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Abstract—The emerging Internet standards of WebRTC open
up a new paradigm of direct browser interconnects. Users are
thus enabled to build personal communities by simply loading
Web pages, provided an appropriate software is at hand. In
this paper, we present a software architecture that provides the
core concepts and components for content-centric communities
on a pure P2P basis. Starting from generic use cases, we de-
velop an information-centric overlay that naturally supports user
requirements. Our prototypical implementation and evaluation
demonstrate the feasibility of this light-weight approach.
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I. INTRODUCTION

The World Wide Web has largely shaped the advancement
of the Internet and browsers have become the dominant user
interface to networked applications. Over the last decade, use
cases have transformed from the mere consumption of content
to a platform for sharing content between users. People use the
Web to exchange files, chat or collaborate on content creation,
all this unified in the browser environment. The common
technologies deployed are based on the traditional client/server
paradigm which did not change since the beginning of the Web.
In consequence, users eager to publish content on the Web still
need to rely on infrastructure of their own or others.

With the creation of the Web Real-Time Communication
(WebRTC) specifications – jointly defined by the World Wide
Web Consortium (W3C, [1]) and the Internet Engineering Task
Force (IETF, [2]) – a major paradigmatic change in Web
technologies arrived. For the first time, WebRTC enables a
browser to establish a direct connection to another browser
without the need for additional software or services. This opens
the Web platform for a wide range of user-centric use cases,
given an appropriate architecture is designed and implemented
that facilitates these visions.

In this paper, we introduce such an architecture built on top
of WebRTC transports. Our concept and prototypic implemen-
tation leverages WebRTC for spanning P2P content networks
between browsers. We specify a rich set of use cases and
discuss the corresponding requirements. In our evaluation we
show how this architecture naturally supports the various use
cases, easily matches the requirements, and present selected
application examples. We specify a URI-based naming scheme
for content along with appropriate semantics. This URI scheme
revolves around a unique user name identified by an identity
provider. By adapting ICN naming techniques and leveraging
the broad deployment of Web technology, our solution enables

user-centric P2P interaction between Web users that does not
rely on centrally controlled infrastructure.

Our contribution starts from the perspective of the pub-
lish/subscribe paradigm [3] and takes inspiration from the
emerging ideas of Information-centric Networking (ICN) [4].
ICN decouples content from location and builds name resolu-
tion and replication into the network layer itself. Our Browser-
based Open Publishing (BOPlish) approach, on the other hand,
builds user-centric naming and content routing on a P2P layer
that is maintained solely among browsers. We put a strong
focus on concepting a naming scheme syntax and semantics.

In the remainder, we discuss ICN approaches and WebRTC
(Section II), describe the use cases we identified that demand
for a P2P user-centric Web architecture (Section III) and intro-
duce BOPlish as a bootstrap architecture for developing P2P
Web applications (Section IV). We evaluate our architecture in
Section V and conclude with an outlook in Section VII.

II. BACKGROUND AND RELATED WORK

A. Publish/Subscribe Networking

The Internet revolution started after the World Wide Web
had introduced a uniform, simple architecture of separat-
ing content publication and provisioning from content re-
trieval. The decoupling of publishing information from its
consumption in space and time is a core element of the rich
publish/subscribe paradigm [3]. In recent years, (proprietary)
Content Delivery Networks have shifted this server-centric
approach to the network that mirrors one-to-many communi-
cation for which the initial Internet architecture has not been
built [5].

The ideas of Information-centric Networking (ICN) [4]
have taken up the well-established concept of in-network
storage and replication towards end-user communities, while
adding the core objective of an open future Internet design. The
latter requires resolution of the three major challenges naming,
security, and routing [6]. In ICN, the underlying network layer
must be capable of directing a named data request to a location
completely transparent to the requesting client, and it must pro-
vide an independent verification of the supplied content. As a
result the location of data becomes irrelevant, making it simple
to introduce caches distributed throughout the network. Many
such architectures have been introduced, prominent examples
being DONA [7] and NDN [8]. Independent solutions have
been designed that differ in naming, security, and routing, but
all show a high interdependency among these three [9].



