
Locality-Guided Scheduling in CAF
Sebastian Wölke

Dept. Computer Science
Hamburg University of Applied Sciences

Germany
Sebastian.woelke@haw-hamburg.de

Raphael Hiesgen
Dept. Computer Science

Hamburg University of Applied Sciences
Germany

raphael.hiesgen@haw-hamburg.de

Dominik Charousset
Dept. Computer Science

Hamburg University of Applied Sciences
Germany

dominik.charousset@haw-hamburg.de

Thomas C. Schmidt
Dept. Computer Science

Hamburg University of Applied Sciences
Germany

t.schmidt@haw-hamburg.de

Abstract
The C++ Actor Framework (CAF) was designed for using
multiple, exchangeable schedulers with a default choice of
random work stealing (RWS) for load-balancing. RWS is
excellently scalable, and by choosing a random victim sched-
uling is kept simple with minimal information required. On
the downside, it ignores data locality and misses opportuni-
ties to improve the application performance.
In this paper, we contribute a locality-guided scheduling

that exploits knowledge about the host system to adapt run-
time deployment and thereby improves the performance of
actor based applications. We implement and thoroughly ana-
lyze a CAF scheduler which considers the trade-off between
communication locality and execution locality. The former de-
scribes the locality of communicating actors, while the latter
the locality between a worker, which executes an actor, and
the location of its data. Extensive performance evaluations
show a performance gain for data intensive application of
up to 25% on a 64 core NUMA machine.

CCSConcepts •Computingmethodologies→Concur-
rent programming languages; • Software and its engi-
neering → Scheduling; Software performance; Multi-
processing / multiprogramming / multitasking; • Informa-
tion systems→ Data layout;

Keywords Actor Model, Scheduling, Data Locality, NUMA
ACM Reference Format:
SebastianWölke, Raphael Hiesgen, Dominik Charousset, and Thomas
C. Schmidt. 2017. Locality-Guided Scheduling in CAF. In Proceedings
of 7th ACM SIGPLAN International Workshop on Programming Based
on Actors, Agents, and Decentralized Control (AGERE’17). ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3141834.3141836

1 Introduction
Concurrent programming becomes continuously more im-
portant as the number of cores per CPUs increases while
AGERE’17, October 23, 2017, Vancouver, Canada
2017. ACM ISBN 978-1-4503-5516-2/17/10. . . $15.00
https://doi.org/10.1145/3141834.3141836

single core performance stagnates. Fully taking advantage of
multicore systems requires special care from programmers
to coordinate computations across multiple processing units.
A powerful computation model that overcomes these obsta-
cles and addresses concurrency problems like low level race
conditions and deadlocks is the actor model [11]. Actors are
lightweight, independent, and isolated entities that solely
interact via asynchronous message passing and allow for
scaling applications to many cores.
The C++ Actor Framework (CAF) [5, 6] is an implemen-

tation of the actor model. Written in the C++11 standard,
the framework provides native program execution as well
as a high level of abstraction for writing concurrent and
distributed applications with a focus on scalability. CAF is
designed with a modular architecture that allows developers
to extend or exchange components such as the scheduler.

The scheduler of an actor system is a performance critical
component. Leaving it ill-configured or choosing an unfit
scheduling strategy can slow down applications when CPUs
are left idle and work is not balanced across the available
cores efficiently. CAF uses random work stealing (RWS) [4]
by default, a decentralized scheduling approach with ex-
cellent scalability. An RWS scheduler deploys a number of
workers, each of which owns a job queue and when it drains
steals from a random victim.
The memory architecture of modern processors is struc-

tured hierarchically. This leaves CPUs with inhomogeneous
performance characteristics depending on the memory re-
gion they access. Multiple levels of caches and a non-uniform
memory access (NUMA) architecture are introduced to com-
pensate for these conditions. Extending a scheduler to take
data locality into account can improve the performance of ap-
plications that utilize heterogeneous memory architectures.

In this work, we present a locality-guided scheduling (LGS)
approach that exploits knowledge about the memory archi-
tecture to improve the performance of actor-based applica-
tions. For this purpose, LGS considers communication locality
(CL) [15], the locality of communicating actors, and execution
locality (EL) [17], the locality between a worker and the data

AGERE’17, October 23, 2017, Vancouver, Canada Wölke et al.

of the actor it executes. Locality describes the arrangement
of entities and data over CPUs, caches, and memory banks.
We devise a combination of weighted work stealing and actor
pinning that enables LGS to find a trade-off between the two.

The remainder of this paper is structured as follows. Sec-
tion 2 discusses scheduling challenges and design constrains
along with related work. Section 3 describes locality-guided
scheduling in detail, which is evaluated in Section 4. Finally,
Section 5 concludes and gives an outlook to future work.

2 Challenges of a Locality-Aware
Scheduling and Related Work

Concurrent software consists of chunks that can be executed
in parallel. In the actor model, these chunks construct a dy-
namic communication network consisting of a varying num-
ber of actors. A scheduler assigns these actors (work items)
to a pre-allocated number of workers distributed across pro-
cessing units (PUs). Since current processing hardware runs
much faster than data can be retrieved from main memory,
the performance of an actor critically depends on the amount
of data it processes and its memory access pattern. To re-
duce waiting times for data delivery, modern hardware is
equipped with multiple levels of caches which are preloaded
and temporally store data for future use. The first level (L1)
caches are often tightly coupled to specific PUs and on par
in speed but small. Additional cache levels are larger, slower
and often shared between a subset of PUs.

Modernmulticore systems usemultiplememory controllers
in a non-uniform memory access (NUMA) architecture [10].
Bundling PUs together with memory banks into NUMA
nodes allows commodity hardware to scale linearly with the
number of available PUs as long as the executed software
threads work on distinct memory regions. NUMA-nodes are
connected via links such that each PU can transparently
access the memory of other nodes—although with varying
access times. The more hops are required to access another
NUMA node, the slower memory access becomes. Load on
links along the path can further slow down memory access
time. An actor framework must become aware of memory
heterogeneity and adapt to access locality and caching to
efficiently cope with these hardware characteristics [8].

