
libcppa
An actor library for C++ with extensible group semantic

libcppa

Dominik Charousset
July 2011

Dominik Charousset (HAW Hamburg) libcppa July 2011 1 / 24



Agenda

1 Motivation

2 Concurrency Approaches

3 The Actor Model

4 libcppa

5 libcppa
Architecture

6 Questions & Answers

Dominik Charousset (HAW Hamburg) libcppa July 2011 2 / 24



Motivation
Herb Sutter: “The Free Lunch Is Over”

http://www.gotw.ca/publications/concurrency-ddj.htm

CPU clock speed stagnates
More cores instead of more
clock speed

⇒ Single-threaded Software
doesn’t benefit from new
hardware
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Motivation
Herb Sutter: “The Free Lunch Is Over” – Consequence

“Software has to double the amount of parallelism
that it can support every two years.”

– Shekhar Y. Borkar (Intel)
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Motivation
Multithreading In C-like Languages

A multithreaded environment requires, that each object (in the shared
memory) has to be thread safe
Immutable objects are always thread-safe (if initialization is done)
Stateful objects need synchronization

⇒ The developer is responsible for thread safety! Errors lead to ...
Race conditions
Deadlocks/Lifelocks
Poor scalability due to queueing (Coarse-Grained Locking)

“Mutable stateful objects are the new spaghetti code” – Rich Hickey

Dominik Charousset (HAW Hamburg) libcppa July 2011 5 / 24



Motivation
Multithreading In C-like Languages

A multithreaded environment requires, that each object (in the shared
memory) has to be thread safe
Immutable objects are always thread-safe (if initialization is done)
Stateful objects need synchronization
⇒ The developer is responsible for thread safety! Errors lead to ...

Race conditions
Deadlocks/Lifelocks
Poor scalability due to queueing (Coarse-Grained Locking)

“Mutable stateful objects are the new spaghetti code” – Rich Hickey

Dominik Charousset (HAW Hamburg) libcppa July 2011 5 / 24



Motivation
Multithreading In C-like Languages

A multithreaded environment requires, that each object (in the shared
memory) has to be thread safe
Immutable objects are always thread-safe (if initialization is done)
Stateful objects need synchronization
⇒ The developer is responsible for thread safety! Errors lead to ...

Race conditions
Deadlocks/Lifelocks
Poor scalability due to queueing (Coarse-Grained Locking)

“Mutable stateful objects are the new spaghetti code” – Rich Hickey

Dominik Charousset (HAW Hamburg) libcppa July 2011 5 / 24



Motivation
Multithreading in C-like languages – Example 1

class Subject {
private int value; private List<Listener> listeners = ...;
public interface Listener {

public void stateChanged(int newValue);
}
public synchronized void addListener(Listener listener) {

listeners.add(listener);
}
public synchronized void setValue(int newValue) {

value = newValue;
for (Listener l : listeners) {

l.stateChanged(newValue);
}

}
}
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Motivation
Multithreading in C-like languages – Example 1

class FooBar {
private Subject s;
public synchronized void foo() {

...
s.addListener(...);
...

}
public synchronized void bar() {

...
}

}
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Motivation
Multithreading in C-like languages – Example 1

Thread1 Thread2

Subject
s

FooBar
fb
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Motivation
Multithreading in C-like languages – Example 1

Thread1 Thread2

Subject
s

FooBar
fb

Listener
li

addListener(li)

public void stateChanged(int val) {
    ....
    fb.bar();
    ....
}
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Motivation
Multithreading in C-like languages – Example 1
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Motivation
Multithreading in C-like languages – Example 1

Programming with locks increases complexity and error-proneness.
Libraries (objects) with locks are no longer black boxes
The user have to know about implementation details
(“which method uses which lock?”)
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Motivation
Multithreading in C-like languages – Example 2

c l a s s Foo { // immutable
s t a t i c Foo∗ p t r ;
s t a t i c Foo∗ i n s t a n c e ( ) {

// 1 s t t e s t
i f ( p t r == n u l l p t r ) {

Lock l o c k ;
// 2nd t e s t
i f ( p t r == n u l l p t r )

p t r = new Foo ;
}
r e t u r n p t r ;

}
// . . .

}

Problem:
“ptr = new Foo” is not atomic:
1. Allocate memory
2. Call constructor of Foo
3. Assign memory address to ptr

If 3 happens before 2, a second
thread might deallocate ptr before
the constructor was called
(undefined behavior).

