
Native Actors – A Scalable Software Platform
for Distributed, Heterogeneous Environments

Dominik Charousset Thomas C. Schmidt
Raphael Hiesgen

HAW Hamburg, Dept. Computer Science
dcharousset@acm.org, t.schmidt@ieee.org,

raphael.hiesgen@haw-hamburg.de

Matthias Wählisch
Freie Universität Berlin, Institute of Computer Science

waehlisch@ieee.org

Abstract
Writing concurrent software is challenging, especially with low-
level synchronization primitives such as threads or locks in shared
memory environments. The actor model replaces implicit com-
munication by an explicit message passing in a ‘shared-nothing’
paradigm. It applies to concurrency as well as distribution, but has
not yet entered the native programming domain. This paper con-
tributes the design of a native actor extension for C++, and the
report on a software platform that implements our design for (a)
concurrent, (b) distributed, and (c) heterogeneous hardware envi-
ronments. GPGPU and embedded hardware components are inte-
grated in a transparent way. Our software platform supports the de-
velopment of scalable and efficient parallel software. It includes
a lock-free mailbox algorithm with pattern matching facility for
message processing. Thorough performance evaluations reveal an
extraordinary small memory footprint in realistic application sce-
narios, while runtime performance not only outperforms existing
mature actor implementations, but exceeds the scaling behavior of
low-level message passing libraries such as OpenMPI.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; D.3.4 [Processors]: Run-time
environments

Keywords Actor Model, Concurrent Programming, C++, Message-
oriented Middleware, GPGPU Programming

1. Introduction
The majority of programs today is executed in environments of
multiple processing units. A key challenge of program develop-
ment is to appropriately aggregate resources for the sake of code
performance, execution efficiency, and particular application needs.
Multi-core CPUs have become an integral part of commodity hard-
ware even in mobiles. Heterogeneous hardware components like
graphics processing units (GPUs) and embedded controllers con-
tribute powerful capacities to end systems, while novel comput-
ing paradigms arise in emerging distributed eco systems like cloud

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
AGERE ’13, Month d–d, 20yy, City, ST, Country.
Copyright c© 2013 ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/

computing [5, 10] and mobile crowd sourcing [21]. All these sce-
narios rely on concurrency [12], many also require distribution.
Still the dominant part of current applications is written in some
popular imperative language [28].

Imperative programming languages such as C, C++, or Java
do not provide concurrency semantics. They were developed be-
fore the ‘multi-core revolution’ started and thus originally aimed at
single-core processor machines. Threading libraries were added on
top of existing languages that allow to start multiple threads of exe-
cution within a process. However, dealing with concurrency is chal-
lenging, especially in shared memory environments where paral-
lel access to process-wide memory easily leads to race conditions.
The performance and scalability of hand-written synchronization
for avoiding race conditions depends on the implementation strat-
egy. Coarse-grained locking is simple, but easily causes queuing
and scalability issues, whereas fine-grained locking increases scal-
ability but also complexity and error-proneness due to lock order,
for example. Additionally, time-dependent errors make it virtually
impossible to verify a concurrent application by systematic testing
[13].

A powerful approach to the problems of concurrency and distri-
bution has been formulated in the actor model by Hewitt, Bishop,
and Steiger [16]. This formalism describes concurrent entities –
’actors’ – that execute independently, do not share state, and com-
municate by asynchronous message passing. Because actors are
self-contained and do not rely on shared resources, race conditions
are avoided by design. The message passing communication style
facilitates a transparent deployment and applies to (1) concurrency,
if actors run on the same machine, (2) heterogeneous environments,
if actors on the same machine are bound to different memory re-
gions and processing units, and (3) distribution, whenever actors
run on different hosts connected via the network. Actor-based lan-
guages like Erlang [3] and frameworks such as Akka [30] or Kilim
[25] have been bound to specific niches or use vendor specific APIs
(e.g., Casablanca [20]). One major objective of the present work is
to make actor programming accessible to a wider community and
to broaden its range of applications. We therefore extended the ac-
tor model to wider applicability and designed and implemented an
actor framework for C++ from scratch.

This paper makes three main contributions. First, we present a
design for a C++ software platform based on the actor model. Our
design includes a lightweight, lock-free, and network-transparent
message passing system that is implemented without context
switching. Second, we present an approach to transparently in-
tegrate heterogeneous hardware components using OpenCL by de-
ducing the messaging interface from the kernel signature. Third,
we demonstrate experimentally that our approach is practical and
efficient enough to outperform mature implementations of the ac-

tor model, as well as low-level message passing libraries such as
OpenMPI in several scenarios and key aspects. We highlight key
achievements of our platform in Section 2.

The remainder of this paper discusses relevant design aspects
along with related work in Section 3. Section 4 details the design
decision and major implementation choices. The practical perfor-
mance evaluation is presented in Section 5. Finally, Section 6 dis-
cusses the lessons learned and Section 7 concludes.

2. The Case for Actors
This part highlights arguments for the actor platform from a pro-
gramming and a performance perspective. Consider the following
class.

class KeyValueStore {
public:
void set(Key k, Value v) {
// ...

}
Value get(Key k) const {
return ...;

}
private: // ... implementation details

};

When accessible by multiple threads in parallel, the class has to
be implemented in a thread-safe manner. A simple approach is to
guard both member functions using a mutex. This approach does
not scale well, mainly because readers block other readers. More
scalable approaches require a specific synchronization protocol
that is based on recursive or shared mutexes, for example. The
following source code illustrates the definition of an actor in our
software platform.

become (
on(atom("set"), arg_match)
>> [=](Key k, Value v) { /* ... */ }
on(atom("get"), arg_match)
>> [=](Key k) {
reply (...);

}
);

Actors can be programed without knowledge about concurrency
primitives. At the same time, our actor implementation supports
massively parallel access (cf. § 5.3). In the example, key requests
are sequentially processed without further coordination, as there is
no intra-actor concurrency. For a further increase of parallelism,
actors can explicitly redistribute tasks to a set of “workers”. Our
message passing interface uses so-called atoms to identify specific
operations instead of member function names. Atoms do not cause
string comparison at runtime, as they are converted to integers by
using a hash function at compile time. The following code shows
the caller side of our example.

sync_send(server , atom("get"), key).then(
[=](Value val) {
cout << key << " => " << val << endl;

}
);

Our software platform provides network-transparent messaging.
To highlight its performance in a concurrent and a distributed
system, we have implemented an algorithm to calculate a fixed
number of the Mandelbrot set. The computation was distributed
by using our library (libcppa) for actor programming in C++, and
OpenMPI, a low-level message passing library optimized for high
performance. Since both programs share one C++ implementation
for the calculation, the measurements reveal the overhead added
by the distribution technologies in use. Hence, this setup discloses

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

4 0 0 0

Tim
e [

s]

N u m b e r o f W o r k e r s [#]

 l i b c p p a
 O p e n M P I

Figure 1. Sending and processing time for 778 images of the
Mandelbrot set in a concurrent system consisting of 12 nodes using
libcppa and OpenMPI

the trade-offs in performance developers make when opting for a
high-level abstraction like the actor model instead of for low-layer
primitives.

