
A Middleware for Transparent Group Communication
of Globally Distributed Actors

Dominik Charousset, Sebastian Meiling, Thomas C. Schmidt
Hamburg University of Applied Sciences, Department Informatik

Matthias Wählisch
Freie Universität Berlin

{dominik.charousset,sebastian.meiling}@haw-hamburg.de {t.schmidt,waehlisch}@ieee.org

ABSTRACT
Actors have been designed for loosely coupled concurrent
systems based on asynchronous message passing. This model
is of particular relevance for Internet-wide distribution, but
cannot unfold its full potential due to the lack of a glob-
ally available messaging service for groups. We present a
message-oriented publish/subscribe middleware that enables
global group communication at near-IP performance. Based
on this transparent group layer, we build libcppa, an Ac-
tor library with modular support for group semantics that
is compliant to the new C++ standard.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
Distributed Systems; D.2.8 [Software Engineering]: Met-
rics—complexity measures, performance measures

Keywords
Group Communication Middleware, Actor Multicast Model

1. INTRODUCTION
Social networks, multiplayer games, and Smart Grids, in

fact numerous distributed applications of today implement
some group semantic such as Anycast for load balanced or
replicated services, (selective) Broadcast for rendezvous pro-
cesses or contacting unknowns, Con(verge)cast for data ag-
gregation or scalable many-to-one communication, Multicast
for scalable (m)any-to-many communication.

The publish/subscribe paradigm is most widely used for
group communication, but distinctly implemented on several
layers and communication scopes. There are event-based
software designs such as Signal & Slot implementations in
C++, D-Bus for system-wide event handling, as well as broad-
cast and multicast in overlay networks and in IP. Each tech-
nique requires a specific code access, thus forcing developers
to decide on deployment at coding time. The divergent state

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Middleware Posters’2011, December 12th, 2011, Lisbon, Portugal.
Copyright 2011 ACM 978-1-4503-1073-4/11/12 ...$10.00.

of deployment for IP and overlay multicast (OM) increases
the barrier to stable, scalable programming even further.

The Actor model [3] is a formalism describing concurrent
entities that communicate by asynchronous message pass-
ing without making a distinction of communication type
or technology. In today’s mainstream languages, the pub-
lish/subscribe paradigm provides no common interface. Each
technology defines its own API. The Actor model could make
a contribution to unify and simplify group communication
due to its message oriented programming style.

In this paper we make the following two contributions. We
extend the Actor model by a general group semantic (§ 2)
and introduce the underlying general group communication
middleware along with its brief evaluation (§ 3).

2. GROUP COMMUNICATION AND THE
ACTOR MODEL

Today’s most most widely used sequential programming
languages such as C++ and Java neither provide concur-
rency semantics nor a technology-transparent group com-
munication interface. They grant low-level primitives such
as threads and locks and interfaces to group technologies.
However, scalable, concurrent applications are hard to build
upon low-level threading primitives, because such software
is difficult to verify and it is practically impossible to test
whether it is free of race conditions and deadlocks [2].

The Actor model follows a complementary approach by
replacing implicit communication through sharing with an
explicit mechanism of messaging. Because Actors are iso-
lated and do not share memory, they can be transparently
distributed while race conditions are avoided by design. A
lightweight Actor implementation that schedules all Actors
in a properly pre-dimensioned thread pool can outperform
equivalent thread-based approaches [1]. A full distribution
of actors, though, relies on a transparent mapping of the
message passing mechanism to the network layer.

Available implementations of the Actor model, such as
Erlang, provide loose coupling based on a name service for
Actors. However, distributed publish/subscribe event sys-
tems require loose coupling based on group names.

We extended the classical Actor model by a general group
semantic and implemented this in a library called libcppa

that is compliant to the new C++ ISO standard. libcppa al-
lows Actors to subscribe to groups and send (publish) mes-
sages to groups, as long as the sending Actor is a valid data
source in the groups context.

