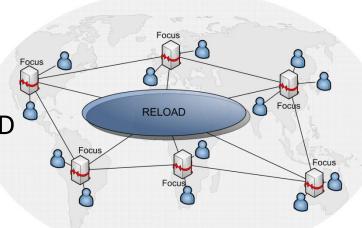
A Virtual and Distributed Control Layer with Proximity Awareness for Group Conferencing in P2PSIP

<u>Alexander Knauf¹</u>

alexander.knauf@haw-hamburg.de

Gabriel Hege¹, Thomas Schmidt¹, Matthias Wählisch²

¹AG INET Dept. Informatik HAW Hamburg Germany ²AG CST Inst. für Informatik FU Berlin Germany



Outline

- 1. Problem statement and objectives
- 2. Distributing a conference focus with SIP
- 3. Evaluation (1): Signaling costs
- 4. Virtualising the Conference ID in RELOAD
- 5. Proximity-aware focus selection
- 6. Evaluation (2): Proximity-aware focus selection
- 7. Conclusion & Outlook

2

Problem Statement for Conferences in P2PSIP Scenarios


- A conference in the tightly coupled model is managed by a *single* entity called *focus* in SIP:
 - Maintains signaling and media parameter negotiation
 - May perform media mixing functions
- Problem (1): The Conference URI
 - Identifies the multiparty session, and
 - *locates* the conference focus
 - Single point of failure
- **Problem (2):** No dedicated server architecture in P2PSIP
 - Media mixing performed at the end-user devices
 - Scaling problem within large conferences
 - Conference must be registered and globally accessible
 - Demands a registrar, e.g., available through DNS

Objectives of Distributed Conference Control

- *Separate* the logical conference ID from the controlling entities
 - Allows multiple focus peers to manage a single conference
 - Increases robustness against focus failures
- *Replace* Registrars and DNS by a P2PSIP Overlay
 - Requires a RELOAD Usage for Distributed Conference Control

Distributing a focus with SIP

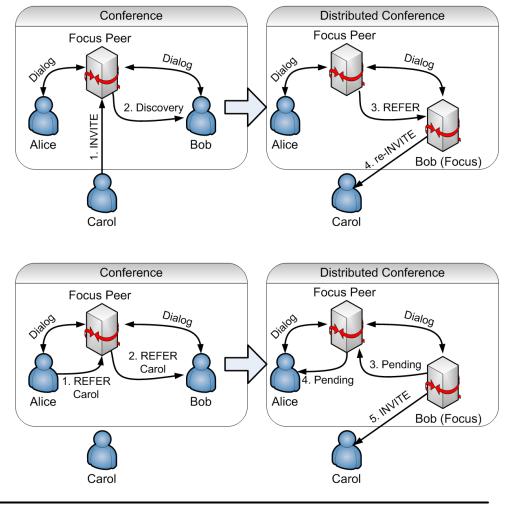
- *First Step:* Transparent distribution of the conference focus
 - Participants in role of *focus peers* are responsible for a subset of conference members
 - Signaling messages sent from *several* focus peers appear as originating from *one* 'virtual' conference focus
 - Routing decision based on an additional *Record-Route* header pointing to the responsible focus peer

 Alice receives message through the *Record-Route* and – as responsible focus peer - intercepts message from Bob

5 A Virtual and Distributed Control Layer with Proximity-awareness

Operations in a Distributed Conference

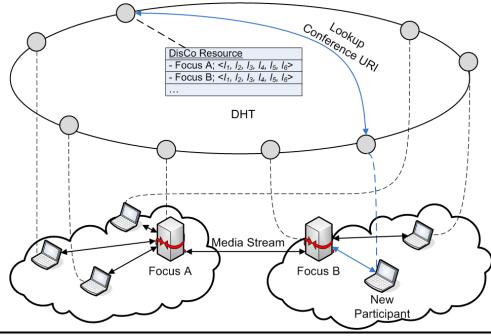
- Second Step: Definition of protocol schemes for
 - State synchronization: Achieved by conference event package [RFC4575] extended by elements describing a focus peer's local state
 - Focus peers get consistent and global view of conference state
 - Call delegation: Transfer calls using SIP REFER requests carrying session identifier (for semantic recognition of calls)
 - Used in cases of overloading, leaves or failures of focus peers
 - ► Focus Discovery: Allocating new focus peers that support the conference
 - Enables load distribution