Figure 1 shows the runtime results for concurrent setups as func-
tions of available worker nodes. In this evaluation, we have used
one host machine running 12 virtual machines as worker nodes.
The additional transmission and processing overhead of libcppa
is only visible for up to three workers. The multiplexing capabilities
of libcppa surpass OpenMPI for four and more workers, which
indicates a better scalability of libcppa.

3 6 9 1 2 1 5 1 8 2 1 2 4 2 7 3 0 3 3 3 6
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

Tim
e [

s]

N u m b e r o f W o r k e r s [#]

 l i b c p p a
 O p e n M P I

Figure 2. Sending and processing time for 2314 images of the
Mandelbrot set in a distributed system consisting of 36 nodes using
libcppa and OpenMPI

The results for our distributed scenario are shown in Figure 2.
In this setup, we have used three host machines running 12 virtual
machines each, while the problem size was increased by a factor of
≈ 3. To achieve an evenly distributed work load, we added worker
nodes in increments of three, i.e., one worker at each host machine.
As in our previous results, the runtime advantage of libcppa over
OpenMPI increases with the number of workers: from ≈ 3 s on
three nodes up to ≈ 23 s on 36 nodes.

These results clearly illustrate that actors created from libcppa
do not impose a performance penalty. Hence developers do not
need to choose between a high level of abstraction on the one hand,
and runtime performance on the other. An efficient implementation
of the actor model can rather outperform low-level approaches.

3. Background and Related Work
Concurrent software components often need to share or exchange
data. In shared memory environments, this communication is im-
plicit via shared state. However, unsynchronized parallel access
to shared memory segments easily leads to erroneous behavior
caused by race conditions. To prevent parallel or interleaved exe-
cution of so called critical sections, developers have to implement
a synchronization protocols by using low-level primitives such as
locks and condition variables. This is inherently error-prone, and
correctly implementing critical sections requires expert knowledge
about compiler optimizations, out-of-order execution, and other.
[19]. Furthermore, a central software component that is exposed
to frequent parallel access should best not rely on locking, since a
critical section is a likely performance bottleneck. Lock- and wait-
free algorithms [14] can scale in a multiprocessor environment, but
are significantly more complex [9].

Designing suitable locking strategies or lock-free algorithms
are not the only challenges developers face on parallel hardware.
Applications with good performance on a uniprocessor machine
may experience a performance degradation on multiprocessor plat-
forms, e.g., due to false sharing. False sharing occurs whenever two
or more processors are repeatedly writing into a memory region that
is mapped to more than one processor cache. This mutually invali-
dates the caches, even if the processors are accessing distinct data,
and severely slows down program execution [29].

3.1 Concurrent Programming and Actors
Higher-level abstractions following a message passing or transac-
tional memory paradigm have been developed that do not require
synchronization of readers and writers. They established program-
ming models that are free of race conditions. Transactional memory
can be implemented in hardware [15] or software [24]. However,
transactional memory applies neither to event-driven workflows,
nor to communication between heterogeneous hardware compo-
nents, nor to distributed systems. Message passing, on the other
hand, has proven to scale in multiprocessor environments as well
as in distributed scenarios such as cluster computing. In the high-
performance domain, message passing systems based on MPI have
been in use for decades [11].

The actor model [16] is based on the message passing paradigm,
but raises the level of abstraction even further. It not only describes
how software components communicate, but also characterizes the
communicating components, the actors themselves. Based on this
model, concurrent and distributed systems can be composed of
independent modules [1] that are open for communication with
external components [2]. In addition, the actor model addresses
reliability and fault tolerance in a network-transparent way [4].
Hence, developers no longer need to optimize their code depending
on the target platform. Deployment on parallel, heterogeneous, or
distributed resources can be delegated to the runtime environment,
since the deployment does not affect the logical structure of an actor
program.

3.2 Message Processing
Agha [1] introduced mailbox-based message processing in its semi-
nal modeling work on actors. A mailbox is a FIFO ordered message
buffer that is only readable by the actor owning it, while all other
actors are allowed to enqueue new messages. Mailboxes exclu-
sively enable communication between actors, as no state is shared.
Implementation concepts of mailbox management divide into two
categories.

In the first category, an actor iterates over messages in its mail-
box. On each receive call, it begins with the first but is free to skip
messages. Messages can be automatically postponed, if the behav-
ior of an actor is defined as a partial function [12]. As actors can

change their behavior in response to a message, a newly defined
behavior may apply to previously skipped messages. A message re-
mains in the mailbox until it is eventually processed and removed
as part of its consumption. Erlang [4] is the classical example for
this category of message processing.

The second category of actor systems follows a more restric-
tive message processing scheme. A message handler is invoked
exactly once per message with the specific behavior of the actor.
An untreated message cannot be recaptured at a later time, even
though some systems allow to change the message handler at run-
time. Consequently, actors are forced to handle messages in the
order of arrival. The examples of SALSA [31], Akka [30], Kilim
[25], and Retlang [23] fall in this category.

In our work, we followed the first approach. The major rea-
sons for this are the abilities to prioritize messages and to wait for
a response prior to returning to the default behavior. In this con-
text, pattern matching has proven useful and very effective to ease
definition of partial functions used as message handlers [3]. Thus,
we provide pattern matching for message handling as a domain-
specific language in our system.

3.3 Fault Propagation
Fault-tolerant distributed systems require strong mechanisms of
fault monitoring and control. The actor model foresees actors to
monitor each other [16]. Whenever an actor fails, an exit message
is sent to all actors that monitor it. This monitoring can be bidi-
rectional, and actors that established such a strong relationship are
called linked. Linked actors form a subsystem in which errors are
propagated via exit messages.

Based on linking, developers can build subsystems in which
all actors are either alive or have collectively failed. Each sub-
system can include one or more actors that survey working actors
and re-create failing workers. In proceeding this way, hierarchical,
fault-tolerant systems such as Erlang’s supervision trees [4] can be
built. Newer implementations of the actor model (e.g., Kilim and
Akka) have adopted the Erlang model of error propagation, as it has
proven very effective, elegant and reliable [22] in tightly coupled
domains. We adopted this well-established fault propagation model
as a starting point, but are aiming for and extension of higher flex-
ibility that may well server loosely coupled and non-hierarchical
domains.

