from: “C++ and the Perils of Double-Checked Locking” (Meyers & Alexandrescu, 2004)

Dominik Charousset (HAW Hamburg) libcppa July 2011 10 / 24

Motivation

Multithreading in C-like languages — Example 2

class Foo { // immutable Problem:
static Foox ptr; “ptr = new Foo” is not atomic:
static Foox instance() { 1. Allocate memory
// lst test ’
if (ptr — nullptr) { 2. Call constructor of Foo
Lock lock; 3. Assign memory address to ptr
// 2nd test
if (ptr = nullptr)
ptr = new Foo;
}
return ptr;
¥
/]

}

Adapted from: “C++ and the Perils of Double-Checked Locking” (Meyers & Alexandrescu, 2004)

Dominik Charousset (HAW Hamburg) libcppa July 2011 10 / 24

Motivation

Multithreading in C-like languages — Example 2

class Foo { // immutable Problem:

static Foox ptr; “ptr = new Foo" is not atomic:
static Foox instance() { 1. Allocate memory

Ist test
// 2. Call constructor of Foo

if (ptr = nullptr) {
Lock lock; 3. Assign memory address to ptr
// 2nd test
if (ptr == nullptr) If 3 happens before 2, a second
ptr = new Foo; .
1 thread might deallocate ptr before
return ptr; the constructor was called

by (undefined behavior).

!/
}

Adapted from: “C++ and the Perils of Double-Checked Locking” (Meyers & Alexandrescu, 2004)

Dominik Charousset (HAW Hamburg) libcppa July 2011 10 / 24

Motivation

Multithreading in C-like languages — Example 2

Concurrency with low-level primitives requires a lot of expert knowledge.
@ Seemingly correct code can lead to undefined behavior
@ Almost impossible to verify by testing

@ An implementation can be thread-safe on a uniprocessor machine
(“timeslice-based parallelism”) but can lead to race conditions on a
multiprocessor machine (true hardware concurrency)

Dominik Charousset (HAW Hamburg) libcppa July 2011 11 / 24

Concurrency Approaches

Transactional Memory

Race condition free shared memory
Reads & writes are atomic and transactional
“all or nothing” writes

Readers don't interfere writers and vice versa

In hardware or software (e.g. Clojure)

Dominik Charousset (HAW Hamburg) libcppa July 2011 12 / 24

Concurrency Approaches

Join-Calculus (JoCaml)

1. def fruit(f) & cake(c) = print_endline (£7‘“ >~ ¢) ; O
val fruit : string Join.chan = <abstr>
val cake : string Join.chan = <abstr>

2. spawn fruit ‘‘apple’ & cake ‘‘pie”’

3. spawn fruit ‘‘apple’” & fruit ‘“lime’’ & cake ‘‘pie’” & cake ‘‘torte”

@ Join-calculus is a member of the 7 calculus family

@ Processes communicate (synchronize) via ports

Dominik Charousset (HAW Hamburg) libcppa July 2011 13 / 24

Concurrency Approaches

Join-Calculus (JoCaml)

1. def fruit(f) & cake(c) = print_endline (£7‘“ >~ ¢) ; O
val fruit : string Join.chan = <abstr>
val cake : string Join.chan = <abstr>

2. spawn fruit ‘‘apple’ & cake ‘‘pie”’

3. spawn fruit ‘‘apple’” & fruit ‘“lime’’ & cake ‘‘pie’” & cake ‘‘torte”

@ Join-calculus is a member of the 7 calculus family
@ Processes communicate (synchronize) via ports

@ Source code example:
1. Define two ports and the guarded process print_endline ...
2. Prints ‘‘apple pie”
3. Prints ‘“‘apple pie’’, ‘‘lime torte’’ or ‘‘apple torte’’, ‘lime pie’’

Dominik Charousset (HAW Hamburg) libcppa July 2011 13 / 24

Concurrency Approaches

Summary

There are basically two approaches:
e Provide a safe (free of race conditions) shared memory

@ Model concurrent tasks/processes as independent components,
communicating via messages/channels/ports

Dominik Charousset (HAW Hamburg) libcppa July 2011 14 / 24

Concurrency Approaches

Summary

There are basically two approaches:
e Provide a safe (free of race conditions) shared memory

e Clojure
o Intel C++ STM Compiler
o ...