1) Naming and Security Binding: Unlike in HTTP, ICN
uses names that are independent of a location or server
instance. Two competing approaches exist, hierarchical or flat
(e.g., hashed) names (Figure 1).
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Fig. 1. NDN hierarchical identifiers and flat identifiers in DONA

Hierarchical names have the benefit that they can be aggre-
gated, provided name prefixes and content locations coincide.
When routing on the names itself, it is preferable to reduce
routing table sizes by aggregating names. NDN uses such
hierarchical names. Aggregation could be performed at the
ISP level (with ISPs assigning prefixes to their customers),
but this reintroduces a binding to location. The existence of the
location-identity binding is the main argument for flat names
(as used in DONA), which allow for a complete decoupling of
location and identity but cannot easily be aggregated. Coping
with a huge amount of unaggregatable identifiers requires
either huge routing tables or external infrastructure. Finding a
scheme that allows for both, effective aggregation and location-
independence of the system without bloating routing tables is
still subject to research activities [9].

Another aspect of the debate between flat and hierarchical
names is the decision between human-readableness and cryp-
tographic expressions for self-certification. While DONA can
use a cryptographic hash of the content as its identifier and thus
offers implicit content certification, NDN requires an external
trust mechanism as described in [10].

2) Name Resolution and Data Routing: Each content re-
quest in ICN should be directed to a nearby surrogate in
the network. When a location of the content is found, it
has to be transferred to the requester. Therefore, data routing
is used to find a path over which the actual content is
transferred. Depending on the ICN implementation, routing
is performed directly on names (e.g., NDN) or decoupled by
some resolution service (e.g., DONA). In a coupled approach,
the data forwarding follows the reverse path identified from the
name resolution. In a decoupled approach, data is forwarded
independently of content routing paths.

Coupling the data routing means to either a) store routing
states in the intermediate hops traveled by the name resolution
query or b) integrate this information into the content query
packets on the way. Decoupled approaches allow for more
flexibility, as control and data flows can be separated. On
an Internet scale, both approaches must be seen as a severe
challenge [6]. Our community size system does not face severe
scalability issues and is built on a decoupled name resolution
concept.

B. User-centric Naming and Networking

Our concept of user-centric content networks revolves
around the idea that every participant in a specific P2P browser
network is able to name and publish content. All of the (static
or dynamic) content a user wishes to publish is assigned a URI
that is derived from the user’s unique name.

In [11], Allman describes the concept of a “personal
namespace”. The author lays out several problems with current

naming systems such as DNS and URLs: Names are location-
bound as is the case with URLs, where the hostname is
resolved to a specific location on the network. Additionally,
e.g. domain names are mentioned as ambigious so that users
do not actually know by the domain name who the owner of
the domain might actually be. The author distinguishes three
different parties that are involved in creating and accessing a
name for a content item: the consumer, the content provider
(e.g. a user who shares a file) as well as the service provider
(e.g. Flickr or Facebook). Typical current naming systems
derive names from parts under the service providers’ control
so that migration from content to another provider will lead to
a name change.

The “pnames” system proposed in [11] acts as an indirec-
tion between personal names assigned by a specific user and
actual names like URLs or host aliases.This enables users to
reference e.g. Bob’s e-mail address as Bob:mail. For sharing
such pnames the author proposes the usage of a DHT to resolve
the flat pname identifiers.

In a follow-up to “pnames” the authors provide the outline
and a prototypical implementation of a more abstract idea
that is based on the concept of storing and referencing arbi-
trary content’s meta data [12]. That system is called Meta-
Information Storage System (MISS). MISS is meant to be
operated on a global scale at ISP level. All MISS servers are
interconnected in a global DHT that is used to find the MISS
server that holds a specific information item. The authors thus
introduce a lookup layer for retrieving meta-information of
content.

A high-level description of user-centric networking is pre-
sented in [13]. The authors start with the idea that each
user in a specific interest group offers a set of services to
the group. For interconnecting users the authors propose to
leverage existing social networks such as Twitter or Facebook
to retrieve unique user identifiers. This way it is possible to
leverage existing relationships between persons. A tuple of
(user name, service name) is proposed to address
services offered by a specific user. This makes it possible
to decouple the service name from the host that offers the
service while at the same time coupling the service with the
user offering it (e.g. to ensure authenticity).

