The Need for a Name to MAC Address Mapping in NDN: Towards Quantifying the Resource Gain

> Peter Kietzmann, Cenk Gündoğan, Thomas C. Schmidt, Oliver Hahm and Matthias Wählisch

> > peter.kietzmann@haw-hamburg.de

4th ACM Conference on Information-Centric Networking (ICN 2017)

September 27, 2017

A Common IoT Scenario

A Common IoT Scenario

Why ICN in the IoT?

- NDN improves constrained networks (IoT)
 - + Hop-wise caching increases reliability
 - + Request-response pattern protects constrained nodes

A Common IoT Scenario

Why ICN in the IoT?

- NDN improves constrained networks (IoT)
 - + Hop-wise caching increases reliability
 - + Request-response pattern protects constrained nodes

BUT: What happens on the data link layer with Interest and Data packets?

 \rightarrow IoT runs on lossy wireless networks

Without Name to MAC Address Mapping

Broadcast forwarding on L2 ...

- + Simplifies content distribution
- + Adds redundancy

Without Name to MAC Address Mapping

Broadcast forwarding on L2 ...

- + Simplifies content distribution
- + Adds redundancy

- ... includes also drawbacks
 - Increases processing overhead
 - Lacks error handling on data link layer

Why should we care about about L2 error handling?

A noisy network

Why should we care about about L2 error handling?

A noisy network

Current Solution Space

		Energy	Reliability
[NDN'12]	NDN-specific link layer functions implemented between L2 and L3	×	~
[ICN'16]	Name-based filtering on NIC still sends all packets via broadcast challenges multiple ICN flavors	1	×
[EUNICE'13, ICN'14]	Adaptive unicast faces sends only data packets via unicast	1	1

What is this talk about?

1 Motivation why we need a name to link layer mapping in the IoT

- 2 A systematic understanding of effects of unicast and broadcast on Interest and Data
- 3 Experimental evaluation of different mapping configurations

- All nodes receive Interest
- Receivers create PIT entries
- Faces map to source MAC

(a) Without forwarding

- All nodes receive Interest
- Receivers create PIT entries
- Faces map to source MAC

(a) Without forwarding Interests

- Producer unicasts data
- Multiple stale PIT entries
- Single-path content caching

- All nodes receive Interest
- Receivers create PIT entries
- Faces map to source MAC
- (a) Without forwarding Interests
 - Producer unicasts data
 - Multiple stale PIT entries
 - Single-path content caching
- (b) With forwarding Interests
 - Intermediate nodes forward Interest

- All nodes receive Interest
- Receivers create PIT entries
- Faces map to source MAC
- (a) Without forwarding Interests
 - Producer unicasts data
 - Multiple stale PIT entries
 - Single-path content caching
- (b) With forwarding Interests
 - Intermediate nodes forward Interest
 - Multiple data unicasts in return
 - High redundancy and network load

(b) With forwarding

Broadcast vs. Unicast Wireless Link Layer

Unicast		Broadcast		
General	 Enables MAC intelligence Reduces system load Isolates communication channels 	 High interference, no ACK REQ Increases system load Increases redundancy 		
Interest	 Requires route to MAC mapping maintenance 	 Simplifies forwarding 		
Data	• Requires simple mapping	 Facilitates caching 		

Broadcast versus unicast - how large is the difference in wireless networks?

Measurement Setup

Scenario

- Single consumer, multiple producers
- Varying MAC to face mappings
- Single- and multi-hop

Metrics

- Wakeups, Energy
- CPU time, Unsatisfied Interest Rates

Measurement Setup

Scenario

- Single consumer, multiple producers
- Varying MAC to face mappings
- Single- and multi-hop

Metrics

- Wakeups, Energy
- CPU time, Unsatisfied Interest Rates

Software

- RIOT with CCN-lite as network stack
- Assigns MAC addresses to faces

F I T IOT-LAB

Testbed Deployment

- FIT IoT-LAB testbed
- 6 sites, \sim 2800 constrained nodes of 4 architectures
- M3 nodes: class 2 device with 802.15.4 radio

Lille

• 256 M3 nodes in one broadcast domain

Grenoble

- 384 M3 nodes in an extended ring topology
- Mesh networks up to 9 hops

Single-hop System Wakeup

Single-hop System Wakeup

P.Kietzmann

The Need for a Name to MAC Address Mapping in NDN

Multi-hop System Wakeup

Single-hop Energy

Energy excess in comparison to the leanest mapping: Interest unicast, data unicast

We can benefit from proper mappings to save battery resources and increase node lifetimes Interest broadcast Data

Conclusion: What was this talk about?

Motivation why we need a name to link layer mapping in the IoT ICN without MAC layer mapping harms the IoT

A systematic understanding of effects of unicast and broadcast on Interest and Data Link layer mapping does not sacrifice the concepts of NDN

Experimental evaluation of different mapping configurations Without unicast for Interest and data, broadcast storms kill communication

Agree on a common *adaptive* mapping scheme in the community!