2.1 Scheduling Constraints
A scheduler for a user-space actor system such as imple-
mented in CAF—the C++ Actor Framework [5, 6]—is con-
strained in multiple dimensions and requires careful consid-
eration of trade-offs between conflicting goals.

When scheduling actors in such an environment the run-
time system has no a priori knowledge of the application be-
havior and thus must implement an approach that performs
well for a large number of versatile use cases for actors.

The general aim of scheduling optimizations is to mini-
mize the overall runtime of an application which is called

makespan in the context of scheduling. Finding the best
scheduling decision is a well-known optimization problem
called the Job Shop Scheduling Problem [2]. It describes the
challenge assigning a number of work items of varying exe-
cution times to a number of PUs. Finding the optimal solu-
tion is an NP-hard, offline problem. Information such as the
number of work items, their dependencies, and individual
execution times are provided upfront when solving an offline
problem. In contrast, the CAF scheduler attempts to solve an
online problem where work items are generated dynamically
and no estimates for individual execution times exist.

Prioritizing performance-critical work items such as items
that have many dependencies to future work is a strategy to
reduce the makespan [21]. This requires knowledge about
the application behavior ahead of time. While this would be
possible in the presence of a deterministic execution model,
actor systems are non-deterministic [14]. This renders the
approach based on makespan impractical.

Work items can either be scheduled in a preemptive or co-
operative fashion. A preemptive scheduler can interrupt its
work items during execution, e.g., to reschedule them after
a defined period of time or when priorities change. This can
be used to protect work items from starvation or to enable
fair sharing of CPU time. In contrast, a cooperative sched-
uler waits until work items voluntarily yield control. This
usually reduces the number of context switches and causes
less overhead than a preemptive scheduler at the price of
possibly unfair resource utilization. A preemptive scheduler
can interrupt work items either on the operating system
level or within a virtual machine in user space. Designed as a
native library that runs in user space, CAF remains restricted
to cooperative scheduling.

2.2 Problems of Locality
A scheduler can optimize the communication effort between
actors, called communication locality (CL) [15], or the efforts
of a PU of accessing the data by its executing actor, known as
execution locality (EL) [17]. Note that both locality aspects
are not restricted to actor parallelism but exist for task and
thread parallelism as well. Here, CL occurs indirectly, e.g.,
when passing on a result from one task to the next one. CL
influences the performance of inter-actor message exchange.
In the best case, communication partners are executed on
the same PU where they may share data stored in L1-cache.
In the worst case, the actors are located at different NUMA-
nodes and data must be accessed remotely.
Communication with memory-mapped I/O devices is af-

fected by CL similarly to actor-to-actor communication as
devices are connected to specific NUMA-nodes. Exchanging
many or large messages between two tightly-coupled actors
performs best when scheduling both actors to the same PU.

EL quantifies the time required to access state of individual
actors. Executing an actor on the same NUMA node where
its state is allocated minimizes memory access times. Hence,

Locality-Guided Scheduling in CAF AGERE’17, October 23, 2017, Vancouver, Canada

keeping actors on or close to their initial NUMA node can
be beneficial.

CL and ELmay conflict. An example are two data-intensive
actors that are located on different NUMA-nodes and fre-
quently exchange messages. The scheduler could optimize
the CL by running both actors on the same PU. However,
this would degrade EL of one of the actors because it has to
access its data remotely. On the other hand, keeping each
actor close to its state would result in a poor communica-
tion locality. An optimal strategy would have to analyze the
trade-off between the respective memory access character-
istics and the communication overhead. CAF cannot solve
this challenge without support of the application developer,
as the runtime environment does not have knowledge about
the context of messages. For example, a message might only
contain a pointer and look small, but reference a large data
structure to be processed by the recipient. Consequently, we
need to consider different metrics.
CAF can adjusted CL and EL by scheduling decisions at

two opportunities: (1) a worker finished its job and is looking
for new work, (2) an idle actor receives a message.
Work-stealing is a decentralized scheduling algorithm

where each worker has its own job queue. Once the queue of
a worker is drained, it picks another worker and tries to steal
a work item from it. The random work-stealing [4] scheduler
in CAF handles these situations as follows. When looking
for new work,a victim is chosen at random among all other
workers. Although very simple, this strategie ignores data
locality and misses opportunities to improve the application
performance.
An actor without a message in its mailbox is considered

idle and its absent from all job queues. On message receipt,
such an actor is scheduled at the worker of the sender. This
maximizes CL at the cost of EL. As a result, an actor which
relies on a large data set may be at a significant disadvantage
when moved away.

2.3 Related Work
Work-stealing is a widely used for scheduling actors or tasks
for example by OpenMP [16], Erlang [3], Akka [22], the Pony
Language [7] and CAF.

Random work stealing (RWS) [4] scales well by following
a distributed approach, it is stable [20] because it requires
little overhead if the system is under high load, and the
required information is limited to the number of victims.
RWS was evaluated as a load balancing strategy between
clusters connected over a wide area network (WAN) [23].
Although it performs well within a cluster, stealing work
from a remote machine over a WAN link is problematic as
the network introduces significant latencies. Additionally,
stealing from remote cluster members is much more likely
due to the (uniform) randomness when choosing a victim.

