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Abstract—Due to the increasing bandwidth and timing re-
quirements, next generation communication backbones in cars
will most likely base on real-time Ethernet variants that satisfy
the demands of the new automotive applications. The upcom-
ing IEEE 802.1Qbv standard shows communication approaches
based on coordinated time devision multiple access (TDMA) to be
good candidates for providing communication with determinism
and highly precise timing. Implementing time-triggered archi-
tectures in software requires significant development effort and
computational power.

This paper shows a scalable HW/SW co-design approach for
new real-time Ethernet controllers based on the partitioning into
communication and application components. The tasks required
for communication are divided: Time-critical and computation-
ally intensive parts are realised in dedicated hardware modules
allowing the attached CPU to fulfil the timing requirements of
the automotive application without interference. The evaluation
using a Field Programmable Gate Array (FPGA) based pro-
totype implementation shows that the precision for the time-
triggered transmission and the performance of the proposed
implementation of the required synchronisation protocols satisfies
the requirements of applications in the automotive domain.

I. INTRODUCTION

Time-triggered Ethernet variants, such as Profinet [1],
TTEthernet (AS6802) [2], or the upcoming IEEE 802.1Qbv
[3] extension defined by the Time-Sensitive Networking (TSN)
Task Group, that operate using a coordinated time division
multiple access (TDMA) policy, become increasingly popu-
lar for time-critical applications. Due to their deterministic
behaviour, low latency and jitter, they open new application
domains for Ethernet in the automotive domain. In particular
for advanced driver assistance systems (ADAS) that require
end-to-end latency down to 100 µs, together with low jitter.

Due to various mixed critical applications, standard best-
effort (BE) and real-time Ethernet traffic share the same
physical infrastructure within these networks. With network
speeds of currently up to 1Gbit/s the traffic shaping at the
distributed nodes as well as the interconnecting switches,
requires scheduling with highest precision that is hard to
achieve using a software-only communication stack. Further,
software implementations utilise significant computation time,
for example for the classification of incoming packets.

In the automotive domain, applications typically operate
asynchronously on the electronic control units (ECU) and

cannot provide the precision required. Today’s automotive
architectures, such as present AUTOSAR [4] versions, do
not provide sufficient scheduling mechanisms to synchronise
time-triggered transmission and reception with the application
tasks. Thus, controllers for legacys fieldbusses using the time-
triggered paradigm, e.g. FlexRay [5], provide a co-processor or
hardware support for the precise timing. For real-time Ethernet
such advanced Ethernet controllers are currently unavailable.

Cost and energy efficiency are major target goals for the
development of electronic components in the automotive do-
main. Thus, the design must flexibly adapt to different use-
cases and applications with different levels of timing require-
ments. This degree of freedom can be well achieved with
hardware/software co-design, where the partitioning between
hardware modules and features implemented in software can
be variably chosen and deployed. In addition the system can
be specifically configured for the applications use-case and
fine tuned to comply with its requirements

This paper contributes a scalable approach for the hard-
ware/software co-design of an Ethernet controller that sup-
ports time-triggered communication and synchronisation while
using a legacy Ethernet MAC. Different hardware/software
partitioning designs are analysed and discussed concerning
hardware resources and timing advantages. It is shown, how
the careful integration of hardware support reduces load of the
attached microcontroller.

The evaluation of the prototype implementation using a
Xilinx Virtex-6 FPGA shows the achievable time-triggered
precision, even when using a legacy (non-real-time) Ethernet
MAC. Due to the hardware support for the synchronous
transmission, ultra low jitter can be realised. In comparison
with a software only implementation running on an ARM-9
microcontroller, the processors utilisation can be significantly
reduced. This saved computation time can be used by the de-
veloper for more complex applications and advanced features.