@ Model concurrent tasks/processes as independent components,
communicating via messages/channels/ports

Dominik Charousset (HAW Hamburg) libcppa July 2011 14 / 24

Concurrency Approaches

Summary

There are basically two approaches:

e Provide a safe (free of race conditions) shared memory
e Clojure
o Intel C++ STM Compiler
o ...

@ Model concurrent tasks/processes as independent components,

communicating via messages/channels/ports

o Erlang (resp. the Actor Model in general)

e Google Go (channel based communication)
o ...

Dominik Charousset (HAW Hamburg) libcppa July 2011 14 / 24

Concurrency Approaches

Summary

We have to enable “average programmers” to write both (multiprocessor)
safe and scalable applications.

@ No shared memory or transactional memory

@ Explicit communication of independent software components
(channels, ports, ...) instead of implicit communication via shared
memory segments and locks

@ High-level concepts with reasonable metaphors

Dominik Charousset (HAW Hamburg) libcppa July 2011 15 / 24

The Actor Model

Definition

Actors are self-contained, concurrent computation entities, that ...
e Communicate only via (asynchronous) message passing
@ Don't share memory

e Can create (“spawn”) new Actors

Dominik Charousset (HAW Hamburg) libcppa July 2011 16 / 24

The Actor Model

Benefits

@ Race conditions are avoided by design (no shared memory comm.)

Dominik Charousset (HAW Hamburg) libcppa July 2011 17 / 24

The Actor Model

Benefits

@ Race conditions are avoided by design (no shared memory comm.)

e High-level, explicit communication

Dominik Charousset (HAW Hamburg) libcppa July 2011 17 / 24

The Actor Model

Benefits

@ Race conditions are avoided by design (no shared memory comm.)
e High-level, explicit communication

@ Applies to both concurrency and distribution
(network transparency thanks to message passing)

Dominik Charousset (HAW Hamburg) libcppa July 2011 17 / 24

The Actor Model

Benefits

@ Race conditions are avoided by design (no shared memory comm.)
e High-level, explicit communication

@ Applies to both concurrency and distribution
(network transparency thanks to message passing)

@ Inspired several implementations either as basis for languages
(Erlang) or as library/framework (Scala, Kilim, Retlang, ...)

Dominik Charousset (HAW Hamburg) libcppa July 2011 17 / 24

libcppa

Why C++7?

@ Thousands of active developers and huge, existing code bases
@ Still no high-level concurrency abstraction in C++11

o New language features (lambda expression, variadic templates, ...)
ease development of libraries as internal DSL

Dominik Charousset (HAW Hamburg) libcppa July 2011 18 / 24

@ An actor library for C++ as internal DSL

Dominik Charousset (HAW Hamburg) libcppa July 2011 19 / 24

@ An actor library for C++ as internal DSL

o Network transparency (ease distribution)

Dominik Charousset (HAW Hamburg) libcppa July 2011 19 / 24

@ An actor library for C++ as internal DSL

o Network transparency (ease distribution)

@ Pattern matching for messages

Dominik Charousset (HAW Hamburg) libcppa July 2011 19 / 24

An actor library for C++ as internal DSL

Network transparency (ease distribution)
Pattern matching for messages

Extensible group (N:M) communication API

o In-process (event handling)
o Inter-process (services, system-wide events)
o Network layer multicast (IP, Overlay, HVMcast, ...)

Dominik Charousset (HAW Hamburg) libcppa July 2011 19 / 24

An actor library for C++ as internal DSL

Network transparency (ease distribution)
Pattern matching for messages

Extensible group (N:M) communication API

o In-process (event handling)
o Inter-process (services, system-wide events)
o Network layer multicast (IP, Overlay, HVMcast, ...)