4. A Software Platform for Actor Programming
in C++

In this section, we present our software platform bundled in the
C++ library libcppa. We discuss its design along with selected
implementation decisions in detail. The software has been released
as open source under the LGPL 2.1 license.1

4.1 Requirements
The following design requirements account for fast program execu-
tion as well as developer efficiency by providing the highest level
of abstraction possible without sacrificing performance.

Scalability: In the context of multi-core processors, scalability
requires to split the application logic into many independent tasks
that can be executed in parallel. Developers shall be enabled to cre-
ate a significant number of short-lived actors without performance
penalty. In contrast, the canonical transfer of tasks to threads does
not scale well in a short-lived environment, since the effort of cre-
ation and destruction of threads often outweighs the benefit of par-
allelization. Hence, actors must have small memory footprint as
well as low scheduling overhead.

1 See http://www.libcppa.org.

http://www.libcppa.org

Distribution Transparency: The network layer of libcppa shall
manage all communication requests, thereby hiding complexity of
the underlying communication protocols and deployment. Further-
more, the addressing of an actor shall rely on a common interface
for local and remote actors so that applications will experience a
uniformly transparent access and easily rescale at runtime.

Message Handling and Processing: Messages shall (a) be
garbage collected, (b) not be limited to particular types, and (c)
provide pattern matching. Requirement (a) is owed to the experi-
ence that manual memory management in concurrent systems is
error-prone and thus impractical, while the alternative approach of
copying a message for each single recipient, leads to suboptimal
performance if a message has multiple recipients. Requirement
(b) reflects the common experience that message passing with re-
stricted types is of limited use in practice. However, unrestricted
messaging requires efficient and expressive facilities such as pat-
tern matching (c), because message handling is a continuously
recurring task to implement.

4.2 Key Concepts in Design and Implementation
In this section, we go into selected details of relevant technologi-
cal and algorithmic choices that shall fulfill the requirements and
provide a modern C++ API design.

4.2.1 Copy-On-Write Messaging using Tuples
The message passing implementation of libcppa uses tuples with
call-by-value semantics. This may lead to multiple copies of a tu-
ple when sending to more than one actor. Copy-on-write is an opti-
mization strategy to minimize copying overhead, so that a tuple can
be shared among several actors as long as all participants only de-
mand read access. An actor copies the shared tuple when it requires
write access and is only allowed to modify its own copy. Thus, race
conditions cannot occur and each tuple is copied only if needed.
This also implements garbage collection as unreferenced tuples are
deleted automatically. We have used an atomic, intrusive reference
counting implementation that adds only a negligible runtime over-
head.

4.2.2 Mailbox Algorithm
The message queue or mailbox implementation is a critical compo-
nent of any message passing system. All messages sent to an actor
are delivered to its mailbox, which acts as a shared resource when-
ever an actor receives messages from multiple senders in parallel.
Thus, the overall system performance, foremost its scalability de-
pends significantly on the selected algorithm.

A mailbox is a single-reader-many-writer queue. It is exposed
to parallel write access, but only the owning actor is allowed to de-
queue a message. Hence, the dequeue operation does not need to
support parallel access. We have combined a lock-free stack imple-
mentation with a FIFO ordered queue as internal cache. A lock-free
stack can be implemented using a single atomic compare-and-swap
(CAS) operation. It does not suffer from the so called ABA prob-
lem of concurrent access that can corrupt states in CAS-based sys-
tems [17] as the enqueue operation only needs to manipulate the tail
pointer. However, without reordering the dequeue operation would
have to traverse the (LIFO-sorted) stack in order to find the oldest
element.

Figure 3 shows the dequeue operation of our mailbox imple-
mentation. It always dequeues elements from the FIFO ordered
cache (CH). The stack (ST) is emptied and its elements are moved
in reverse order to the cache whenever it drains. Emptying the stack
can be done by a single CAS operation as it only needs to set ST to
NULL.

Our mailbox has complexity O(1) for enqueue operations,
while the dequeue operation has an average runtime of O(1), but a

A
dequeue()
{
 R = CH
 if R != NULL {
 CH = R.next
 return R
 }

}

BC

 do {
 E = ST
 if E == NULL
 return NULL
 } while not cas
 (&ST,E,NULL)

 while E != NULL {
 NEXT = E.next
 E.next = CH
 CH = E
 E = NEXT
 }

CBA

CB

 return dequeue()

CH
ST

in
it

 s
ta

te
st

ac
k

em
pt

ie
d

LI
FO

 -
>

FI
FO

fi
na

l
st

at
e

CH
ST

CH
ST

CH
ST

Figure 3. Dequeue operation in a cached stack (ST = Stack Tail,
CH = Cache Head)

worst case of O(n), where n is the maximum number of messages
in the stack. Concurrent access to the cached stack is reduced to
a minimum and both enqueueing and dequeueing perform only a
single CAS operation. Our performance measurements (cf., Sec-
tion 5) show that this lock-free implementation enables libcppa
to utilize hardware concurrency in N:1 communication scenarios
more efficiently than common implementations of the actor model.

4.2.3 Pattern Matching for Tuples using Partial Functions
C++ does not provide pattern matching facilities, and a general pat-
tern matching solution for arbitrary data structures would require a
language extension. Hence, we decided to restrict pattern match-
ing to tuples, which can be achieved by an internal domain-specific
language (DSL) approach. A match expression, i.e., the definition
of a partial function, begins with a call to the function on that re-
turns an intermediate object providing the member function when

and the operator ”>>”. The right-hand side of the operator denotes a
callback—usually a lambda expression—which should be invoked
after a tuple matches the types given to on. This is shown in the
example below.

on<int >() >> [](int i) { /*...*/ }

The result of operator “>>” is a partial function that is defined for
the types given to on. Additionally, guards can be used to constrain
a given match statement by using placeholders or values, as the
following example illustrates.

on(42) >> [] {
// matches only the integer value 42

},
on<int >(). when(_x1 % 2 == 0) >> [] {

// matches even integer values (except 42)
},
on<int >() >> [] {
// matches odd integer values; not invoked
// if a previous rule matches first

}

Guard expressions are a lazy evaluation technique. The place-
holder _x1 is substituted with the first element of a given tuple.