Adapted from: “C++ and the Perils of Double-Checked Locking” (Meyers & Alexandrescu, 2004)
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Motivation
Multithreading in C-like languages – Example 2

Concurrency with low-level primitives requires a lot of expert knowledge.
Seemingly correct code can lead to undefined behavior
Almost impossible to verify by testing
An implementation can be thread-safe on a uniprocessor machine
(“timeslice-based parallelism”) but can lead to race conditions on a
multiprocessor machine (true hardware concurrency)
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Concurrency Approaches
Transactional Memory

Race condition free shared memory
Reads & writes are atomic and transactional
“all or nothing” writes
Readers don’t interfere writers and vice versa
In hardware or software (e.g. Clojure)
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Concurrency Approaches
Join-Calculus (JoCaml)

1. def fruit(f) & cake(c) = print_endline (fˆ“ ”ˆ c) ; 0
val fruit : string Join.chan = <abstr>
val cake : string Join.chan = <abstr>

2. spawn fruit “apple” & cake “pie”

3. spawn fruit “apple” & fruit “lime” & cake “pie” & cake “torte”

Join-calculus is a member of the π calculus family
Processes communicate (synchronize) via ports

Source code example:
1. Define two ports and the guarded process print_endline ...
2. Prints “apple pie”
3. Prints “apple pie”, “lime torte” or “apple torte”, “lime pie”
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Concurrency Approaches
Summary

There are basically two approaches:
Provide a safe (free of race conditions) shared memory

Clojure
Intel C++ STM Compiler
...

Model concurrent tasks/processes as independent components,
communicating via messages/channels/ports

Erlang (resp. the Actor Model in general)
Google Go (channel based communication)
...
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Concurrency Approaches
Summary

We have to enable “average programmers” to write both (multiprocessor)
safe and scalable applications.

No shared memory or transactional memory
Explicit communication of independent software components
(channels, ports, ...) instead of implicit communication via shared
memory segments and locks
High-level concepts with reasonable metaphors
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The Actor Model
Definition

Actors are self-contained, concurrent computation entities, that ...
Communicate only via (asynchronous) message passing
Don’t share memory
Can create (“spawn”) new Actors
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The Actor Model
Benefits

Race conditions are avoided by design (no shared memory comm.)

High-level, explicit communication
Applies to both concurrency and distribution
(network transparency thanks to message passing)
Inspired several implementations either as basis for languages
(Erlang) or as library/framework (Scala, Kilim, Retlang, ...)
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libcppa
Why C++?

Thousands of active developers and huge, existing code bases
Still no high-level concurrency abstraction in C++11

New language features (lambda expression, variadic templates, ...)
ease development of libraries as internal DSL
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libcppa
Goals

An actor library for C++ as internal DSL

Network transparency (ease distribution)
Pattern matching for messages
Extensible group (N:M) communication API

In-process (event handling)
Inter-process (services, system-wide events)
Network layer multicast (IP, Overlay, H∀Mcast, ...)

Lightweight, scheduled Actors
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libcppa
Actor Scheduling

Actors are lighweight tasks, scheduled in a thread pool

uninitialized

ready

blocked

running

detached

exited

Small overhead for spawn/delete operations
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libcppa
Group Communication

c l a s s group : // . . .
{

// . . . v i r t u a l member f u n c t i o n s . . .
s t a t i c group ∗ get ( const s t d : : s t r i n g& module_name ,

const s t d : : s t r i n g& g r o u p_ i d e n t i f i e r ) ;
s t a t i c vo i d add_module ( module ∗ ) ;

} ;

Actors can join and leave groups
A group is identified by module name + group identifier

Users can add new modules (e.g. for “ip”, “H∀Mcast”, ...)
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libcppa
Network Transparency

Network

Node A Node B
Actor 1 Actor 2

MM2

Send a message to a remote (“published”) actor
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libcppa
Example

#in c l u d e "cppa/cppa . hpp"
us i ng namespace cppa ;

vo id p ing ( ) ;
vo id pong ( ac to r_pt r p ing_actor ) ;

i n t main ( i n t , char ∗∗)
{

spawn ( pong , spawn ( p ing ) ) ;
awa i t_a l l_others_done ( ) ;
r e t u r n 0 ;

}
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libcppa
Example

vo id p ing ( )
{

r ece i ve_ loop
(

on<atom ( "Pong" ) , i n t >() >> [ ] ( i n t v a l u e )
{

r e p l y ( atom ( "Ping " ) , v a l u e + 1 ) ;
}

) ;
}
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libcppa
Example

vo id pong ( ac to r_pt r p ing_actor )
{

l i n k ( p ing_actor ) ;
// k i c k o f f
p ing_actor << make_tuple ( atom ( "Pong" ) , 0 ) ;
// or : send ( p ing_actor , atom ("Pong ") , 0 ) ;
r ece i ve_ loop
(

on<atom ( "Ping " ) , i n t >(9) >> [ ] ( )
{

// t e rm i n a t e w i th non−normal e x i t r e a son
q u i t ( e x i t_ r ea son : : u s e r_de f i n ed ) ;

} ,
on<atom ( "Ping " ) , i n t >() >> [ ] ( i n t v a l u e )
{

r e p l y ( atom ( "Pong" ) , v a l u e + 1 ) ;
}

) ;
}
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Questions & Answers

Thank you for your attention!

Questions?
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