We experience a similar problemwithin a NUMAmachine.
Here, work is unnecessarily stolen from other NUMA-nodes

which results in poor execution locality (EL). Previous work
provides multiple improvements to compensate for high
network delays and to reduce the bandwidth consumption
[23]. However, none of these solutions are feasible for a
NUMA-aware scheduler because they hide high network
delays by prefetching mechanisms but do not consider the
problem of data locality.
Scheduling algorithm such as work-sharing or random

work-pushing [20] have scalability problems and no advan-
tage for CAF. A work-sharing scheduler has a centralized
job queue. Work items are enqueued at the tail and workers
dequeue them from the head and execute them. This can
cause contention due to the synchronization requirements.
In contrast, random work-pushing is a distributed approach
similar to RWS. Each worker has its own job queue. Once
the amount of jobs in a queue exceeds a threshold, its worker
pushes surplus jobs to another random worker as a proactive
procedure. This algorithm balances the size of all queues and
thus improves fairness in preemptive approaches. However,
it is unstable since high load on all PUs leads to increasing
and unsuccessful push attempts that degrade performance.
There are several approaches to work-stealing that con-

sider data locality. Acar et al. [1] analyzed cache misses
and proposed a locality-guided work-stealing algorithm for
threads. They explain, that a thread should preferably be ex-
ecuted by a single PU to reduce the number of cache misses.
This can be achieved by assigning thread an affinity for a
specific PU and equipping workers with a priority-aware
queue. Threads are scheduled twice, once with a normal pri-
ority at the current worker and once with a high priority at
the affinity worker. Hence, a thread can be in two different
job queues and it must be ensured that it is only executed
once. This approach can be adapted to actors by giving actors
an affinity for a worker. A drawback is the synchronization
between workers to avoid repeated execution of the same
job, which is a costlier for actors than for threads due to the
much higher quantity of actors.
In hierarchical scheduling, work-stealing is composed

with work-sharing to exploit shared caches and improve
the data locality in NUMA-systems [16]. PUs that share a L2
or L3-cache are grouped together and use work-sharing to
balance their workload. Once the shared queue is drained,
workers try to steal items from other groups. Each steal
attempt tries to acquire one item for each member of the
group in order to minimize communication. This approach
increases the data locality by reducing the number of remote
steals and efficiently utilizes shared caches.
Class-based scheduling categorizes task based on their

memory footprint [24]. In this approach, workers are equipped
with a dedicated and a shared job queue. Tasks with a high
memory footprint are added to the former queue and cannot
be stolen while tasks that can be stolen at a low cost are
added to the latter. The queue for a newly created is chosen
based on factors like data size and the expected execution

AGERE’17, October 23, 2017, Vancouver, Canada Wölke et al.

time. This algorithm is unsuited for CAF because memory
footprints of actors and messages are opaque to the runtime
system.
Quintin et al. [18] propose a probabilistic approach to

increase the data locality of RWS, called Probabilistic Work
Stealing (PWS). It works similar to RWS but the probability
to become a victim is proportional to the inverse of the
distance to the thief. This increases the data locality because
the chance to become a victim increases with proximity.
Although PWS was designed with a computer network in
mind, the concept can be applied to a NUMA-system. A static
description of the memory architecture would be enough
to calculate all required information during startup. This is
a desirable property as it minimizes the runtime overhead
for choosing a victim. Furthermore, involvement from an
application developer is not required.
The actor communication patter of hubs and hub affinity

groups was introduced by Francesquini et al. [9] in the con-
text of Erlang applications. To avoid any confusion with the
Erlang terminology, we use the term actor when we refer
to an Erlang process and we use the term worker for an
Erlang scheduler. All proposed improvements related to this
communication pattern focus on the communication locality
(CL) because Erlang actors are migrated and always have the
optimal execution locality (EL). A hub actor communicates
with many different actors while actors in a hub affinity
group mostly communicate with a specific hub. Placing a
hub and its affinity group in close proximity improves the
CL of the system.

To prevent the Erlang load balancer from distributing hubs
and their affinity groups across distant PUs and thus decreas-
ing the CL, the scheduling algorithm is divided into phases:
Initial Actor Placement and Hierarchical Load-Balancing and
Work-Stealing. In the first phase newly spawned actors are
grouped and placed at a specific worker. On spawning, the
application programmer gives the Erlang virtual machine
(VM) a hint whether the actor is a hub or a regular actor.
While a hub receives its own affinity group, a regular actor
inherits the affinity group of its parent. The VM spreads hubs
over the available workers, e.g., in a round robin fashion,
and places regular actors close to their hub. If an actor is
executed for the first time, it stores the current NUMA-node
as its home-node to provide the scheduler with its preferred
location in the future.
Using these information, the periodic load-balancer tries

to migrate actors back to their home-node at first. It increases
the migration radius if this is not sufficient to balance the
system, first within and then across NUMA-nodes. Work-
stealing in Erlang works similar to PWS [18] algorithm. The
algorithm takes the memory architecture into account by
preferring direct neighbors as a victim over distant ones.

Although the Erlang VM differs in many ways from CAF,
the described concepts can be adapted. In contrast to Erlang,

CAF actors are not migrated between workers. Hence, stor-
ing the home-node and considering it on scheduling can lead
to a big performance boost even without the concept of hubs.
A periodic load balancer could improve the performance of
CAF based applications by reducing the number of steals.
However, it is much more important for Erlang which im-
plements preemptive scheduling and balancing work queue
sizes is crucial for fair allocation of hardware resources.

3 Locality-guided Scheduling
We now present our locality-guided scheduling strategy for
multicore systems with heterogeneous memory architecture.
The strategy consists of two mechanisms, a weighted work-
stealing approach that preferably picks victims frommemory
vicinity, and a soft actor pinning that schedules actors close
to their initial worker for facilitating fast access of state.

Random work stealing favors full resources utilization at
the cost of locality when moving actors between workers in
the system. The weighted work stealing is likely to preserve
execution locality when stealing. Actor pinning prevents
actors to move away from their data during rescheduling.
While pinning can be deployed without weighted work steal-
ing, the reverse does not hold. Weighted stealing correlates
actors with their probable queue location that is not given
without pinning.

3.1 Weighted Work Stealing
Fully randomized work stealing leads to poor execution lo-
cality because it ignores memory access costs. We adjust
the probabilities for picking a victim based on the NUMA
architecture in the same way Probabilistic Work Stealing
(PWS) adjusts probabilities based on the network architec-
ture in a cluster [18]. The probability for picking victims is
proportional to the inverse of the distance to the thief. The
distance can be defined by the number of hops between the
thief node and the victim node.