The IETF is currently engineering an Internet Draft for
a user-centric SIP (Session Initiation Protocol) approach [14]
that is based on RELOAD specified in [15]. RELOAD defines
a powerful framework for P2P storage and messaging, includ-
ing a security model, NAT traversal and a pluggable topology
mechanism (with a Chord variant as default topology plug-in).
RELOAD is designed so that specific overlay applications are
to be implemented on top of a RELOAD network. One such
application is the SIP usage specified in [14]. This usage em-
ploys RELOAD to establish SIP sessions via the P2P overlay
and defines a naming scheme, eventually defining a completely
user-centric distributed telephony service. Users store a map-
ping from their AOR (e.g. alice@dht.example.org) to
their node ID in the P2P network. This mapping is then used
by others to retrieve the node to connect to for a specific AOR.



C. WebRTC

WebRTC is a protocol suite that allows two Web browsers
to communicate directly over a UDP-channel [2], paired with
a JavaScript API for Web applications [1]. WebRTC allows
for transferring a/v data via the Secure Real-time Transport
Protocol (SRTP) as well as generic binary and textual data
via the Stream Control Transmission Protocol (SCTP) over
Datagram Transport Layer Security (DTLS). Because most
browsers are expected to operate behind a NAT, Session
Traversal Utilities for NAT (STUN) are natively provided.
WebRTC is limited in the way that it allows two browsers to
interconnect and exchange data. The standards neither include
topology- nor routing-related topics.

Current research based on the WebRTC technology is
mostly conducted in the multimedia conferencing and CDN
context. The authors of [16] present a media server component
that exploits the expected broad deployment of WebRTC to
converge multimedia conferencing on different devices like
smartphones and desktops. They provide an architecture based
on open source software that handles media mixing, transcod-
ing and filtering for group communication use cases.

Maygh [17] is a WebRTC-based system that facilitates P2P
content distribution among participating clients. Maygh uses a
centralized P2P lookup system with a coordinator node to store
mappings between content and clients that already downloaded
specific content. Succeeding requests from other clients can
than be answered by peers that already downloaded the content
with the help of the coordinator.

We build our architecture for application networking on
the emerging WebRTC standards, which are under active
implementation in several browsers.

III. THE CASE FOR BROWSER-BASED PUBLISHING

We now focus on the basic conditions for our design. First
we identify use cases that are inspired from the current Web
or explicitly outlined for ICN (e.g. in [18]). Second we derive
the corresponding requirements.

A. Application Use Cases

1) Document Sharing And Search: Current file sharing
applications can be divided into two main groups: Server-
based and P2P-based. On the Web, file sharing is implemented
using the server-based approach. The drawback here is the
reliance on a centralized service or the requirement to setup
a custom server. Moreover, users have to trust the service
provider with regards to content integrity and privacy concerns.
A user-centric approach would counter these disadvantages in
the following ways: Users share documents directly from one
browser to another. The publication of a document does not
rely on setting up a Web server, uploading the document to
a central instance or changing DNS entries. Similarly, it shall
be possible for users to search for content on other peers.

To share a document, a user registers for an account,
uploads a specific document from the filesystem to ‘the Web’
and grants either public access or to a group of collaborators.
Typically, this is done by sharing an identifier via an external
channel or by using a front end to invite other registered
platform members.

TABLE I. REQUIREMENTS DERIVED FROM USE CASES

Use Case Requirement

Document Sharing And Search Unique Identity, Unique Identifier
Conversational Apps Unique Identity
Group Collaboration and Gaming Unique Identity
Mobility and Offloading Unique Identity, Transparent Handover,

Replicas, Location-independent Identi-
fier

Replication and Synchronization Unique Identity, Multi-presence, Repli-
cas, Location-independent Identifier

Privacy Unique Identity

2) Conversational Apps: Real-time text or audio/video
chats are of growing popularity. The increasing usage of social
collaboration tools in the private as well as the enterprise
context serve as a ground for conversational apps. On the
Web, users employ centralized applications provided by service
operators.