Splitting a Focus: Common Scenarios

- 1st party invitation:
 - Situation: Participation request sent to a single overloaded focus peer
 - Reaction: Call delegated to other focus peer
- 3rd party invitation:
 - Situation: Participant requests overloaded focus to invite peer
 - Reaction: REFER to underloaded focus peer

Signaling Costs - Evaluation


Signaling delay remains *constant* with increasing conference size

Conference ID Virtualization

- **Problem:** How to distribute the conference entry point?
- **Idea:** Conference URI is registered in a *P2PSIP overlay* as a *key* for several focus peers that are responsible for the conference control
 - Achieve independence of dedicated registrar servers
 - Detach the Conf-ID from any physical instance

Conf-ID Virtualization – A New Usage for RELOAD

- RELOAD REsource LOcation And Discovery
 - P2PSIP signaling standard in the IETF (work in progress)
 - Designed to support a variety of applications
 - Stored data identified by Resource-ID and application specific Kind-ID
 - Security based on enrollment server
 - NAT & Firewall traversal through ICE
 - Pluggable overlay algorithms (e.g., Chord)
 - Secure transport connections by TLS/DTLS

Definition of a Distributed Conferencing (DisCo) Kind

- DisCo data structure stores a dictionary of :
 - Address-of-Records or Node-IDs of focus peers
 - A coordinates vector describing the focus' relative network position
- DisCo-Registration is a shared resource of all focus peers

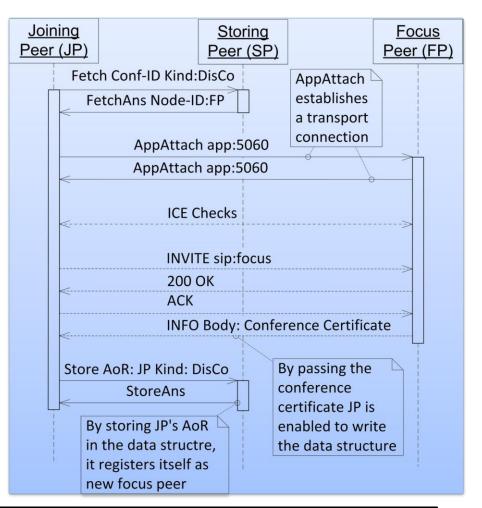
```
enum {sip focus uri (1), sip focus node id (2)
} DisCoRegistrationtType;
struct {
  opaque coordinate<0..2^16-1>
    select (DisCoRegistrationtType.type) {
      case sip focus uri:
        opaque uri<0..2^16-1>
      case sip focus node id:
        Destination destination list<0..2^16-1>
} DisCoRegistrationData
struct {
  DisCoRegistrationtType type;
  uint16 length;
  DisCoRegistrationData data;
 DisCoRegistration
```


Graduated Security Model for Shared DisCo-Registrations

- Task: Defining access control policies for shared DisCo-Registration
- **Solution:** Focus peers pass writing permission to participants based on chosen security model
 - Authentication by ordinary SIP mechanisms while inviting conference
 - Shared secret used to join conference
 - E.g., SIP Authorization header field
- Security models:
 - Open access:
 - No Authentication
 - Closed access:
 - Every Peer must be authenticate itself
 - Optionally for both: Focus Authenticate
 - Extra authentication for focus peers

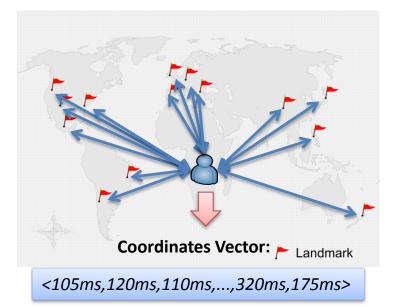
Creating a Conference

- 1) Probe on existence of Conference URI
 - StatReq is sent to storing peer for duplicate addresses detection
- 2) Request a *new certificate* that is used for the DisCo-Registration
 - Certificate for the "virtual" conference user
- 3) Store mapping *Conf-ID to <creating peer, coordinates vector>* at storing peer


Enrollment Server		<u>Crea</u> Peer(<u>Storing</u> <u>Peer (SP)</u>
	CP probes availability of the desired Conf-ID tificate Request New Certificate The registration of the Conf-ID requires a new		<	atReq Kinds:DisCo,S StatAns Conf-ID available: CP registers itself as first focus for th conference at SP AoR:Conf-ID Kind: StatAns	e
	certificate		<		