A comma separated list of partial functions results in a single
partial function that sequentially evaluates its subfunctions. At most
one callback is invoked, since the evaluation stops at the first match.
Hence, the second lambda expression in the example above can
safely assume that it is invoked if and only if the integer is not even.
The type ”anything” can be used as wildcard expression to match
any number of any types. For example, ”on<int,anything>()”
matches all tuples with an integer as first element. However, re-
peating types in both the callback signature and the template pa-
rameter list is redundant, as these types can be deduced automati-
cally. For this purpose, we have introduced the keyword-like con-
stant arg_match that can be used as last argument to on and causes
the compiler to deduce all further types from the signature of the
callback, as illustrated in the example below.

partial_function fun {
on(atom("add"), arg_match) >> [](int v) {
// matches the types <atom_value , int >
// and is only invoked if the first
// value is the atom ’add’

},
on_arg_match >> [](int a, int b) {
// matches the types <int , int >
// on_arg_match is a convenience
// keyword -like value
// that is equal to on(arg_match)

}
};

Our DSL-based approach has more syntactic noise than a native
support within the programming languages itself, for instance when
compared to functional programming languages such as Haskell or
Erlang. However, we only use ISO C++ facilities, do not rely on
brittle macro definitions, and our approach only adds negligible—
if any—runtime overhead by using expression templates [32].

4.2.4 Actor Semantic as Internal Domain-Specific Language
for C++

The keyword self is an essential ingredient of our design. From a
user’s point of view, the keyword identifies the running actor like
the implicit this pointer identifies an object within a member func-
tion. Unlike this, though, self is not limited to a particular scope.
Furthermore, it is not just a pointer, but needs to execute implicit
conversion on demand when used from a context that was not ex-
plicitly created as an actor. In that case, a new object containing a
mailbox, link-list, etc. is created. It converts the given thread to a
thread-mapped actor. This approach ensures a consistent program-
ming model in which “everything is an actor”. The self pointer is
used implicitly, whenever an actor calls functions like send, but can
be accessed to use more advanced actor operations such as linking
to another actor, i.e., by calling self->link_to(other).

4.2.5 Cooperative Scheduling of Actors
An actor library needs to schedule actors in an efficient way. An
ideal way to ensure fairness in an actor system requires preemp-
tive scheduling. A fair system would guarantee that no actor could
starve other actors by occupying system resources. However, pre-
emptive scheduling requires hardware interrupts to switch between
running tasks and thus can only be implemented, if unrestricted ac-
cess to hardware or kernel space is granted. For obvious reasons, a
full-fledged operating systems cannot allow unrestricted hardware
or kernel space access to a userspace application like our library.

In general, userspace schedulers can only implement coopera-
tive scheduling. We decided to implement an opt-out cooperative
scheduling, so that developers can choose to execute an actor in
its own thread in case it relies on blocking system calls that may
starve other actors in a cooperative scheduling. All cooperatively

scheduled actors run in a thread pool that is pre-dimensioned ac-
cording to the number of cores discovered at runtime. The elements
in the shared job queue of the thread pool, i.e., the actors in ready
state, are aligned according to the cache line size of the hardware
platform to avoid false sharing. Our benchmarks, in particular the
emulation of a realistic use case scenario, illustrate that our cooper-
ative scheduling implementation performs comparably with indus-
trial strength implementations such as Akka.

4.2.6 Transparent Integration of Heterogeneous Hardware
Components

With the advent of GPGPU programming, it became a crucial factor
for a broad range of applications to make use of the heterogeneous
computing platforms found in modern hardware deployments. This
demand has lead to the development of the open standard OpenCL
[26]. In OpenCL, developers provide an implementation of an
algorithm, the so-called kernel, in a C dialect that is compiled
for the detected hardware at runtime. The following code example
shows the prototype of an OpenCL kernel to multiply two matrices.

__kernel void matrix_multiply(
__global float* matrix1 ,
__global float* matrix2 ,
__global float* output);

By convention, the last parameter is the output parameter.
When instantiating this kernel at runtime to create an OpenCL
program, all three dimensions, i.e., the number of elements in
matrix1, matrix2, and output, must be defined. In order to exe-
cute matrix_multiply, one needs to encapsulate the function call
along with the parameters as a task and then enqueue this task to
an OpenCL command queue. OpenCL offers a callback-based API
as well as a blocking API to await the completion of a task.

The task-based workflow of OpenCL is a natural fit to the actor
model. Naturally, an OpenCL program can be regarded as an actor.
It awaits input parameters and then produces results. In this exact
way, libcppa creates a message passing interface for OpenCL
programs, as shown in the following example.

spawn_cl <float*(float*,float*)>(
source , "matrix_multiply", {size , size });

The function spawn_cl expects the signature of the OpenCL ker-
nel as a template parameter, normalized to a form with a result type
instead of an implicit output parameter. The argument source is a
string containing the source code of the kernel. The second argu-
ment is the name of the kernel. Finally, spawn_cl expects the di-
mensions of the input parameters. The invocation example shown
above creates an actor that receives two arrays, each consisting of
size · size (dimension on the x-axis multiplied with the dimen-
sion on the y-axis) elements, and replies a new array containing
the resulting matrix. The matrices are represented in one dimen-
sion, since OpenCL does not support multi-dimensional arrays. The
function spawn_cl also provides several overloads for fine-tuning
the OpenCL behavior, or to perform data transformation. The latter
allows to hide the kernel signature by providing a different inter-
face to other actors. This is particularly useful to integrate OpenCL
actors into an existing application.

4.2.7 Message Processing
An actor uses become to set its behavior in response to incoming
messages. The selected behavior is then executed until it is replaced
by another call to become or the actor finishes execution. Actors
can be implemented using functions or classes. Class-based actors
either subtype event_based_actor and implement the pure virtual
member function init, or subtype sb_actor (“State-Based Actor”)
and provide an init_state member variable of type behavior, as
shown below.

struct printer : sb_actor <printer > {
behavior init_state = (others () >> [] {

cout << to_string(self ->last_received ())
<< endl;

});
};

The class sb_actor uses the Curiously Recurring Template Pat-
tern [8], where the derived class must be provided as template pa-
rameter. This technique allows sb_actor to override the init mem-
ber function as become(this->init_state).

An actor can set a new behavior by calling become with the
keep_behavior policy to wait for the required message and then
return to the previous behavior by using unbecome, as shown in the
example below. An actor finishes execution for normal exit reasons
whenever the behavior stack is empty after calling unbecome. It is
worth mentioning that the original actor model did not include an
unbecome primitive. Nevertheless, it was added by recent imple-
mentation such as Akka to provide a convenient way of defining
nested receive operations as shown in the example below. The de-
fault policy of become is discard_behavior that causes an actor to
override its current behavior. The optional policy flag must be the
first argument of become.