In a group chat context, all users of a community need to
call and establish sessions. A single user must be able to open
a chat room and invite other users (in some way connected to
this user, e.g. via a friendship relation). The network transport
must provide appropriate real-time services.

3) Group Collaboration and Gaming: In group collabo-
ration applications and multiplayer games users collaborate in
self-defined groups. Such applications allow for the creation of
groups, varying memberships and the invitation of participants.
In addition, the application state (e.g., the position of players
in a game or the content of documents in a groupware) must
be transparently accessible for all members of a group.

B. System Use Cases

1) Mobility and Offloading: More and more people use In-
ternet services from mobile devices like smartphones or tablets.
Under mobility, the user network must be able to cope with
frequent network address changes. Publishers can accomplish
this goal by offloading content to (stationary) third parties that
promise better connectivity. Consumers can partially mitigate
rapid address changes by pre-fetching content.

2) Replication and Synchronization: Users generally de-
mand high content availability and fast access. Replication
accomplishes this by storing multiple copies of the content
(replicas) on different, independent systems. Synchronization
implies that the content is being kept up-to-date between the
replicas at a reasonable time-scale and logic.

3) Privacy: There are increasing demands for privacy by
Internet users. The benefits of these applications are that they
only use encrypted transports and encrypt the data that is stored
at third parties. This makes it more unlikely that eavesdroppers
with access to transport routes or community infrastructure are
able to reveal sensitive data.

C. Requirements

We now can derive a set of requirements that a user-centric
solution should fulfill.

1) Unique Identity: The first one is that every user of a
community must be uniquely identifiable so that others are
able to verify the identity of the remote peer.



2) Multi-presence: As a second requirement, it should be
possible for a user to stay online in the community with several
clients at the same time (multiple presence), so that content can
be served from different hosts belonging to one user.

3) Unique Identifier: The third requirement is that content
must be uniquely identifiable in the sense that a document must
get a unique, persistent handle to be shared between users.
Such an identifier must be uniformly constructed and generic
enough to support the use cases described here as well as future
usages.

4) Location-independent Identifier: Fourth, the identifier
must be constructed in a way that is not tied to a specific
host. It should rather be host-independent to be able to shift
content between hosts and decouple the content names from
the underlying infrastructure as introduced by ICN. Content
can then be published independently of the actual peer serving
it, thus enabling flexible offloading approaches.

5) Transparent Handover: Fifth, a solution is required
to take into account peers changing networks quickly. Web
applications need to implement transparent handovers. Since
the identifiers are host-independent, the host resolution must
be flexible enough to support quick updates to host locations.

6) Replicas: The final and sixth requirements shall enable
replicas. Content may be shared among peers but must be
available through one identifier, which shall be resolvable to
more than one host address.

IV. BROWSER-BASED OPEN PUBLISHING

The solution concept and the software architecture pro-
posed here are designed to comply with all the requirements
stated above. The primary assumption is that an implementa-
tion of this concept runs in a Web browser without the need
for additional plugins. Our approach is called BOPlish, short
for Browser-based Open Publishing.

A. Solution Concept

The solution presented here focuses on the idea that users
have complete control over naming and providing content and
eventually introduces a user-centric naming and networking
concept, similar to those presented in [11], [12] or [13].

A user community consists of a number of peers that
are connected to each other via a P2P network. A Web
server delivering a BOPlish application serves as bootstrap
component for joining one specific community. A user can
join the P2P network and may close the connection to the Web
server without losing any functionality provided by BOPlish.
Prior to joining a user community a peer has to acquire a
unique peer ID (its address) and the user has to authenticate
at an identity provider. The combination of peer address and
username is then used to join the user community and stored
in a Distributed Hash Table (DHT) with the username as key
and a reference to this peer as value.

When the user community is established, content can be
published, accessed and shared among the peers. For this pur-
pose, the design of content identifiers is a key ingredient to our
solution. We start from URIs, the common meta-scheme for
Web resources. For the further specification, we follow three

steps. First, we build on the recent Common API for (mul-
ticast) publish/subscribe [19]. RFC 7046 provides a standard
syntax for an identifier of the form id@instantiation
along with security credentials. Second, we center IDs around
users that are ‘instantiated’ by identity providers. Third and
last, we add the name of the application-layer protocol (instead
of ports) to facilitate a transparent communication context.