We contribute a practical approach to weighted work steal-
ing with minimal runtime overhead. On program start, hard-
ware information are gathered and each worker (thief) sorts
all other workers (potential victims) according to their dis-
tance into the groups д0 ⊆ . . . ⊆ дk , where the index corre-
lates to the maximum distance. The group д0 only contains
direct neighbors. Note that the definition of neighborhood
varies on different platforms and can depend on shared cache
levels or shared memory banks. The group д1 contains all
direct neighbors as well as all workers with distance 1, and
so on. Finally, дk contains all potential victims. Stealing from
groups with lower index correlates to faster execution times,
since stealing from distant workers causes expensive mem-
ory exchange.
Once a worker runs out of work, it becomes a thief and

tries to steal work items from all victim groups in increasing
order. The steal attempts per group depend on the size of

Locality-Guided Scheduling in CAF AGERE’17, October 23, 2017, Vancouver, Canada

the group. The thief performs the lowest number of steal
attempts on д0 but picks victims from the final group дk
indefinitely. A worker does not remember the group where
it last picked its victim from and always starts anew at д0
after a successful heist.

On platforms with uniform memory access, a single group
is created that includes all workers. The same approach is
taken in case reading the NUMA-node layout fails at runtime.
In both cases, our scheduling is equivalent to the classical
random work stealing.

When a thief has picked a victim with a non-empty queue
it steals the tail element, i.e., the item with the longest wait
duration. Stealing multiple work items can be beneficial for
homogeneous item runtimes to reduce future stealing. How-
ever, CAF has no a priori knowledge about the cost to process
a work item and thus cannot estimate whether stealing more
than one item at a time is beneficial. In the worst case, a thief
steals expensive work items that the victim than steals back
later. Looking for a work item with specific properties, e.g.,
one with a nearby home processing unit [9], would require
an expensive search in the job queue and cause additional
synchronization overhead. Although a specialized data struc-
ture can reduce the search cost for rare stealing events, it
would be less optimal for the general program execution.
Additionally, workers enqueue newly spawned actors at the
head of their queue to benefit from caching mechanism. As a
result, work items at the tail of a queue are less likely cached
and should therefore be stolen with higher preference.

As an example, consider a systemwith CPUs, each equipped
with two cores, and connected in a ring. Figure 1(a) shows
this layout annotated with the probability for each core to
successfully steal a work-item from core 1 (marked red) when
using randomwork stealing (RWS). Cores of a CPU are direct
neighbors and the stealing distance is defined by the number
of CPU hops to reach the victim. In this case, the worker of
core 1 is a hot spot with many enqueued work items. Other
workers are idle and try to steal these items. The probability
for a successful steal is one out of seven because the system
has seven other cores a worker can steal from. Figure 1(b)
plots the probability for a successful steal as a function of
the number of consecutive attempts. Since all cores have
the same probability, the graphs overlap. When considering
locality-aware stealing these probabilities change. Figure 2
depicts the setup with adjusted probabilities. Here, the prob-
ability for a successful steal depends on the distance between
thief and victim and the number of stealing attempts before
the thief increases its radius. From the perspective of core 6,
all potential victims are divided into three groups д0 = {5},
д1 = {3, 4, 5, 7, 8}, д2 = {1, 2, 3, 4, 5, 7, 8}. On the first attempt,
the success rate to steal a work item is 0 because the only
worker in д0 does not have any jobs either. The next five
steals attempts have the same expectation with group д1.
Finally, after 6 unsuccessful attempts, the success rate in-
creases to one out of seven. These probabilities depend on

the location of the core and are plotted in Figure 2(b). Here,
core 2 will immediately steal work, while cores 4 and 8 will
have to increase their radius once, and core 6 will have to
increase its radius twice. This matches the targeted behavior
of our locality-aware approach as it gives direct neighbors a
higher probability to steal work items than distant ones.

Core
1

Core
2

Core
3

Core
4

Core
5

Core
6

Core
7

Core
8

CPU 1 CPU 4

CPU 2 CPU 3

p=1/7 p=1/7

p=1/7p=1/7

(a) Core layout with probabilities

●

●

●

●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
Steal Attempts [#]

St
ea

l S
uc

ce
ss

 [p
]

● Core 2 Core 4 Core 6 Core 8

(b) Probability vs. steal attempts

Figure 1.Chances for successfully stealing awork-item from
core one using random work stealing.

Core
1

Core
2

Core
3

Core
4

Core
5

Core
6

Core
7

Core
8

CPU 1 CPU 4

CPU 2 CPU 3

p=1 p=1x0, 5x1/5, 1/7

p=1x0, 5x0, 1/7p=1x0, 5x1/5, 1/7

(a) Core layout with probabilities

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
Steal Attempts [#]

St
ea

l S
uc

ce
ss

 [p
]

● Core 2 Core 4 Core 6 Core 8

(b) Probability vs. steal attempts

Figure 2.Chances for successfully stealing awork-item from
core one using locality-aware work stealing.

3.2 Soft Actor Pinning
Actor pinning improves the execution locality (EL) by fix-
ing actors to workers in close proximity of their data. The
pinning strategy implemented our scheduler is static soft
pinning that is automatically handled by the framework.

Similar to the approach of Francesquini et al. [9], the algo-
rithm is divided into the phases Initial Actor Placement and
Scheduling. Following this idea, newly spawned actors are
placed at a specific worker during the Initial Actor Placement
phase. CAF has two options to place an actor in the worker
pool: either in a round robin fashion or at the worker of its
parent. The former evenly distributes actors to balance the
workload while the latter schedules actors for fast execu-
tion with cache optimization in mind. In both cases, an actor
stores the current worker persistently as its home processing
unit (HPU) on first execution as proposed by Acar et al. [1].
Thereafter, the actor is pinned to this node (static).

In the Scheduling phase, an actor can be stolen and exe-
cuted by an arbitrary worker for balancing reasons (soft)–
diverging from the original algorithm. However, it moves

AGERE’17, October 23, 2017, Vancouver, Canada Wölke et al.