// receives {int , float} sequences
void testee () {

become (
on<int >() >> [=](int value1) {

become (
// the keep_behavior policy stores
// the current behavior on the
// behavior stack to be able to
// return to this behavior later
// on by calling unbecome ()
keep_behavior ,
on<float >() >> [=](float value2) {

cout << value1 << " => "
<< value2 << endl;

unbecome ();
}

);
}

);
}

We provide two ways of passing messages between actors.
The function send models asynchronous communication, while
sync_send models synchronous communication by using unique
request identifiers. The response message to a previous request
can be received by using a “one-shot handler” that unambiguously
matches the response to the request by using sync_send. We pro-
vide a continuation-like API as illustrated by the following exam-
ple.

sync_send(testee , atom("get")). then(
on_arg_match >> [=](const string& str) {

// handle str
},
after(chrono :: seconds (30)) >> [=] {

// handle timeout
}

);

5. Performance Evaluation
In this section, we compare the runtime behavior of our soft-
ware with common implementations of the actor model. Our
performance analysis includes local and distributed actors. The
source code of all benchmark programs are published online at
https://github.com/Neverlord/cppa-benchmarks.

5.1 Basic Measurement Setup and Metrics
Erlang and Scala are currently the most relevant languages for
actor programming. We use their implementation as reference for
concurrent computation. For Scala, we consider the Akka library
[30], that is part of Scala’s standard distribution. In detail, our
benchmarks are based on the following implementations of the
actor model: (1) C++ with libcppa (cppa), Scala 2.10.0 with
the Akka library (scala), and (3) Erlang in version 5.9.1 (erlang).
libcppa has been compiled with optimization level O4 of GNU
C++ compiler version 4.7.2. Scala runs on a JVM configured with
a maximum of 4 GB of RAM.

To quantify the characteristic performance of the actor imple-
mentations, we measure (a) the actor creation overhead, (b) the
mailbox performance in N:1 communication scenarios, (c) the run-
time under significant workload, and (d) the performance in a high-
performance distributed computing application. We concentrate on
the runtime performance and memory footprint. The benchmarks
have been conducted on a Linux host that consists of two hexa-
core Intel Xeon processors with 2.27 GHz. To reflect local concur-
rency, we vary the number of used CPU cores from 2 to 12. For
the distributed scenario, we deploy a LAN scenario with nine vir-
tual machines running Linux. This reduced complexity in network
topology allows to explore the basic properties of our design and
implementation. Each scenario is sampled with the same param-
eter settings until it is converged. We average the results over all
samples with the same settings. For the timing behaviour, the er-
ror bars in the subsequent graphs show the 95% confidence interval
to represent the variability of the measurements. The memory con-
sumption is visualized by box plots due to the (partly) fluctuation
nature of this measurement.

5.2 Overhead of Actor Creation
Our first benchmark measures the overhead of actor creation. The
following pseudo code illustrates the recursive creation of a prede-
fined number of actors.

main(X):
spawn(testee , self) ! {spread , X}
receive: {result , Y} => assert (2^X == Y)

testee(Parent):
receive:
{spread , 0} => Parent ! {result , 1}
{spread , N} =>
spawn(testee , self) ! {spread , N-1}
spawn(testee , self) ! {spread , N-1}
receive:
{result , X1} =>
receive:
{result , X2} =>
Parent ! {result , X1 + X2}

Each actor spawns two additional actors after receiving a
{spread, N} message unless N is 0. In the latter case, the actor
sends {result, 1}. After spawning two more actors, an actor waits
for two result messages, transfers results to its parent, and finishes
execution.

This benchmark mainly pressures (a) the heap through many
allocations, and (b) the scheduler’s job queue, because actors com-
pute virtually nothing, so the workers are constantly acquiring new
tasks. We have run the benchmark with main(20), which creates a
total of 220, i.e., 1,048,576, actors.

Figure 4(a) shows the time to create about a million actors as
a function of available CPU cores. libcppa is the fastest imple-
mentation, halving the runtime of the slowest implementation, i.e.,
Scala. Erlang’s performance lies midway between the two other
implementations. All three implementations reach a global mini-
mum on eight cores. On more than eight cores, three classes can be

https://github.com/Neverlord/cppa-benchmarks

2 4 6 8 1 0 1 2
0

5

1 0

1 5

2 0

2 5
Tim

e [
s]

N u m b e r o f C o r e s [#]

 l i b c p p a
 s c a l a
 e r l a n g

(a) Actor creation time

l i b c p p a s c a l a e r l a n g
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

Re
sid

en
t S

et
Siz

e [
MB

]

x
9 9 t h p e r c e n t i l e1 s t p e r c e n t i l e

9 5 t h p e r c e n t i l e5 t h p e r c e n t i l e
x

M e d i a n

7 5 t h p e r c e n t i l e2 5 t h p e r c e n t i l e

M e a n

(b) Memory consumption

Figure 4. Actor creation performance for 220 actors

2 4 6 8 1 0 1 2
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0
5 5

Tim
e [

s]

N u m b e r o f C o r e s [#]

 l i b c p p a
 s c a l a
 e r l a n g

(a) Sending and processing time

l i b c p p a s c a l a e r l a n g
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

Re
sid

en
t S

et
Siz

e [
MB

]

(b) Memory consumption

Figure 5. Mailbox performance in N:1 communication scenario

identified: libcppa has a steadily increasing curve, Erlang remains
almost constant with only a small increase, and Akka exhibits a
fluctuating curve with a performance degradation on 10 cores, but
it accelerates again on twelve cores.

Figure 4(b) shows the memory consumption during the bench-
mark. Erlang’s actors acquire significantly more memory than all
other implementations, peaking above 3 GB of RAM with an av-
erage of ≈ 1.5 GB. Scala has an average RAM consumption of
0.5 GB, peaking about 1.5 GB. libcppa halves the memory usage
of the Scala implementation.

5.3 Mailbox Performance in N:1 Communication Scenario
Our second benchmark measures the mailbox performance in an
N:1 communication scenario. We used 20 actors sending 1,000,000
messages each. The minimal runtime of this benchmark is the
time the receiving actor needs to process the 20,000,000 messages
and the overhead of passing the messages to the mailbox. More
hardware concurrency leads to higher synchronization between the
sending actors, since the mailbox of the receiving actor acts as
a shared resource. Furthermore, the workers in the thread pool
are synchronized by a job queue in the implementations using a

cooperative scheduling, which can be a concurrency bottleneck as
well if actors perform short tasks and often need to be re-scheduled.