In summary, our proposal for a uniform content naming
reads:

bop:username@idp:protocol
[/path[?parameters]]

These content URIs are comprised of the scheme bop
and a hierarchical component further built from a unique
username verified by an identity provider idp, followed by
a protocol and path specifier and optional parameters
that can include security credentials. The protocol specifier
is used for setting different usages in one community, e.g.,
a chat service and a document sharing service. A peer uses
that identifier to pass the URI to different modules of the
application. This puts part of the application-specific semantics
into the URI, with the consequence that not every BOPlish
application may be able to serve every URI. The advantage of
this design is that BOPlish URIs are flexible and extensible
enough to easily reflect future use cases. Such a URI is
generated for every published item and is shared to other users.
The sharing itself is done as with HTTP URLs, e.g., via XMPP
or e-mail. These are some examples of BOPlish URIs:

bop:alice@example.org:document/img/
images.png?sha-256;1234abc...

bop:bob@example.com:search/Music/*tomte*

BOPlish URIs guarantee a location-independence by em-
ploying the username instead of a specific host identifier. The
actual address of a peer responsible for a specific user is
resolved via the user community itself (using the DHT). A
query for one key in the DHT may result in a list of peer
addresses, reflecting the currently available content publishers.

Our reference implementation of this concept consists of
a JavaScript library that can be included in web applications
either by running directly in the browser or potentially on a
server using a JavaScript runtime environment like Node.js1.
A user navigates to a web page and automatically joins
the user community. After the user has joined the overlay
network, he can request content or publish content himself.
This overlay could even span across web sites so that a user
that joined from example.org can communicate with a
user from example.com. This allows for a decentralized,
domain independent content distribution which is not tied to
central services. BOPlish uses WebRTC as its transport mech-
anism, allowing for direct peer-to-peer connections between
the clients’ browsers.

Figure 2 shows an overview of the current BOPlish ar-
chitecture first described in [20], [21]. It consists of three
components: a) The Name Resolver API that allows for the
resolution of location-independent identifiers; b) The Content
API that is queried by a remote host to access the content

1http://js-platform.github.io/node-webrtc/
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Fig. 2. Example for the steps involved in retrieving the content addressed by
the URI bop:user@identity.org:documents/beer.png. Nodes in
BOPlish retrieve content by issuing a lookup of the content’s user namespace
to the underlying DHT (1) which returns a pointer to the actual node that holds
the content (2). This pointer is then used to open a WebRTC Data Channel
to the peer, query for the content (3) and transfer it (4). At least one node
maintains a WebSocket connection to the bootstrap server (5) so that new
peers can join the community via this node.

announced by the publisher via its URI; c) A bootstrap
component for joining an existing network.

B. Software Architecture

The design of our architecture is presented in Figure 3. At
the very top sits the BOPlish API which is the entry point for
all applications that make use of the content sharing facility.
This is the developer facing part that exposes an API for
sending and receiving data. Below that part, we encapsulated
a Router, a Connection Manager and a Bootstrapping mecha-
nism.

The Router component is responsible for deciding where to
forward messages to and thus maintains a routing table, even-
tually forming a peer in the DHT. The Connection Manager
component is responsible for handling WebRTC specifics like
creating offers and answers, keeping track of open connections
and handling glare. To be able to join a P2P network, a
node has to know at least one other node already part of that
network. This is where the Bootstrap component comes into
play. It encapsulates the functionality for discovering an initial
node to connect to. Since this process is very tightly bound
to the generic connection establishment in our WebRTC-
based implementation, we included this component into the
Connection Manager.