The paper is organised as follows: In Section II, we in-
troduce the concepts of time-triggered Ethernet and present
previous and related work. Section III presents the concept and
architecture. In Section IV, details from the implementation as
well as the evaluation results are shown and discussed. Finally,
Section V concludes the work and gives an outlook.
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Fig. 1. Prioritising and time-triggered media access in time-triggered Ethernet

II. BACKGROUND & RELATED WORK

Time-triggered real-time Ethernet extensions such as
TTEthernet (AS6802) [2] or IEEE 802.1Qbv [3] operate ac-
cording to a coordinated time division multiple access (TDMA)
scheme. Messages are transferred at dedicated offline config-
ured time slots in a globally synchronised cycle. This TDMA
based media access strategy allows for a completely determin-
istic transmission, without congestion at outgoing line-cards
and thus with predictable latency and jitter. For synchronous
operation the local time of all network participants is adjusted
using a synchronisation protocol.

Besides the time-triggered message class, two event-
triggered message classes are defined in TTEthernet: Rate-
constrained (RC) traffic is used for the transmission of mes-
sages with less rigid timing requirements. It limits the streams
bandwidth and prioritises according to the strategy of the
ARINC-664 (AFDX) protocol [6].

The third class is best-effort (BE) traffic, that conforms to
standard Ethernet frames and is transmitted with the lowest
priority. It allows the integration of hosts that do not imple-
ment the real-time protocol and remain unsynchronised. These
nodes communicate using only best-effort frames. In Figure 1
a typical example of the media access and prioritisation for
messages of the three different traffic classes is shown.

All time-triggered Ethernet protocols share their require-
ment for high precision clock synchronisation and scheduled
frame transmission. It is challenging to achieve this level of
precision without dedicated hardware support, as an operating
system with support for strict priority scheduling and very fast
context switches is required [7]. Time-triggered fieldbusses,
such as FlexRay [5], have similar requirements regarding the
bus access. To overcome the lack of real-time scheduling
support in the application processor, typically a co-processor
manages the time-critical bus access. In this architecture, the
host controller is only responsible for filling buffers, which
define the asynchronous interface to the co-processor, all time-
critical bus access related tasks are executed by the dedicated
FlexRay controller. As off-the-shelve Ethernet controllers are
not designed for scheduled time-triggered communication,
up to now a similar functionality for real-time Ethernet is
unavailable.

Due to the early state of IEEE 802.1Qbv the prototype im-
plementation uses the time-triggered traffic class of AS6802.
Nevertheless, the nature of time-triggered traffic will allow

to transfer the results to an upcoming IEEE standard with
scheduled traffic.

Previous & Related Work

Steinhammer and Ademaj [8] provide a reference design for
a time-triggered Ethernet (TTEthernet) controller in hardware.
In their implementation timestamping is realised in hardware.
In contrast to this work, the synchronisation is realised on
an attached CPU. Weibel [9] shows hardware timestamping
with an additional PHY while using legacy hardware at the
receiver. The downside of this approach is the unguaranteed
path symmetry, resulting in lower precision.

In previous work, the challenges of a pure software stack for
time-triggered communication on microcontrollers was shown
[7]. The implementation based on a system-on-chip (SoC)
design with hardware timestamping uses a fixed-point timer
with a resolution of 10 ns for the scheduling. Due to the
software based approach a very high CPU utilisation (up to
90%) was measured in worst-case on the 200MHz test system.
This high CPU utilisation shows the demand for a real-time
Ethernet co-processor to hand over computationally intensive
parts of the software stack.

III. CONCEPT & ARCHITECTURE

The concept shown describes a hardware extension for time-
triggered Ethernet, that allows to run software applications
completely independent from the time-triggered protocol. The
hardware/software co-design approach allows certain parts,
such as the synchronisation protocol, to scale with the timing
requirements by selecting tasks to run completely in hardware,
completely in software, or any combination of both. The
concept does not require the development of a special Ethernet
MAC. A legacy MAC that offers a 1-to-1 connection to receive
and send Ethernet-Frames can be attached. Such Ethernet
MACs are offered e.g. by Xilinx and Altera. The architecture
is optimised for the Xilinx XPS LL TEMAC MAC [10].