Lightweight, scheduled Actors

Dominik Charousset (HAW Hamburg) libcppa

July 2011

10 / 24

libcppa

Actor Scheduling

@ Actors are lighweight tasks, scheduled in a thread pool

uninitialized detached

blocked

@ Small overhead for spawn/delete operations

Dominik Charousset (HAW Hamburg) libcppa July 2011 20 / 24

libcppa

Group Communication

@ Actors can join and leave groups
@ A group is identified by module name + group identifier

@ Users can add new modules (e.g. for “ip”, “HVMcast”, ...)

Dominik Charousset (HAW Hamburg) libcppa July 2011 21 /24

libcppa

Group Communication

class group : //

{
// ... virtual member functions ...
static groupx get(const std::string& module name,
const std::string& group identifier);
static void add module(modulex);
+

@ Actors can join and leave groups
@ A group is identified by module name + group identifier

@ Users can add new modules (e.g. for “ip”, “HVMcast”, ...)

Dominik Charousset (HAW Hamburg) libcppa July 2011 21 /24

libcppa

Network Transparency

Node A Node B

— e —

e m e

| Network

Send a message to a remote (“published”) actor

Dominik Charousset (HAW Hamburg) libcppa July 2011 22 /24

libcppa

Network Transparency

Node A Node B
Actor 1 ——_———e— - —— -]

=

| Network

remdteActor(host,port;
e

<

%
<
5
2
@
3

Send a message to a remote (“published”) actor

Dominik Charousset (HAW Hamburg) libcppa July 2011 22 /24

libcppa

Network Transparency

Node A Node B

— e —

Actor 2
Proxy

| Network

Send a message to a remote (“published”) actor

Dominik Charousset (HAW Hamburg) libcppa July 2011 22 /24

libcppa

Network Transparency

Node A Node B
RPN [N ——

1

1

1

i

Actor 2 |

Proxy |

1

i

1
___ O

1

serialize deserialize

| Network

Send a message to a remote (“published”) actor

Dominik Charousset (HAW Hamburg) libcppa July 2011 22 /24

libcppa

Network Transparency

Node A Node B

— e —

Actor 2

Actor 1
Proxy

Proxy

serialize deserialize

| Network

Send a message to a remote (“published”) actor

Dominik Charousset (HAW Hamburg) libcppa July 2011 22 /24

libcppa

Network Transparency

Node A

Actor 2
Proxy

serialize

Actor 1
Proxy

deserialize

Network

Send a message to a remote (“published”) actor

Dominik Charousset (HAW Hamburg)

libcppa

July 2011 22 /24

libcppa

Example

#include "cppa/cppa.hpp"
using namespace cppa;

void ping();
void pong(actor ptr ping_ actor);

int main(int, charxx)

{
spawn (pong, spawn(ping));
await_all others done();
return 0;

}

Dominik Charousset (HAW Hamburg) libcppa July 2011 23 /24

libcppa

Example

void ping()
{

receive loop

(

on<atom("Pong"), int>() >> [](int value)

{
¥

reply (atom("Ping"), value + 1);

);

Dominik Charousset (HAW Hamburg) libcppa July 2011 24 / 24

libcppa

Example
void pong(actor ptr ping actor)

link (ping _actor);

// kickoff

ping actor << make tuple(atom("Pong"), 0);
// or: send(ping actor, atom("Pong"), 0);
receive loop

(
on<atom("Ping"), int>(9) >> []()

// terminate with non—normal exit reason
quit(exit_reason::user defined);

T

on<atom("Ping"), int>() >> [](int value)

{
}

reply (atom("Pong"), value + 1);

)
}

Dominik Charousset (HAW Hamburg) libcppa July 2011 25 /24

Questions & Answers

Thank you for your attention!

Questions?

Dominik Charousset (HAW Hamburg) libcppa July 2011 26 / 24

	Motivation
	Concurrency Approaches
	The Actor Model
	libcppa
	libcppa
	Architecture

	Questions & Answers