C. Name Resolution and Data Routing in BOPlish

Instead of operating on the network layer like ICN, we
introduce an overlay network which is capable of unbinding

send()  registerProtocol()  generateURI()

BOPlish API

Connection Manager

WebRTC

Bootstrap

onmessage()

send()

bootstrap()

receive()

connect()

Router

route()
registerDeliveryCallback()

addPeer()
registerDeliveryCallback()

route()

Fig. 3. Outline of all BOPlish components and their interaction with one
another. Each component is strictly defined by a set of API calls and loosely
coupled to the other components. This enables us to easily replace parts of
the functionality without having to refactor reliant code.

the relation between location and content identifier. This mech-
anism is realized by using a DHT which uses a hash of the
identifiers as key and returns a pointer to the node that holds
the content as value. This indirection allows the system to
handle names and locations separately which we identified as
a requirement for a content-centric architecture above. Because
only the name-location resolution depends on a DHT and we
limit the scale to specific interest groups instead of the Internet
as a whole, the DHT can be designed to be highly churn-
resistant and redundant. This is a crucial requirement as DHT
implementations tend to be fragile when peers join/leave the
network in a high frequency [22].

Data Routing in the BOPlish architecture is decoupled
from the name resolution. Instead of using the reverse path
of the name resolution, BOPlish opens a direct WebRTC
connection between the content receiver and one or more
of the publishers. Coupling the data routing with the name
resolution is also possible but routing the content through
the DHT would impose unnecessary load, leading to poor
performance regarding the name lookup. Moreover, depend-
ing on the DHT implementation, the overlay path can be
disadvantageous because it is not aware of geographical and
performance properties of the overlay hops. The reference to
a location is obtained by using the return value of the DHT
name resolution procedure. If the connection to the publisher
fails, the content receiver can always re-query the DHT to find
the updated location information. This allows for mobility of
both, the content receiver and the publisher because the DHT
entry can easily be updated without requiring a name change
of the content’s identifier.

D. Envisioning Pub/Sub in BOPlish

BOPlish is a user-centric approach to content distribution in
user communities. In such a system, peers need to be loosely
coupled to gain stability and performance despite unreliable
entities. As the recent success of ICN indicate, the pub/sub
paradigm is a good fit for such large-scale applications and a
pub/sub interface would be a valuable addition to the current



BOPlish implementation. To identify the characteristics of
pub/sub systems, [3] factors out a common denominator: the
decoupling of the communicating entities in time and space. In
this section, we show how BOPlish can be extended to fulfill
the requirements introduced by [3].

TABLE II. EXTENDED NAME RESOLUTION DATA STRUCTURE

Key Value

h(bob@idp)

Publishers Subscribers
[CurrentPublishers] [(CurrentSubscribers,

RequestedURI)]

Table II shows an extended data structure that aims to
provide the necessary decoupling. This is achieved by (a)
adding a subscriber reference to the hash table’s value. This
allows a subscriber to issue an interest in content even when no
publisher is available at that time and therefore allows for asyn-
chronous notification mechanisms. Alongside the subscriber’s
reference, the requested URI is also kept in the DHT (b). In
this way, publishers can serve certain subscribers depending
on the requested URI (e.g., chat from pub1, documents from
pub2). After extending the data structure, we can revisit the
requirements of a pub/sub system:

1) Spatial decoupling: Spatial decoupling in BOPlish is
feasible by letting the name resolution service select the
appropriate publisher for a requesting subscriber. As such,
producers and consumers both have a limited view upon the
current state instead of requiring full knowledge of each other.

2) Temporal decoupling: As the name resolution is realized
as a DHT and therefore distributed among the participating
peers, it can be viewed as a persistent storage entity. Even
when no publisher is available, subscribers can issue an interest
in the content by adding themselves to the appropriate DHT
entry. Conversely, the subscriber can get notified by the name
resolution service when a publisher is available.

Extending the data scheme that is used by the name
resolver results in a flexible approach that fulfills the re-
quirements for a pub/sub system introduced by [3]. On the
other hand, this approach burdens load on the DHT because
updates to the hash table’s entries have to be made for each
participating subscriber.

V. EVALUATION

We evaluate the BOPlish architecture by showing its the-
oretical applicability on the use cases defined in III-A and
III-B. We developed demo applications2 on top of our BOPlish
implementation to evaluate the practical consequences of our
design decisions. Finally, the security aspects are discussed.

A. Applicability On Use Cases

Every application that runs on top of a BOPlish platform
instance registers one or more protocols it claims responsibility
for; this is the protocol specifier of the URI (see IV-A).
The BOPlish API offers the method registerProtocol()
to achieve this. After registration, messages for this specific
protocol identifier can be sent (send()) and asynchronously
received by the application running on top of BOPlish. Figure
4 and 5 show examples of such applications [20].