Yes

No

Yes

No

idle

sender on
HPU?

sender is
neigbor?

enqueue
at sender

enqueue
at HPU

running

Figure 3. Flowchart to determine the worker during the
scheduling phase.

back to its HPU for subsequent executions. For this reason,
an idle actor that receives a message is scheduled at its HPU
to guarantee an excellent EL. As an exception, an idle actor
will be scheduled at the PU of the sender if it is a direct neigh-
bor to the HPU of the receiver, thus maintaining a good EL
while improving the CL. Here, we trade an optimal EL for
an optimal CL because the idle actor is scheduled at the PU
of the sender instead of its HPU. Figure 3 shows where an
idle actor is enqueued when it receives a message.

This approach requires no additional effort form an appli-
cation developer (automatic). Moreover, it has little compu-
tational and memory overhead. The only additional infor-
mation an actor has to store is its HPU. Note that an actor
can allocate memory on each execution at which point it
acquires memory from the NUMA-node where it is currently
executed (first-touch). If an actor jumps between NUMA-
nodes for balancing reasons, its memory might be scattered
across different NUMA-nodes which causes a degradation
in EL. A dedicated memory allocator could allow applica-
tion developers to ensure that an actor accumulates all its
memory from NUMA-nodes of its HPU and thus avoid this
behavior.
Actor pinning largely enhances the importance of ini-

tial actor placement across workers. An uneven placement
may lead to frequent stealing as actors return to their ini-
tial worker after execution. This inclination to return to a
potentially unbalanced state can significantly impact the
performance. To address this problem, actors do not inherit
the HPU of a parent. Instead, the HPU is assigned at first
execution. This allows other workers to steal newly spawned
actors, thus balancing the system.
In general, actors can be pinned to a location such as a

single core, a group of cores sharing a cache level or to a
specific NUMA-node with a hard [24] or a soft [1] constraint.
Both cases prohibit scheduling of pinned actors at another lo-
cation. However, soft pinning still allows workers to execute
stolen actors. In this case, the execution on a distant worker
is only temporary and the actor jumps back to its home node
after the execution. While both strategies are suitable for
actors with heavy memory accesses and I/O interactions, we

spawn

enqueue at
initial worker

Yes

No

Yes

No

execute

set HPU to
 initial worker

set HPU to
thief

distant
thief?

stolen?

Figure 4. Flowchart to determine the HPU during actor
initialization.

chose soft pinning for CAF because hard pinning can easily
lead to performance degradation as a result of an imbalanced
workload.

Alternatives to an automatic pinning strategy are semi-
automatic and manual pinning. A semi-automatic approach
allows programmers to provide hints to the scheduler [9]
such as tightly coupled actors or dependencies on specific
I/O devices. The scheduler can use this knowledge for op-
timization according to its strategy. Specific problems can
be addressed well with this approach, e.g., pinning actors
which require access to I/O devices like GPUs to the appro-
priate NUMA-node. However, this is impractical as a generic
approach since it is not portable and hard to maintain for a
larger code base. Automatic pinning [1] does not requires
specialized knowledge of the programmer by transparently
handling pinning decisions. A static strategy could be pin-
ning all actors to their initial workers. This is a good general
purpose approach because actors initialize their state on
their first execution when the required memory is allocated
from the host NUMA-node. Thereafter, this node has the best
EL for this actor. A dynamic strategy could profile the rela-
tionship between actors and decide at runtime which groups
of actors are closely coupled and should be executed by the
same processing unit. CAF implements a static strategy to
avoid the additional complexity inherent to profiling.

3.3 Discussion: Soft-pinning and Sleep Intervals
The improvements to execution locality offered by actor
pinning comes with some trade-offs. While an idle actor that
receives a message was previously pulled to the worker of
the sender, it is now pushed to its HPU. Pulling an actor
ensures that the worker that receives the work is awake
and can directly react to the new job. In contrast, the push
approach can enqueue work into the job queue of a sleeping
worker—workers sleep shortly to reduce the system load and
contention of work queues if their queue is empty and they
do not find work to steal. In such a scenario, the execution
of the actor is delayed until the respective worker wakes up
or it is stolen.

Locality-Guided Scheduling in CAF AGERE’17, October 23, 2017, Vancouver, Canada

The benchmark discussed in Section 4.2 displays a scenario
where this behavior impacts performance: a system hosts
two actors that exchange message in a ping-pong pattern.
Both actors are placed at the sameworker when spawned and
immediately scheduled for execution to initializes their be-
havior and prepare for future messages. Due to unfavorable
timing one actor might be stolen by a worker on a different
NUMA-node before its first execution. As a result, the actors
don’t have neighboring HPUs and are never scheduled at
the worker of their communication partner. Instead, they
are pushed to their HPU on message receipt. While waiting
for a reply, the respective worker becomes idle and goes to
sleep, thus introducing a delay to each message exchange.
To mitigate this effect, we restricted the initial definition of
the HPU to direct neighbors of the worker where the actor
is initially placed as shown in Figure 4. If an actor is stolen
from a distant worker before it could set its HPU, it uses
its initial worker as HPU. Otherwise the HPU is set to the
thief. This ensures that tightly coupled actors are not “ripped
apart” when spawned and maintain reasonable proximity
instead. Note that this problem does not occur for actors
pinned to the same worker or to a direct neighbor as they
can be executed by the same worker in both cases.

Message delay as a result of sleeping workers is not unique
to the scenario discussed here and might still appear with
different initial configurations. However, a real world appli-
cation is unlikely to run into such a problem for multiple
reasons: (1) workers only sleep if the actor system has a low
workload, (2) a sleep time of 50 µs is the maximal execution
delay for an actor which can still be stolen in the meantime
(although longer sleeps may occur if the actor system has a
low workload over a long period of time), and (3) the sleep
interval can be reduced or deactivated.

4 Evaluation
Our first benchmarkMatrix Search focuses on a data-intensive
task to showcase the benefits of locality-guided scheduling
over our previous scheduling approach which uses RWS
and focuses on CL. A fixed number of actors s each solve
word-finding puzzles distributed by a smaller number of
coordinators c .
Solving a puzzle requires an actor to find a sequence

of characters assigned by a controller in a local matrix of
random characters. For this purpose, only matches along
columns are valid. Since the matrices are written row-wise
into memory, this bypasses the prefetching mechanism of
the CPU and increases the complexity of the data access. Ad-
ditionally, an uneven distribution of puzzle complexity along
with a large number of actors ensures irregular rescheduling
of actors. A controller only distributes a new challenge after
a previous one was solved. As a result, the controller is idle
while its actors are busy and it has to be rescheduled when-
ever a new challenge is requested. Note that a controller and

the actors it manages are not forced to have the same home
processing unit (HPU), although this may happen by chance.