Figure 2 shows an overview over the architecture. It contains
an application CPU, RX- and TX-buffers, a timestamping unit,
a fixedpoint timer and the legacy MAC. A switch module
controls the classification of incoming packets and a guard
controls the outgoing traffic shaping. All modules are inter-
connected using a CPU bus. For the physical media access an
Ethernet PHY (e.g. for automotive Ethernet [11]) is attached.

A. Time-Triggered Transmission

In the architecture time-triggered transmission is done using
hardware. In contrast to software, a hardware module can
implement tasks nearly jitter free.

In the RX-buffer module, a send buffer can be individually
created for each traffic class and critical traffic (CT) ID. This
allows to individually choose the buffer (memory size, double-
or queued buffer) according to the application requirements.
The send-buffers are connected through a guard module with
the 1-to-1 interface of the Ethernet MAC.

The major challenge of this design is, that the MAC has
its own transmission buffer. If the MAC would be allowed to
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Fig. 2. Overview over the architecture of the FPGA implementation

queue up frames it could be in busy state when a time-triggered
message has to be sent and would delay the message. The
simplest way to solve this problem is to prohibit media access
to messages for all event-triggered send buffers right before a
time-triggered message is sent. The prohibit time must be as
long as the serialisation time of the transmission buffer inside
the MAC. With this solution a huge amount of bandwidth
would be lost.

To overcome this problem, a so called guard module is
placed between the send-buffers and the MAC. The guard
knows the schedule of all time-triggered messages and makes
sure that TT messages will never be delayed. If an event-
triggered messages (e.g. best-effort (BE) message) is pending,
the BE buffer module reports the size of the message to the
guard. Based on the size, the bandwidth on the media and
the scheduling, the guard calculates whether the BE message
would collide with a time-triggered transmission or could
finish its transmission in time.

Example: The Ethernet speed is 100Mbit/s. At the time
1000 ns [t now] the BE-buffer asks the guard for permission
to send a message with a size of 100B. The next time-triggered
message is scheduled at 10 000 ns [t next message]. The se-
rialisation time of 100B at 100Mbit/s is 8000 ns [t serialize].
The inter-frame-gap at a 100Mbit/s Ethernet is 960 ns [t ifg].

If condition 1 is true, the packet can be sent:

t now + t serialize+ t ifg <t next message

1000ns+ 8000ns+ 960ns <10000ns

9960ns <10000ns

(1)

In this example the condition is true.
The guard introduces a further challenge: The bus speed

between the hardware buffers and the Ethernet linespeed are

usually different. In our case the bus speed is 3.2Gbit/s.
Though, the MACs transmission buffer can be filled much
faster as it is emptied. Therefore, a low priority frame could
be sent fast to the MAC and if there is another frame to be sent,
the condition 1 would still be true, although the transmission
buffer inside the MAC is still filled. The result could be a
delayed time-triggered message.

To solve this problem the guard has to stop giving sending
permission to all buffers during the serialisation time of the last
frame forwarded to the MAC. This compensates the bandwidth
differences of the physical media and the bus. The advantage
of the guard concept is, that no Ethernet bandwidth is lost,
while the CPU can asynchronously put Ethernet frames in the
buffers. The hardware handles time-triggered transmission. All
operations of the guard are line-operations (no multiplier or
divider is required). Though, the hardware consumption is low.

B. Packet Reception & Timestamping

The precision of the time synchronisation depends on the
accuracy of the reception timestamp. For highest precision,
the timestamping must be realised between PHY and MAC.
In this architecture the PHY data valid (PHY DV) signal of
the MII/GMII interface is used to record the reception time.
When the frame leaves the MAC to the internal hardware
modules, this timestamp is injected into the frame header. A
check mechanism that uses a receive complete interrupt from
the MAC is implemented to observe frames dropped due to a
bad checksum or an overloaded buffer in the MAC. A packet
switch is connected at the timestamp injector. It classifies and
forwards frames to the different hardware modules based on
the timestamp, frame header and type field and is implemented
as a cut-through switch to minimise the delay. The switch
component significantly reduces the CPU load in comparison
with a software only stack: During a traffic burst, low priority
frames may be dropped, e.g. when the buffers are full. At
the same time, time-triggered frames must be reliably stored.
Without the switch module, each frame has to be analysed in
software after reception to prevent packet loss, resulting in an
enormous number of context switches in the CPU.