2https://github.com/boplish/

Fig. 4. Application running on top of the BOPlish architecture exhibiting
the network topology where each vertex represents a peer in the community.

Fig. 5. Simple BOPlish group chat application.

1) Document Sharing and Search: Since JavaScript code
running in the browser does not have access to the file system,
a document sharing application is responsible for giving users
the possibility to provide access to a specific file. This can
be done by drag’n’drop mechanisms or with a file selection
HTML element. Once the application has access to the file it
can read its contents and meta data and store it in memory or
a more persistent space like the browser’s local storage.

After registering the protocol-identifier (e.g.,
documents), a unique URI is generated for every document.
This URI is then shared by the end user in the community.
Searching for documents is implemented using a wildcard
syntax in the identifiers. The application can implement the
search function locally and returns matches (e.g., a JSON list
of documents URIs).

2) Conversational Apps: The use case of enabling real-time
chats between two or more users in a community is achieved
by registering for an appropriate protocol specifier like chat
and generating a URI for a specific room:

bop:alice@example.org:chat/nightOut

This URI denotes a chat room “nightOut” with the host
of the room being the user “alice@example.org”. When Bob
wants to join that room, his client resolves Alice’s peer ID via



the name resolver, connects to it and receives a list of peer IDs
that already joined the room. For every ID, Bob’s application
generates a WebRTC offer, sends it via Alice’s peer to the
specified host and receives an answer, eventually resulting in
a WebRTC connection to every peer in the chat room.

3) Group Collaboration and Gaming: Real-time collabora-
tion and multiplayer games in small scale can be implemented
by directly connecting all participating peers. Extending the
name resolver mechanism as described in Section IV-D ben-
efits group communication claims by adding asynchronous
notifications (e.g., when a player gets available). The SCTP
transport of the DataChannel allows for high-bandwidth and
low-latency connections.

4) Mobility And Offloading: Mobility implies rapid
changes in network connectivity (e.g., a user traveling by
train). To mitigate frequent address changes in BOPlish, the
name-resolution mechanism must be fast enough so that the
key-value pair of (username, peer ID) remains current. This is
done by updating the corresponding DHT value, which must
be implemented accordingly.

Moving content between peers (offloading) without chang-
ing its URI is possible when peers with two different IDs but
the same user identity can be online at the same time. This
implies that the DHT stores a one-to-many mapping between
username and peer IDs. Thus, querying the DHT for a key
alice@example.org may result in a list of IDs. Each
BOPlish client must be able to query each host in that list for
the desired content (given by its URI) until either the content
has been retrieved or every host has denoted that it does not
hold that specific content.

5) Replication and Synchronization: When a peer closes
the browser or the tab that runs a BOPlish application, the
WebRTC connection to the user community is lost. As a result,
the shared content from this peer is not available anymore.
To keep content highly available, a user may want to run a
stationary device (such as a home NAS server) that’s always
connected to the user community.

To implement such a client one major requirement must be
fulfilled: The client must have access to the filesystem. This is
possible when the application runs on a Node.js server because
Node.js provides ways to access the filesystem directly. Such
an application could provide an administrative interface listing
all the available files and corresponding BOPlish URIs that the
user may then share to her fellows in the community. In our
current solution concept, every application is responsible for
synchronizing replicas because the core BOPlish library does
not provide such mechanisms.

6) Privacy: Every peer has complete control over how
content is shared in the community. Peers are able to encrypt
content prior to delivering it to other peers and restrict access to
certain remote users. BOPlish enables this use case and leaves
it up to the application developers to protect content access;
something, that centralized web services usually do not offer.

B. Security

Every peer in a structured P2P network has to acquire
a unique ID. In the BOPlish name resolver implementation,
this ID is used to identify the publisher and to determine the

storage range. The assignment process needs to be secure in
the sense that no user can (intentionally or unintentionally)
be assigned to an ID that already refers to another user.
Likewise, transport security is required, but WebRTC offers
all functionality needed.