The performance of this benchmark greatly relies on the
access characteristics of searching actors to their matrices.
By soft pinning actors and taking locality into account when
stealing actors we vastly increase the chance for a good
execution locality between an actor and its matrix and thus
improve the performance. While the benchmark itself is an
artificial scenario, it showcases the effect that consideration
of locality has on runtime behavior.
Figure 5 depicts the runtime of the matrix search bench-

mark in seconds as a function of the workers of the scheduler.
It compares the locality-guided scheduling (LGS) to the CL fo-
cused scheduling approach (CLS) that does not take NUMA-
related optimizations into account, both implemented in
CAF. All measurements were performed on a server with
four AMD Opteron 6376 processors, clocked at 2.3 GHz. Each
processor is divided in two NUMA-nodes, each consisting of
8 cores and 64 GB of main memory. This adds up to a total of
64 PUs spread over 8 NUMA-nodes. The server is powered
by a Linux distribution (kernel version 3.16.7) with default
NUMA-settings (first-touch). Each measurement is repeated
10 times for a statistical significance, plotting the mean as
well as error bars that show the 95% confidence interval.

For the measurements, we use c = 15 controllers, where
each controller spawns 15 actors, which adds up to s = 225
matrix-searching actors. Actors are assigned to workers in
a round robin fashion. To change the number of workers,
we enable cores on the host in steps of four and provide the
CAF scheduler with an equal amount of worker threads. For
a configuration of four cores, each activated core is hosted
on a different NUMA-node. These NUMA-nodes are filled
up until each node has eight active cores before cores on the
remaining NUMA-nodes are activated.

Both graphs are nearly overlapping for configurations of
up to 12 workers. The amount of actors scheduled across
these workers is enough to keep them busy while mostly
executing actors local to their NUMA node. Thereafter, the
LGS outperforms the CLS with a performance gain of up
to 26.6%. The difference in runtime increases up until 28
workers are active and stays in a similar range thereafter
with a few variations. Our guess is that the capacity of the
bus systems is maxed at this point.
Overall, LGS outperforms CLS in this benchmark due to

its consideration of EL. The more workers are active, the
greater the chance that actors are executed on a different
node. This is a result of the increased chance that work is
stolen as the amount of initial actors per worker decreases
and the uneven processing time has a greater impact. Since
actors return to their HPU under LGS and are usually stolen
from a closer worker, the locality-aware approach exhibits
better performance.

Matrix Search heavily favors data access and reveals what
can be achieved in general. The subsequent benchmarks are

AGERE’17, October 23, 2017, Vancouver, Canada Wölke et al.

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

0

10

20

30

40

50

4 16 28 40 52 64
Number of Workers [#]

R
un

tim
e

[s
]

● CLS LGS

Figure 5. Actors solve word finding puzzles to simulate a
data-intensive task (Matrix Search).

translated from the Savina benchmark suite [13] and are not
necessarily written with data locality in mind. They show-
case how our LGS strategy performs in more generalized
scenarios and how it compares to our CLS approach as well
as to other implementations of the actor model. The same
test environment is used for all benchmarks.
We translated 23 of the 30 Savina benchmarks to C++1.

These benchmarks cover a wide range of concurrency pat-
terns and support multiple Java based actor libraries includ-
ing Akka [22], Habanero-Java library [12] and Jetlang [19],
which is the set we use for comparison with CAF. Not all
benchmarks could be translated as some rely on Java-specific
libraries. The benchmarks are divided in the classes micro-
benchmarks, classical concurrency problems and parallelism
benchmarks. Problems range from Ping-Pong and Dining
Philosophers to Quicksort and the N-Queens Problem. The
benchmark suite was introduced by Imam et al. [13] with
the goal to provide a general set of benchmarks to compare
different implementations of the actor model. All bench-
marks allow configuration of the problem size to tune the
computation time as well as the degree of concurrency, if
possible.
The remainder of this section discusses three examples

picked from the Savina benchmarks and shortly summarize
our observations on the performances of LGS for the whole
suite.

4.1 The Delicate Difference Between Data and
Communication Intensive Applications

In our next measurement we compare a data-intensive ap-
plication to a communication-intensive application. For this
purpose, we use the benchmarks Concurrent Dictionary (Con-
dict) and Concurrent Sorted Linked-List (Concsll) from the

1https://github.com/shamsimam/savina

●
● ● ● ● ● ● ● ● ● ●

●
● ● ● ●

0

10

20

30

4 16 28 40 52 64
Number of Workers [#]

R
un

tim
e

[s
]

● Akka CAF (CLS) CAF (LGS) Habanero Jetlang

Figure 6. Actors synchronize access into a linked list
through a central coordinator (Savina: Concsll).

Savina suite. Both provide a central data structure encap-
sulated in an actor. A number of other actors accesses the
data structure by sending read and write requests. Condict
uses a dictionary with a read/write complexity ofO (1) while
Concsll uses a sorted linked list with complexity O (N).

Figure 6 depicts the makespan in seconds as a function of
the number of scheduler workers for the Concsll benchmark.
We use the default configuration parameters except for the
number of entities set to e = 20 and the number of messages
set to m = 8000. Most frameworks exhibit similar perfor-
mance except for Akka and CAF (CLS) which perform worse
than the rest. The best performance is shown by CAF (LGS),
which outperform the other CAF scheduler by up to 32.5%.
Although this performance gain is even higher than in our
showcase Matrix Search, it is not solely caused by optimizing
the data locality but rather a result of a strong workload im-
balance that does not occur for LGS. Figure 7 shows results
of the Condict benchmark for e = 100 andm = 50000. Here,
both CAF scheduling strategies admit good performance
while CLS is 17.6% faster on average. The remaining frame-
works perform poorly, where most show a strong runtime
increase at the beginning and slightly rise thereafter.