In detail, the abstract class group provides an interface for
the publish/subscribe paradigm. This class is implemented

 0

 200

 400

 600

 800

 1000

 200 400 600 800 1000 1200 1400

D
a
ta

 T
h
ro

u
g
h
p
u
t
[M

B
it
/s

]

Payload [Bytes]

IP−Stack
HAMcast−IP

HAMcast−OM
MAX

(a) Data Throughput at Sender

 0

 200000

 400000

 600000

 800000

 200 400 600 800 1000 1200 1400

P
a
c
k
e
t
T

h
ro

u
g
h
p
u
t
[P

a
k
e
te

/s
]

Payload [Bytes]

IP−Stack
HAMcast−IP

HAMcast−OM
MAX

(b) Packet Throughput at Receiver

Figure 1: Communication Performance of the HAMcast Middleware versus Native IP at 1 Gbit/s Link

in group communication modules, that allow access to a spe-
cific technology or communication scope. A static member
function get(module_name, group_id) grants access to the
module module name and returns a singleton that manages
access to the group identified by its group id. For example,
group::get("local", "User Events") returns a handle to
a group for in-process communication that might be used
for GUI relevant events.

Actors may receive messages from multiple sources simul-
taneously. A source can be a group that was previously
joined, or another Actor. Such transparency in message
handling reduces programming overhead and complexity of
implementing distributed systems, while the unified group
communication access allows developers to join groups with
different communication scopes without additional effort.

However, distributed group communication equally relies
on a proper distribution network. Facing the heterogeneous
deployment of multicast service in today’s networks, an im-
plementation like libcppa alone cannot unfold its full capa-
bilities, but requires additional system or network support.

3. THE COMMUNICATION MIDDLEWARE
Our middleware implements a universal publish/subscribe

group communication service. It represents an abstraction
layer between applications and various transport technolo-
gies, offering a globally available multicast service via a
common API [4] that operates on transparent URI-based
group identifiers like “sip://news@cnn.com”. The abstrac-
tion layer enables an Loc/ID split, using mapping functions.

The H

A

Mcast architecture uses Inter-Domain Gateways
(IMG) to connect multicast islands and span a global mul-
ticast service network. Basically, if an IMG was found in a
local, multicast enabled IP network, H

A

Mcast uses the much
more efficient native multicast service, otherwise a scalable
overlay technology such as Scribe is used.

The middleware has a plug-in architecture for multicast
technologies. In our prototype, we implemented IPv4, IPv6
and Scribe modules. During startup, the middleware per-
forms a service discovery to detect network interfaces and
multicast capabilities in the directly attached networks. Af-
ter the startup phase, the service selection chooses the most
efficient technology module.

Client applications based on libhamcast (a C++ interface

for the H

A

Mcast multicast service) use technology indepen-
dent multicast socket stubs that forward method calls to
the middleware on runtime via inter-process communication
(IPC). Applications based on libhamcast are completely de-
coupled from any technology dependent API. Native sockets
and group subscription for all known technologies are man-
aged by the middleware modules.

3.1 Evaluation
Our brief evaluation of the H

A

Mcast middleware perfor-
mance concentrates on the throughput in comparison to the
native IP stack of the hosting node. Our set-up consists of
a local network connecting nodes at homogeneous 1 Gbit/s
links. A sender submits data at maximal capacity and re-
ceivers strive to process whatever arrives, passing it to the
upper layer. We vary packet sizes, as the frequency in packet
processing characterizes complexity.

Fig. 1(a) compares the data throughput at the sender,
while Fig. 1(b) displays packet reception of listeners. In
both cases, the H

A

Mcast IP processing approximates the
native IP stack performance with minor flaws only for small
packet sizes (< 400 Bytes). Overlay multicast (OM) dis-
tribution clearly falls short, on average by 40 %, due to
overhead of additional packet headers and overlay routing
performed in the middleware.

These results indicate negligible performance impact im-
posed by the H

A

Mcast middleware prototype. We conclude
that this work may successfully serve as a proof of concept
for establishing global communication patterns by a system-
centric middleware.

4. REFERENCES
[1] P. Haller and M. Odersky. Scala actors: Unifying

thread-based and event-based programming. Theor.
Comput. Sci., 410(2-3):202–220, 2009.

[2] P. B. Hansen. Operating system principles.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1973.

[3] C. Hewitt, P. Bishop, and R. Steiger. A universal
modular actor formalism for artificial intelligence. In
IJCAI, pages 235–245, 1973.

[4] M. Wählisch, T. C. Schmidt, and S. Venaas. A
Common API for Transparent Hybrid Multicast. IRTF
Internet Draft – work in progress 03, IRTF, July 2011.