Approaches to secure ID assignment and identity verifica-
tion in structured P2P networks have been previously proposed,
e.g., in RELOAD [15]. This concept could also be applied
to BOPlish. A current shortcoming of browsers are missing
functions in public crypto, e.g., signature verification or en-
cryption using an asymmetric key pair. The W3C is working
on an API to make these available to Web applications [23].
In the meantime, the missing functionality can be included
by incorporating JavaScript implementations of cryptography
functions into BOPlish. However, it has to be noted that these
cannot provide the same security as a native API because
browsers lack access to e.g., a cryptographically secure random
number generator.

VI. DISCUSSION

BOPlish is a user-centric content sharing facility. The
vision of our architecture differs from today’s use of the
Internet. Instead of handing over the content to the service
provider (or the CDN provider), users keep control over the
content shared within a BOPlish interest group. This is possible
by employing a self-organized infrastructure centered around
the user instead of using third-party services. Resources are
accessible via a user prefix that is not bound to a provider.
This prefix is resolved to the content location using an domain-
independent overlay name resolution. The resulting overlay has
to ensure reliability and availability characteristics comparable
to current services.

Reliability in a BOPlish user community is largely influ-
enced by the P2P algorithm in use. BOPlish currently uses
the Chord protocol to maintain the network topology. DHTs
tend to be fragile in regards to performance and have to
be carefully designed. Finding beneficial parameters or even
exchanging the algorithm with, e.g., a mesh-based solution are
possible encounters to handle frequent joins/leaves of peers
and therefore boost the reliability of the system to a sufficient
level.

Content in a BOPlish user community is available as long
as the content owner is reachable. As such, the user (instead
of the service provider) has to make sure that a copy of the
content stays available in the BOPlish network. As the BOPlish
library is not limited to the browser environment, it could
potentially also be run on NAS-like devices or servers that
provide the necessary availability for a specific kind of content.
Moreover, a service running on top of BOPlish could cache
content at other peers for increased performance or offload
content to increase availability. The ICN-inspired location-
independent identifiers used by BOPlish to address content
allow for flexible cache placement by extending the name
resolution service.

Traditional services on the Web relay content over their
own infrastructure. This allows the service provider to access
and monitor all bypassing content. In contrast, a BOPlish
user community does not comprise any central authorities and
content is always transferred directly from one peer to another



over a secure DTLS-encrypted channel. Central monitoring is
therefore much more complex to implement. As content is
stored at peers that are under control of the content owner, the
owner can at all times withdraw the content from the network
by deleting the mapping in the name resolution service.

We evaluated the theoretical applicability on the defined
use cases in section V. However, quantitative results from
measurements are currently not conducted. Possible shortcom-
ings like performance problems of the name resolution service
might thus require changes to the architecture. Introducing
caches could benefit performance and, equally important, reli-
ability throughout the system. On the other hand, caching data
at foreign users also means handing over data to peers that are
not directly controlled by the content owner.

VII. CONCLUSIONS AND OUTLOOK

We presented BOPlish, our user-centric architecture that
enables name-based publishing with the help of a browser-
to-browser overlay network. Inspired by ICN ideas (but with-
out changes to the network-layer) BOPlish facilitates various
name-based content sharing applications. An easy implementa-
tion of various key use cases allows to distribute content among
users of multiple websites in various application contexts. An
evaluation and an open implementation of the network core
along with some demo applications complement our idea.

Still, open issues remain that have not been dealt with.
An appropriate DHT implementation is an important issue
for the name resolution performance and therefore the whole
system. Scalability of the system is also largely influenced by
the used P2P topology. Thus, measurements of a larger scale,
by using an emulation or simulation component, need to be
conducted for detecting possible shortcomings of the BOPlish
architecture. Also, security aspects have to be investigated
further.

Since BOPlish focuses on Web browser clients we expect
high churn rates in the communities. We plan on conducting
the adaptability of our prototypical implementation to different
levels of churn depending on the communities’ size, delays
between clients and rates of joins/leaves.

To take our approach one step further we constantly eval-
uate additional use cases. Such usages could include efficient
multicast applications as well as the design of a simple to use
API for developers that would like to make use of BOPlish
communities.
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