Despite the similarities between Concsll and Condict, LGS
only shows better performance in the former benchmark.
This is due to the different characteristics of the data struc-
ture and the resulting memory access. The data actor of
Concsll is more sensitive to EL than Condict because it tra-
verses the sorted linked list on every read and write access.
In contrast, the dictionary has a constant access time and a
low access complexity. As a result, solely optimizing for CL
pays off for the Condict benchmark, as done by CLS, instead
of finding a trade-off between CL and EL, as done by LGS.

Locality-Guided Scheduling in CAF AGERE’17, October 23, 2017, Vancouver, Canada

●

●

●

● ● ● ● ●
● ● ●

● ●
● ● ●

0

10

20

30

4 16 28 40 52 64
Number of Workers [#]

R
un

tim
e

[s
]

● Akka CAF (CLS) CAF (LGS) Habanero Jetlang

Figure 7. Actors synchronize access into a dictonary
through a central coordinator (Savina: Condict).

4.2 Pushing Actors to Sleeping Workers
The last benchmark we present is the Savina Ping-Pong
benchmark, which heavily favors communication locality.
As the name suggest, it deploys two actors that exchange a
defined number of messages, in our case 2 ∗ 106.

Figure 8 shows the runtime as a function of the number of
workers for the benchmark. Both CAF deployments, CLS and
LGS, outperform the other frameworks under test. The graph
plots an additional measurement for CAF: LGS-Alt. LGS-Alt
exhibits enormous error bars and a very unstable runtime
behavior. This is an artifact of undesirable scheduling that
can happen when jobs are pushed to a sleeping worker. This
behavior was discussed in Section 3.3 alongside a mitigation
strategy that is implemented for the LGS measurements.

Part of the mitigation strategy prevents actors from adopt-
ing a distant node as a HPU if they are stolen before their first
execution. As a result, the LGS avoids intermediate sleeps
from involved workers as well as communication between
distant NUMA-nodes in such situations. To show that be-
havior of LGS-Alt is not only a result of the communication
distance we performed a measurement where we prevented
workers from sleeping. Under those condition, LGS-Alt still
performed about 30% worse than LGS, but exhibited a stable
runtime behavior.
The Ping Pong benchmark stressed a performance prob-

lem that could occur under specific situations. After imple-
menting amitigation strategy, LGS only shows slightly worse
performance than CLS although the benchmark mainly re-
lies on communication locality. Incidentally, the adjustments
to LGS also ensure an optimal execution locality for this
benchmark.

4.3 Summarizing Benchmarks of the Savina Suite
To summarize the overall performance of LGS compared to
CLS in the Savina benchmarks, we performed measurements

● ●
●

●
● ● ● ● ● ● ● ● ● ● ● ●

0

5

10

15

20

25

4 16 28 40 52 64
Number of Workers [#]

R
un

tim
e

[s
]

● Akka CAF (CLS) CAF (LGS) CAF (LGS−Alt) Hab.

Figure 8. Two actors repeatedly exchange messages in a
ping-pong style communication pattern (Savina: Ping Pong).

for both schedulers using 64 workers. The baseline (100%)
signifies the mean runtime of CLS over 10 measurements.
A lower percentage shows a better performance in favor of
LGS, e.g., LGS finished after 63% of the time required by CLS
for the Apsp benchmark. Note that the graph only shows an
overall trend and does neither provide information about
error distribution nor scalability.

The benchmarks Apsp, Bitonicsort and Concsll show excel-
lent results. They benefit not only from an increased EL but
also from a better load balancing between workers. Whether
a benchmark is balanced depends on the interplay between
the workload and the scheduling algorithm. Bndbuffer is an
example where LGS leads to scalability problems.

The Big benchmark only profits fromCLwhile EL is nearly
irrelevant. It represents an N to N ping pong scenario, a
best-case candidate for CLS. Keeping EL in mind prevents
LGS from pulling actors to their communication partners, a
strategy that greatly benefits CLS in this measurement.

Overall, theses benchmarks confirm that LGS can lead to
significant performance gains for suitable problems and we
reached the expected gains above 20%. However, there are
scenarios where trading between EL and CL significantly
degrades performance. This is clearly visible in the last seven
benchmarks towards the right side which exhibit a runtime
increase of more than 10% and even up to a few 100%.

5 Conclusion and Outlook
Cores on modern processor architectures do not have uni-
form access to memory. Instead, cores are bundled with
caches andmemory banks on different NUMA-nodes, thereby
experiencing performance that depends on data proximity.
The architecture is accessible to developers via a NUMA API
so that tasks can be kept in close proximity to their active
memory. This can significantly improve performance.

AGERE’17, October 23, 2017, Vancouver, Canada Wölke et al.

18
2

22
6

28
1

85
9

60

80

100

120

140

 Apsp
 Bitonicsort
 C

oncsll
 C

ount
 Banking
 R

adixsort
 Q

uicksort
 Sieve
 Fib
 N

queenk
 R

ecm
atm

ul
 Pingpong
 Fjcreate
 Philosopher
 C

ham
eneos

 Threadring
 C

ondict
 Fjthrput
 Trapeziod
 Logm

ap
 Facloc
 Big
 Bndbuffer

R
el

at
ive

 R
un

tim
e

[%
]

Figure 9. Comparison between LGS and CLS in the C++
Savina benchmarks with 64 workers.

In this work, we introduced locality-guided scheduling
(LGS) which exploits knowledge about the host architecture
to improve scheduling for actor-based applications in CAF.
LGS shifts the strategy of our scheduler towards data locality
and aims at a trade-off between communication and execu-
tion locality. For this purpose, it combines a weighted work
stealing approach with actor pinning.
Extensive benchmarks confirmed that LGS increases the

performance of data-intensive task as expected. We mea-
sured a performance gains of up to 25%. Using the Savina
benchmark suite, we explored the LGS behavior in a wide
range of diverse scenarios. Here, LGS improved the perfor-
mance of 8 out of 23 benchmarks over a scheduler focusing
on pure communication locality. However, the focus on ex-
ecution locality had significant impact on the performance
in a range of benchmarks. While this is partially explained
by missing optimization of communication locality in favor
of execution locality, it suggests that LGS is suitable as an
optional scheduling strategy for CAF.