Figure 5(a) visualizes the time needed for the application to
send and process the 20,000,000 messages as a function of avail-
able CPU cores. The ideal behavior is a decreasing curve, which
reaches a global minimum given by the time the receiving actor
needs to consume all messages one by one.

The processing overhead increases significantly for Erlang in
case of more than 10 cores. libcppa attains the best behavior as
it reaches its minimum on 4 cores and then remains stable. Akka
has a steadily increasing curve up to 10 cores, where it remains sta-
ble. The results indicate that our mailbox implementation using the
cached stack algorithm (cf., § 4.2.2) as well as our synchronization
protocol among worker threads scale very well. In fact, we were
not able to evaluate the maximum level of concurrency our imple-
mentation could handle in our setup.

Figure 5(b) shows the resident set size during the benchmark
execution. In this scenario, a low memory usage hints to a perfor-
mance bottleneck, as 20 writers should be able to fill a mailbox
faster than one single reader is able to drain it. libcppa consumes
the most memory, because the writers are faster than the reader.
Akka consumes ≈ 20% less memory than our C++ implementa-

2 4 6 8 1 0 1 2
0

5 0
1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0
4 5 0
5 0 0
5 5 0

Tim
e [

s]

N u m b e r o f C o r e s [#]

 l i b c p p a
 s c a l a
 e r l a n g

(a) Sending and processing time

l i b c p p a s c a l a e r l a n g
0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

Re
sid

en
t S

et
Siz

e [
MB

]

(b) Memory consumption

Figure 6. Performance in a mixed scenario with additional work load

tion, while Erlang needs less than 250 MB of RAM. This outcome
is in accord with the performance benchmark. The lower the run-
time, the higher the memory consumption.

5.4 Mixed Operations Under Work Load
In this benchmark, we consider a realistic use case including a
mixture of operations under severe work load. The benchmark
program creates a simple multi-ring topology with a fixed number
of actors per ring. A token with an initial value of 1,000 is passed
along the ring and decremented each round. A client that receives
the token forwards it to its neighbor and terminates whenever the
value of the token is 0. Each ring consists of 20 actors and is
re-created 20 times. Thus, we continuously create and terminate
actors, which process a total of 1,000,000 messages. The following
pseudo code illustrates the algorithm.

master_loop(Collector , Next):
receive:
{token , 0} => // terminate loop
{token , X} => Next ! {token , X-1}

master_loop(Collector , Next)

master(Worker , Collector):
5 times:
Next = self
49 times: Next = spawn(chain_link , Next)
Next ! {token , 1000}
Worker ! {calc , 28350160440309881}
master_loop(Collector , Next)

Collector ! {master_done}

chain_link(Next):
receive:
{token , N} => Next ! {token , N}

if (N > 0) chain_link(Next)

worker(Collector):
receive:
{calc , X} => Collector ! {result , fact(X)}

We also create one worker per ring that calculates the prime fac-
tors of 28,350,160,440,309,881, i.e., 329,545,133 and 86,028,157,
to add numerical work load. It is worth noting that this operation is
independent of any other actor and does not involve messages. The
prime factors are computed, whenever a ring is (re-)created. The
calculation requires about two seconds in our loop-based C++ im-

plementation. Our tail-recursive Scala implementation of the prime
factorization operates at the same speed, whereas Erlang needs
about three seconds.

Each ring consists of 49 chain_link actors and one master. The
master re-creates the terminated actors 20 times. Each master thus
spawns a total of 980 actors. Additionally, there is one message
collector and one worker per master. The message collector waits
until it receives the result of 400 (20·20) prime factorizations and a
done message from each master. Overall 19,621 actors are created,
but no more than 1,021 actors run concurrently.

Figure 6(a) shows the runtime behaviour as a function of avail-
able CPU cores. An ideal characteristic would halve the runtime
when doubling the number of cores. All implementations exhibit
an almost linear speed-up. For the first time, Akka is faster than
Erlang, though it still does not reach the performance of libcppa.
The performance gap between Erlang and Scala probably results
from our previous observation that its prime factorization is about
50% slower.

Figure 6(b) shows the memory consumption during the mixed
scenario. libcppa has a very constant and thus predictable mem-
ory footprint, while using significantly fewer memory than both
other implementations. Hence, libcppa accounts for the bench-
mark’s characteristics – constant number of actors and messages
on average – as memory is released as soon as possible. Both Akka
and Erlang exhibit a more unpredictable memory usage, which is
not explainable by the benchmark’s characteristics. Akka has an av-
erage memory consumption of≈ 75 MB, and peaks about 300 MB.
Erlang uses slightly less memory, with an average of ≈ 50 MB,
peaking about 175 MB.

5.5 Heterogeneous Computing
Our final benchmark is concerned with heterogeneous computing
that includes the use of GPUs. Our first program computes a fixed
number of images of the Mandelbrot set using heterogeneous hard-
ware components in a distributed system consisting of 8 worker
nodes. The algorithm for calculating the images on a CPU is the
same as in our initial evaluation presented in § 2. Our setup con-
sists of a local network connecting nodes at homogeneous 1 Gbit/s
links.

Figure 7 shows the runtime behaviour as a function of de-
ployeded processing units. The initial situation, i.e., the zero value
on the x-axis, is a setup consisting of 8 worker nodes each using
one processor core. As we go along, we strengthen each worker by

0 1 2 3 4 5 6 7 8
0

1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0
7 0 0 0
8 0 0 0
9 0 0 0

1 0 0 0 0
1 1 0 0 0
1 2 0 0 0
1 3 0 0 0
1 4 0 0 0
1 5 0 0 0

Tim
e [

s]

N o d e s w i t h A d d i t i o n a l P r o c e s s i n g U n i t [#]

 C P U c o r e
 G P U

Figure 7. Sending and processing time in a distributed computa-
tion using heterogeneous hardware ressources

adding one additional processing unit. In the homogeneous setup
(CPU core), we add a second CPU core. In the heterogeneous setup
(GPU), we add a GPU instead. Increasing the total number of CPU
cores linearly scales down the required runtime by a factor of≈ 0.9.
In the heterogeneous setup, adding only one GPU reduces the run-
time to a third. This is, because a GPU outperforms a CPU by an
order of magnitude for computationally intense tasks. Doubling the
number of GPUs reduces the runtime to ≈ 60 %.