C. Clock Synchronisation

Several design approaches with variable scalability exist
for implementing the clock synchronisation protocol [2]. A
first configuration implements the whole protocol in hardware,
including the rate correction. The approach allows to run
the CPU asynchronously with the rest of the system and
requires no computation time of the microprocessor for the
synchronisation. Further it allows advanced powersaving by
sending the CPU to sleep without loosing synchronisation.
This approach requires most hardware resources.

The second design implements most of the synchronisation
protocol in software, utilising only hardware timestamping.
The accuracy is comparable with the hardware implementation
while the hardware consumption is low. In this design, the
CPU utilisation is high.



TABLE I
HARDWARE CONSUMPTION OF IMPORTANT MODULES

LUT Register
Hardware module [#] [%] [#] [%]
Switch 100 0.21 179 0.19
Timestamp injector 109 0.23 72 0.08
Fixed point timer (55 Bit) 55 0.12 55 0.06
Synchronisation client 1100 2.36 736 0.79
Guard 407 0.87 155 0.17
Queued Buffer 207 0.44 360 0.39

The third example design is a trade-off between both con-
cepts: A hardware module receives the synchronisation frames
and extracts the parts required for the synchronisation process.
In the AS6802 protocol it is necessary to count bits set to 1 in a
32 bit wide vector field inside the synchronisation frame. This
field is called membership new vector. Such calculations can
be efficiently done in hardware to reduce the CPU utilisation.

As shown in table I the Hardware implementation of the
synchronisation protocol requires most of the hardware re-
sources, though a trade-off solution is worth considering. The
co-design approach allows to flexibly choose the partitioning
in hardware and software modules.

For all partitioning schemes rate-correction is implemented
using a fixedpoint timer with 32 bit before and 24 bit after the
fixedpoint. On startup 1.0 is added every clock tick. After the
offset-correction, a new addup is calculated, allowing to adjust
the speed of the timer to the synchronised clock.

IV. IMPLEMENTATION & EVALUATION RESULTS

The prototype implementation used for the architecture
evaluation is based on the ML605 board from Xilinx with a
Virtex-6 FPGA. Table I gives an overview over the hardware
consumption of important modules.

A. Time-Triggered Transmission

The guard module was implemented as a multiplexer that
decides based on current time and the configured scheduling of
messages. Our evaluation shows that the presented architecture
is able to schedule time-triggered frames very close to each
other. The implementation requires only the inter-frame-gap
between the frames, no additional management overhead is
required. The evaluation shows that due to the guard module
no time-triggered frame is delayed by an event-triggered frame
with lower priority.

Figure 3 shows the jitter of the scheduled time-triggered
messages. To avoid measurement inaccuracy due to rate-
correction the jitter was measured with the clock synchroni-
sation disabled. The graph plotting the jitter of the interarrival
time over a period of 80 cycles shows a maximum jitter of
80 ns, with accumulations from 70 ns to 80 ns and 0 ns to 10 ns
marked in gray. We traced the jitter back to the legacy Ethernet
MAC, consequential the result can be further improved using
a tailored MAC module. Compared with the precision of the
software implementation (approx. 1 µs jitter) implemented in
previous work [7], the timing accuracy could be improved by
10 times with the hardware co-processor.
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Fig. 3. Jitter of time-triggered messages (measured using interarrival time)

B. Packet Reception & Timestamping

The PHY DV (PHY data valid) signal from the MII in-
terface triggers the Timestamp Injector module to timestamp
the receipted frame. This signal jitters by approximately 10 ns
and is observed 390 ns prior to the deserialisation of first bit
of the destination MAC address. The timestamps are stored in
a first-in-first-out (FIFO) buffer, parallel to the MAC. To keep
the timestamp FIFO synchronous with the frame FIFO, the
receive complete interrupt from the MAC is observed to drop
timestamps of frames that are invalidated in the MAC (e.g.
due to the checksum). The Timestamp Injector (see Figure 2)
works on the fly, delaying incoming frames only for 4 clock
ticks (40 ns).