Our future work will proceed in two directions. First, we
will improve LGS and analyze performance further. Incor-
porating scheduling hints from developers could offer more
fine-grained control and help the scheduler to avoid nega-
tive impact of EL optimizations. Second, tuning the trade-
off between communication and execution locality in LGS
requires a more detailed analysis. Comparison with other
NUMA-aware frameworks could provide further insight into
the performance and behavior of LGS.

Acknowledgments
This work was supported in parts by the German Federal
Ministry of Education and Research within the projects Scale-
cast and X-Check.

References
[1] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. 2000. The Data

Locality of Work Stealing. In Proc. of the 12th An. ACM Symposium on
Parallel Algorithms and Arch. (SPAA ’00). ACM, NY, USA, 1–12.

[2] David Applegate and William Cook. 1991. A Computational Study of
the Job-Shop Scheduling Problem. ORSA Journ. on comp. 3, 2, 149–156.

[3] Joe Armstrong. 1996. Erlang - A Survey of the Language and its Indus-
trial Applications. In Proc. of the symposium on industrial applications
of Prolog (INAP96). Hino, 16–18.

[4] R. D. Blumofe and Ch. E. Leiserson. 1999. Scheduling Multithreaded
Computations by Work Stealing. J. ACM 46, 5 (Sept.), 720–748.

[5] Dominik Charousset, Raphael Hiesgen, and Thomas C. Schmidt. 2016.
Revisiting Actor Programming in C++. Computer Languages, Systems
& Structures 45 (April 2016), 105–131.

[6] Dominik Charousset, Thomas C. Schmidt, Raphael Hiesgen, and
Matthias Wählisch. 2013. Native Actors – A Scalable Software Plat-
form for Distributed, Heterogeneous Environments. In Proc. of the 4rd
SPLASH ’13, WS AGERE! ACM, NY, USA, 87–96.

[7] Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy
McNeil. 2015. Deny Capabilities for Safe, Fast Actors. In Proc. of the
6th SPLASH ’15, WS AGERE!. ACM, NY, USA, 1–12.

[8] Peter J. Denning. 2005. The Locality Principle. Commun. ACM 48, 7
(2005), 19–24.

[9] Emilio Francesquini, Alfredo Goldman, and Jean-François Méhaut.
2013. Actor Scheduling for Multicore Hierarchical Memory Platforms.
In Proc. of the 12th ACM SIGPLAN Workshop on Erlang (Erlang ’13).
ACM, New York, NY, USA, 51–62.

[10] Fabien Gaud, Baptiste Lepers, Justin Funston, et al., 2015. Challenges
of Memory Management on Modern NUMA Systems. Commun. ACM
58, 12 (2015), 59–66.

[11] Carl Hewitt, Peter Bishop, and Richard Steiger. 1973. A Universal
Modular ACTOR Formalism for Artificial Intelligence. In Proc. of the
3rd IJCAI. Morgan Kaufmann, San Francisco, CA, USA, 235–245.

[12] Shams Imam and Vivek Sarkar. 2014. Habanero-Java Library: A Java 8
Framework for Multicore Programming. In PPPJ. ACM, 75–86.

[13] Shams Imam and Vivek Sarkar. 2014. Savina – An Actor Benchmark
Suite. In Proc. of the 5th SPLASH ’14, WS AGERE!ACM, NY, USA, 67–80.

[14] Shams M. Imam and Vivek Sarkar. 2012. Integrating Task Parallelism
with Actors. SIGPLAN Not. 47, 10 (Oct. 2012), 753–772.

[15] Kirk L. Johnson. 1992. The Impact of Communication Locality on
Large-scale Multiprocessor Performance. SIGARCH Comput. Archit.
News 20, 2 (1992), 392–402.

[16] Stephen L Olivier, Allan K Porterfield, Kyle BWheeler, Michael Spiegel,
and Jan F Prins. 2012. OpenMP Task Scheduling Strategies for Multi-
core NUMA Systems. Int. J. High Perform. Comp. Appl. 26, 2, 110–124.

[17] M. Pericas, A. Cristal, R. Gonzalez, D. A. Jimenez, and M. Valero. 2006.
A decoupled KILO-instruction processor. In The 12th Intern. Symp. on
High-Perform. Comp. Arch.,’06. Springer, Berlin, Heidelberg, 53–64.

[18] Jean-Noël Quintin and Frédéric Wagner. 2010. Hierarchical Work-
stealing. In Proc. of the 16th Intern. Euro-Par Conf. on Parallel Processing:
Part I (EuroPar’10). Springer-Verlag, Berlin, Heidelberg, 217–229.

[19] Mike Rettig. 2012. Jetlang. code.google.com/p/jetlang. (April 2012).
[20] Niranjan G. Shivaratri, Phillip Krueger, and Mukesh Singhal. 1992.

Load Distributing for Locally Distr. Systems. Computer 25, 12, 33–44.
[21] H. Topcuoglu, S. Hariri, and Min-You Wu. 1999. Task Scheduling

Algorithms for Heterogeneous Processors. In Het. Comp. WS. (HCW
’99) Proceedings. 8th. IEEE Comp. Soc., DC, USA, 3–14.

[22] Typesafe Inc. 2017. Akka Framework. http://akka.io. (August 2017).
[23] Rob V. van Nieuwpoort, Thilo Kielmann, and Henri E. Bal. 2001. Effi-

cient Load Balancing for Wide-area Divide-and-conquer Applications.
SIGPLAN Not. 36, 7 (2001), 34–43.

[24] K. Wang, X. Zhou, T. Li, D. Zhao, M. Lang, and I. Raicu. 2014. Optimiz-
ing Load Balancing and Data-Locality with Data-aware Scheduling. In
2014 IEEE Int. Conf. on Big Data. IEEE, DC, USA, 119–128.