Since libcppa wraps the API of OpenCL in order to pro-
vide a higher-level abstraction, the efficiency of the mapping is a
crucial component for the overall system performance. As shown
in § 4.2.6, the spawn_cl function compiles the source code of an
OpenCL kernel to an actor. Users of libcppa need not procure for
OpenCL resources managed by the actor system. To benchmark the
overhead induced by libcppa, we have used an OpenCL program
that multiplies two matrices of equal size. Figure 8 shows the run-
time results as a function of the matrix size for using OpenCL na-
tively and utilizing the OpenCL abstraction of libcppa. The mea-
sured runtime overhead added by libcppa is no more than 0.07 s
with a standard deviation of 0.01 s. Note that this overhead does
not only include the wrapping of OpenCL, but also the startup time
for libcppa and messaging overhead. To estimate the overhead
added by libcppa itself, we have used a series of 10,000 runs for
a libcppa-based program that sends exactly one message to itself
and receives it afterwards. The measured average runtime for this
simple program is 0.0523435 s. Hence, we can estimate that the
runtime overhead of the OpenCL wrapping remains below 0.02 s.

6. Discussion
Object-oriented (OO) programming as found in the dominant pro-
gramming languages today provides abstraction over data by us-
ing encapsulation and dynamic method dispatching. When fac-
ing parallelism, the encapsulation achieved by an OO design un-
folds. All member functions from shared objects must be pro-
tected from parallel access by using locks or semaphores. The caller
now has to know implementation details of a member function,
thus breaking the abstraction. Furthermore, when composing lock-
based, deadlock-free components, the resulting component may
very well deadlock [27]. Alternative approaches to OO program-
ming that use message passing rather than method invocation have
not been widely adopted. Besides, such approaches are closer to the
actor model than to current implementations of the OO paradigm
in mainstream languages. Actors can be viewed as higher-order ob-
jects providing an abstraction over parallelism. The amount of par-

1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0 8 0 0 0 9 0 0 0 1 0 0 0 0
0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0
5 5
6 0

 O p e n C L (n a t i v e)
 l i b c p p a + O p e n C L a c t o r s

Tim
e [

s]

S q u a r e M a t r i x S i z e [#]

Figure 8. Runtime for using OpenCL natively and wrapped by
libcppa to multiply two matrices

allelism in an application is determined by the number of concur-
rently running actors. Hence, an efficient way to implement appli-
cations is to create an actor for each independent task and service.
We have shown that creating actors is a lightweight operation (cf.
§ 5.2) and that communication between actors is built on use an effi-
cient communication layer that scales on multi-processor machines
(cf. § 5.3), as well as in distributed systems (cf. § 2).

Some implementations of the actor model tend to be inefficient
due to excessive context switching, synchronization and data move-
ment. The event-based actor implementation in our software plat-
form avoids most of the context-switching, since the actor behavior
is encoded in message handlers called by resident worker threads.
It further allows the workers to bypass the job queue, whenever an
actor sends a message to a blocked actor and becomes blocked it-
self afterwards. The worker thread then chains invocations of event-
handlers, which drastically reduces data movement, cache misses
and access to the shared job queue.

A central component is our lock-free mailbox implementation
(cf., § 4.2.2). It reduces synchronization overhead between actors
to a minimum and makes message passing as lightweight as pos-
sible. In the N:1 communication scenario, it outperforms all other
implementations by a significant margin.

Only the actor creation benchmark revealed minor flaws of our
implementation, as the runtime increases on more than eight cores.
We want to address this issue by further reducing the amount of
RAM each actor occupies. Concurrent memory allocation severely
slows down program execution. In our software design, we use one
memory allocator per worker thread that allocates and manages
memory chunks. We use this custom allocator for actors as well
as mailbox elements. This optimization strategy improved the per-
formance of our system by 30–50 %. An even more compact actor
implementation would improve the efficiency of our memory man-
agement, thus reducing concurrent memory allocation and improv-
ing scalability. Such a memory-optimized actor implementation is
important to target constraint hardware architectures with only a
few KBs of RAM such as embedded systems.

7. Conclusion and Outlook
This paper presented a software platform for development of native
applications running in distributed, heterogeneous environments.
Our software platform offers (1) a message-oriented API based on
the actor model for developing high-performance, low-latency ap-
plications in C++, (2) an automated approach to generate a message
passing interface for heterogeneous hardware components such as

graphics cards, and (3) a common, high-level message exchange
layer for distributed applications. To best of our knowledge, there
exists no messaging library for a native programming language of-
fering a comparable high-level abstraction for message passing.
Previous attempts to implement the actor model for C++ either lack
important characteristics of an actor system, e.g., network trans-
parency (Theron2), or do not provide a sufficient level of abstrac-
tion to communicate to actors without knowledge of the class defi-
nition of the receiving actor (ACT++[18]), or are bound to vendors
(MS Casablanca [20]) for intentionally limited use. In addition to
traditional features of an actor system, we also provide a publish/-
subscribe layer, to allow for loosely coupled distribution and ren-
dezvous protocols [7].

We have contributed our implementation to the C++ community
[6] and thoroughly evaluated our software platform (cf. § 5). In our
platform, actor communication is distribution-transparent and, as
measurements indicate, sufficiently fast. Our cooperative schedul-
ing is scalable and competes with mature implementations of the
actor model. Since our software platform is implemented in a na-
tive programming language without garbage collector, it uses fewer
memory than comparable approaches based on virtual machines.

Compared to low-level message passing implementations such
as OpenMPI, the tuple-based, dynamic nature of actor communica-
tion causes a higher transmission and message handling overhead.
Still, the communication layer offered by our software platform is
on par with low-level message passing libraries such as OpenMPI.

Our future work currently focuses on supporting embedded
hardware systems. This development aims to provide a high-level
software development platform for distributed systems running on
strictly constraint hardware such as wireless sensor nodes. Our soft-
ware platform would allow for local testing of software compo-
nents, i.e., actors, before distributing the application by binding
each component to an embedded system.

8. Acknowledgements
The authors would like to thank the iNET working group for vivid
discussions and inspiring suggestions as well as the anonymous
reviewers for their constructive and insightful feedback. Funding
by the German Federal Ministry of Education and Research within
the projects SAFEST and ScaleCast is gratefully acknowledged.

References
[1] G. Agha. Actors: A Model Of Concurrent Computation In Distributed

Systems. Technical Report 844, MIT, Cambridge, MA, USA, 1986.

[2] G. Agha, I. A. Mason, S. Smith, and C. Talcott. Towards a Theory
of Actor Computation. In Proceedings of CONCUR, volume 630 of
LNCS, pages 565–579, Heidelberg, 1992. Springer-Verlag.

[3] J. Armstrong. Erlang - A Survey of the Language and its Industrial
Applications. In Proceedings of the symposium on industrial applica-
tions of Prolog (INAP96), pages 16–18. Hino, October 1996.