The Switch module is implemented as a cut-through switch
and causes a delay of 6 additional clock ticks (60 ns). The for-
warding decisions are freely programmable based on the MAC
addresses, Ethernet-Type field, reception timestamp, current
time, configured time-triggered scheduling and utilisation of
the RX-buffer. With this set of conditions real-time messages
that are received out of schedule can be discarded to prevent
interrupts of corrupted frames at the host CPU. Further, unused
traffic classes, such as best-effort traffic, can be completely
disabled to only allow interrupts of real-time traffic in the
CPU. In a software-only stack, packet classification and re-
ception causes high CPU utilisation on heavily saturated links
(up to 90% on a ARM-9 [7]), because every received frame
has to be immediately analysed in software. The hardware
architecture presented in this paper provides interrupts for each
traffic class. Based on these configurable interrupts, the CPU
can now prioritise the processing of incoming mixed-critical
frames to work most efficiently.

C. Clock Synchronisation

The synchronisation [2] is implemented completely in hard-
ware. In addition a rate-correction module is implemented. The
rate correction is triggered directly after the offset correction
of the AS6802 algorithm.
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Protocol

The measurement setup is configured with a synchronisation
master that sends synchronisation frames with a cycle of 1ms
and a jitter of approximately 400 ns. To show the fast reaction
of the synchronisation, after 8 cycles a sudden clock change
(5000 ppm) at the master was emulated. Figure 4 shows the
behaviour of the synchronisation client. The client is able to
adapt to the speed of the master clock within one cycle.

Based on the offset correction value, the new addup value
for the fixedpoint timer is calculated:

Example: The cycle duration is 3ms (3 000 000 ns)
[t cycle duration]. The offset correction is 30 µs (−30 000 ns)
[t offset correction]. The current addup in the fixpedpoint
timer is 1.0 [addup].

addup = addup+ (
t cycle duration

t offset correction
) (2)

For a precise result, the sum in equation 2 must be replaced
by a multiplication. As the multiplication requires significant
hardware resources the equation was approximated using the
sum. As the addup is usually very close to 1.0 and the rate
correction is usually lower than one percent of the cycle
duration, the arithmetical error between multiplication and sum
is very low.

The rate-correction allows the synchronisation client to
adjust its clock very fast. Consequently, the offset correction
is very low. A high offset correction indicates that at the end
of the cycle the clocks have a high divergence. With a high
divergence, large time windows for time-triggered messages
are required, wasting the available bandwidth. Hence the
performance of the clock rate-correction can save a significant
amount of bandwidth.

V. CONCLUSION & OUTLOOK

Specialised hardware extensions for standard Ethernet con-
trollers can significantly improve the performance of real-
time Ethernet protocols. Especially mixed-critical applications
with synchronous time-triggered and asynchronous event-
triggered traffic can profit from reduced CPU load and less

software complexity. The presented architecture shows a hard-
ware/software co-design concept for a time-triggered-ready
Ethernet controller that is attachable to standard legacy Ether-
net MACs. The architecture is configurable to scale with the
desired application. The evaluation of the prototype implemen-
tation using a Virtex-6 FPGA shows a significant performance
gain compared with software-only communication stacks. The
precision of time-triggered frames can be improved by over
10 times. The rate-correction allows to adapt to leaps in the
clock speed in only 1 cycle.

To reduce development effort, the implementation uses
FPGA internal memory for all buffers. This is only possible
on expensive FPGAs with significant hardware resources. In
future work we plan on using external memory, to reduce
hardware costs without significant conceptual changes. Further
we will implement other traffic classes such as the credit based
shaping (CBS) from the IEEE 802.3Qav standard to allow for
mixed-critical applications with different traffic classes and
define interfaces to support the synchronisation of applications
with the global schedule to further reduce jitter and improve
the real-time performance of the implementation.
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