Joining a Conference and publish Focus-ability

- 1) *Resolve* Conf-ID by *fetch* request routed to storing peer
 - Answer contains available focus peers
- 2) Select closest focus (*next slides*)
- 3) Establish transport connection by AppAttach request routed to FP
- **ICE-Checks for NAT & Firewall** 4) traversal
- 5) Creating SIP dialog by using the existing transport
- 6) FP passes writing permission to JP
- 7) JP stores its mapping and becomes a *potential* focus peer

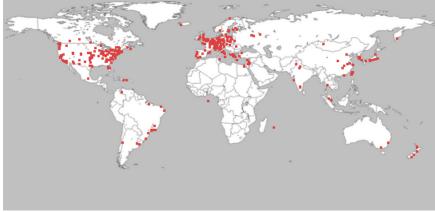


Determination of Topological Descriptors

- Each peer in a distributed conferences determines a *coordinates vector* describing a peer's position in an n-dim Cartesian space
- Distance between two peers p₁, p₂ is Euclidian distance between p₁'s and p₂'s coordinates vector:

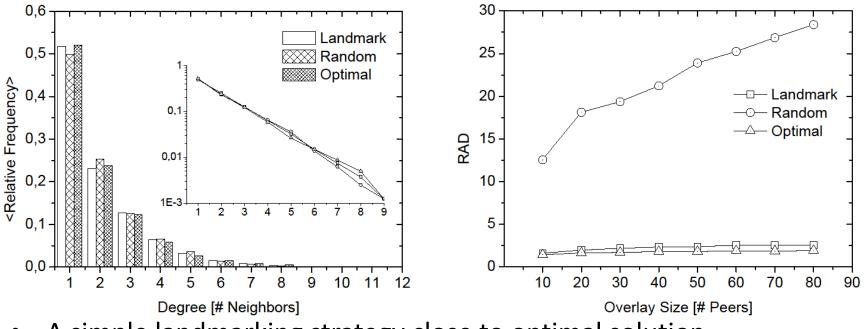
$$d(p_1, p_2) = \sqrt{\sum_{i=1}^{n} (p_{1i} - p_{2i})^2}$$

• New participants select a focus peer whose Euclidian distance in minimal


• Demonstrating a landmarking approach for proximity-aware focus selection as in [Ratnasamy et al, INFOCOM '02]

Proximity-aware Focus Selection - Evaluation setup

- Evaluation using *PlanetLab* platform:
 - Measurements using about 100 PlanetLab [www.planet-lab.org, 2010] nodes:


- 15 Caida [www.caida.org, 2010] monitors used as landmark hosts
 Built multiple times different peer-topologies using:
 - 1) Random strategy
 - 2) Optimized strategy
 - 3) Landmarking strategy

Proximity-aware Focus Selection - Evaluation

- Comparing different peer topology building schemes:
- Peer degree using landmarking vs. optimal and random strategy
- Delay stretch using landmarking vs. optimal and random strategy

A simple landmarking strategy close to optimal solution

Conclusion & Outlook

- Virtual and Distributed Conferences:
 - Transparent ID/LOC split of the Conf-ID
 - Conference management distributed among several peers
 - State synchronization, call delegation and focus discovery
 - Virtualized conference ID within RELOAD overlay
 - Proximity-aware focus selection
- **Outlook:**
 - Refine optimization strategies to jointly follow constraints of proximity and load distribution
 - Progress "A RELOAD Usage for Distributed Conference Control <u>(DisCo)" at the IETF P2PSIP WG</u>

Hochschule für Angewandte ra University of Applied Sciences

Questions?

Thanks for your attention!

http://inet.cpt.haw-hamburg.de/

19 A Virtual and Distributed Control Layer with Proximity-awareness

Additional Elements for Conference Event Package

- *Focus-states*: Container for *focus* element
- *Focus:* Describes the state at a specific focus peer
- *Focus-capacities:* Describes limits for focus peers
- *Participant:* Contains a list of all participants this focus is responsible for
- Next-hops: Container for all synchronization routes this focus maintains

<base-elements></base-elements>	
<focus-states></focus-states>	
<focus></focus>	
<focus-capacity></focus-capacity>	
<max-participants></max-participants>	
<max-focus-references></max-focus-references>	
<participant></participant>	
<next-hops></next-hops>	
<ref-to-focus></ref-to-focus>	