[4] J. Armstrong. Making Reliable Distributed Systems in the Presence of
Software Errors. PhD thesis, KTH, Sweden, 2003.

[5] S. Bykov, A. Geller, G. Kliot, J. R. Larus, R. Pandya, and J. Thelin.
Orleans: Cloud Computing for Everyone. In Proc. of the 2nd ACM
Symposium on Cloud Computing, SOCC ’11, pages 16:1–16:14, New
York, NY, USA, 2011. ACM.

[6] D. Charousset and T. C. Schmidt. libcppa - Designing an Actor
Semantic for C++11. In Proc. of C++Now, May 2013.

[7] D. Charousset, S. Meiling, T. C. Schmidt, and M. Wählisch. A Middle-
ware for Transparent Group Communication of Globally Distributed
Actors. In Middleware Posters 2011, New York, USA, Dec. 2011.
ACM, DL.

2 See http://www.theron-library.com

[8] J. O. Coplien. Curiously Recurring Template Patterns. C++ Report,
7:24–27, February 1995.

[9] S. Doherty, L. Groves, V. Luchangco, and M. Moir. Formal Verifica-
tion of a Practical Lock-Free Queue Algorithm. In FORTE, volume
3235, pages 97–114. Springer, September 2004.

[10] M. Fouquet, H. Niedermayer, and G. Carle. Cloud Computing for
the Masses. In Proc. of the 1st ACM Workshop on User-provided
networking: challenges and opportunities, U-NET ’09, pages 31–36,
New York, NY, USA, 2009. ACM.

[11] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Performance,
Portable Implementation of the MPI Message Passing Interface Stan-
dard. Parallel Comput., 22(6):789–828, Sept. 1996.

[12] P. Haller and M. Odersky. Scala Actors: Unifying Thread-Based and
Event-Based Programming. Theor. Comput. Sci., 410(2-3):202–220,
2009.

[13] P. B. Hansen. Operating System Principles. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1973. ISBN 0-13-637843-9.

[14] M. Herlihy. Wait-Free Synchronization. ACM Trans. Program. Lang.
Syst., 13(1):124–149, Jan. 1991.

[15] M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural
Support for Lock-Free Data Structures. In Proceedings of the 20th
ISCA, pages 289–300, New York, NY, USA, May 1993. ACM.

[16] C. Hewitt, P. Bishop, and R. Steiger. A Universal Modular ACTOR
Formalism for Artificial Intelligence. In Proceedings of the 3rd IJCAI,
pages 235–245, San Francisco, CA, USA, 1973. Morgan Kaufmann
Publishers Inc.

[17] I.B.M. Corporation. IBM System/370 Extended Architecture, Princi-
ples of Operation. Technical Report SA22-7085, IBM, 1983.

[18] D. G. Kafura and K. H. Lee. Act++: Building a concurrent c++ with
actors. J. Object Oriented Program., 3(1):25–37, Apr. 1990.

[19] S. Meyers and A. Alexandrescu. C++ and the Perils of Double-
Checked Locking. Dr. Dobb’s Journal, July 2004.

[20] Microsoft. Casablanca. http://msdn.microsoft.com/en-us/
devlabs/casablanca.aspx, 2012.

[21] D. G. Murray, E. Yoneki, J. Crowcroft, and S. Hand. The Case for
Crowd Computing. In MobiHeld ’10: Proceedings of the second ACM
SIGCOMM workshop on Networking, systems, and applications on
mobile handhelds, pages 39–44, New York, NY, USA, 2010.

[22] J. H. Nyström, P. W. Trinder, and D. J. King. Evaluating Distributed
Functional Languages for Telecommunications Software. In Proceed-
ings of the 2003 ACM SIGPLAN workshop on Erlang, ERLANG ’03,
pages 1–7, New York, NY, USA, 2003. ACM.

[23] M. Rettig. Retlang. code.google.com/p/retlang, December
2010.

[24] N. Shavit and D. Touitou. Software Transactional Memory. In
Proceedings of the fourteenth annual ACM symposium on PODC,
pages 204–213, New York, NY, USA, 1995. ACM.

[25] S. Srinivasan and A. Mycroft. Kilim: Isolation-Typed Actors for Java.
In Proceedings of the 22nd ECOOP, volume 5142 of LNCS, pages
104–128, Berlin, Heidelberg, 2008. Springer-Verlag.

[26] J. E. Stone, D. Gohara, and G. Shi. OpenCL: A Parallel Programming
Standard for Heterogeneous Computing Systems. IEEE Des. Test, 12
(3):66–73, May 2010.

[27] H. Sutter and J. Larus. Software and the Concurrency Revolution.
Queue, 3(7):54–62, Sept. 2005.

[28] TIOBE Software BV. Programming Community Index. www.tiobe.
com, April 2012.

[29] J. Torrellas, H. S. Lam, and J. L. Hennessy. False Sharing and Spatial
Locality in Multiprocessor Caches. IEEE Trans. Comput., 43(6):651–
663, June 1994.

[30] Typesafe Inc. Akka. akka.io, March 2012.
[31] C. Varela and G. Agha. Programming Dynamically Reconfigurable

Open Systems with SALSA. SIGPLAN Not., 36(12):20–34, December
2001.

[32] T. Veldhuizen. Expression Templates. C++ Report, 7:26–31, 1995.

http://www.theron-library.com
http://msdn.microsoft.com/en-us/devlabs/casablanca.aspx
http://msdn.microsoft.com/en-us/devlabs/casablanca.aspx
code.google.com/p/retlang
www.tiobe.com
www.tiobe.com
akka.io

	1 Introduction
	2 The Case for Actors
	3 Background and Related Work
	3.1 Concurrent Programming and Actors
	3.2 Message Processing
	3.3 Fault Propagation

	4 A Software Platform for Actor Programming in C++
	4.1 Requirements
	4.2 Key Concepts in Design and Implementation
	4.2.1 Copy-On-Write Messaging using Tuples
	4.2.2 Mailbox Algorithm
	4.2.3 Pattern Matching for Tuples using Partial Functions
	4.2.4 Actor Semantic as Internal Domain-Specific Language for C++
	4.2.5 Cooperative Scheduling of Actors
	4.2.6 Transparent Integration of Heterogeneous Hardware Components
	4.2.7 Message Processing

	5 Performance Evaluation
	5.1 Basic Measurement Setup and Metrics
	5.2 Overhead of Actor Creation
	5.3 Mailbox Performance in N:1 Communication Scenario
	5.4 Mixed Operations Under Work Load
	5.5 Heterogeneous Computing

	6 Discussion
	7 Conclusion and Outlook
	8 Acknowledgements

