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Abstract
�is document gives an inside on performance related characteristics a DHT imposes. Popular

design decisions ruled by other DHT designers and their e�ect on performance are investigated

and mapped to our current work centering around a DHT implementation running in the users

browser that we call a web-based DHT.
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1 Introduction

�eWeb of today is a huge system of interconnected nodes providing a multitude of data to its’

users. E�ciently distributing and structuring the content still remains a challenge, though. As

a new approach, we are currently investigating a concept for a peer-to-peer (P2P) based content

sharing facility that centers around the users’ data instead of the servers’. To conveniently

serve data, this approach uses web browsers as its application platform which enables a broad

deployment across di�erent devices and operating systems.

Web browsers are currently implementing the WebRTC technology which, for the �rst time,

allows for direct P2P-communication between them. While this technology forms the basis of

the transport layer, using a distributed hash table (DHT) as a routing layer allows the system

to scale in a logarithmic manor. �e three main criteria that mark a DHT implementation

are Security, Scalability and Performance. Each aspect has been extensively researched over

several years. While security and scalability are important factors, this paper focuses on

performance. To drill down on the speci�cs, important related work has been chosen that

summarizes performance from both, the implementers and the designers point of view. �e

insights of this work raised the need for an emulation component for measurement purposes

to verify the implications imposed by design decisions.

�is paper is structured as follows. Chapter 2 introduces the core technologies used, namely

WebRTC and distributed hash tables (DHT). Chapter 3 talks about the core design decisions

and their implications on performance. �e insights of this work are used in chapter � to

determine the overlapping design issues for a web-based DHT.

“�e Internet is the world’s largest library. It’s just that all the books are on the

�oor.“ — John Allen Paulos
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2 Background

For completeness, this section describes fundamental components that are mandatory to

understand the remainder of this paper. �ese components are the WebRTC protocol suite and

DHTs as described in section 2.1 and 2.2.

2.1 WebRTC

WebRTC is a web based approach that allows an implementation (which typically is a web

browser) to communicate with another implementation directly over a peer to peer connection

[1]. In order to achieve this goal, a set of protocols is being dra�ed in the IETF Working Group

Rtcweb and a corresponding API is de�ned by the W3C to allow web browsers to leverage the

frameworks bene�ts.

A WebRTC communication instance is called a PeerConnection and consists of two peers at

either ends. To initiate and preserve such a connection, a signaling mechanism has to be used

which is le� to the application as much as possible. �is is justi�ed by the unique nature of

web browsers that cannot easily preserve states over website reloads and the large variety of

applications using di�erent protocols such as SIP or XMPP/Jingle for signaling. �e pursued

approach to give the application control over the signaling plane is called JSEP and speci�ed

in [12]. JSEP uses the Session Description Protocol (SDP) media descriptions that have to be

sent to the other peer over an arbitrary, bidirectional channel.

Apart from session management, WebRTC covers audio and video as well as data transport

over a PeerConnection. Non-media data transport aspects of WebRTC are speci�ed in [6]

that introduces the DataChannel that, at its core, uses a SCTP over DTLS over UDP protocol

stack which will be further elaborated on in section 4. As of today, Mozilla Firefox and Google

Chrome implement the API and other vendors are expected to follow when the API stabilizes.

Even though the WebRTC framework provides peer to peer connections, it does not deal

with important aspects such as routing between the peers or storage capabilities that form a

P2P Overlay. Still, a subset of WebRTC, namely the DataChannel, can be used as the substrate

of such an Overlay.
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2 Background

2.2 Distributed Hash Tables

Two classes of P2P Overlays exist: Structured and Unstructured. Unstructured overlays organize

participating peers in a random graph and use mechanisms such as �ooding or random walks

to query for content. Because content is nondeterministically distributed over peers, each

traversed peer has to perform expensive local operations which makes this approach ine�cient

for content that is rarely replicated among peers.

Structured Overlays, on the other hand, provide the bene�t of deterministic information

placement, i.e. content is stored not at random locations but at speci�c peers to make queries

more e�cient. �is is achieved by incorporating Distributed Hash Tables (DHT) which form

the basis of such a structured overlay and support the scalable storage and retrieval of key-value

pairs in large scale systems by introducing a key-based routing layer (KBR). �e KBR hides

away the complexity and provides a simple value=get(key) and put(key, value)

interface to the overlay application.

Such a DHT maps peers to a large uniform random identi�er space. Content is then mapped

to the same identi�er space by consistently assigning keys to each data object (e.g. by using

a hash function like SHA-1). As a �nal step, the content is assigned to a unique peer in the

system which is chosen by the overlay protocol in use (e.g. Chord [11], Pastry [10], CAN

[8]). Every peer has to maintain only a small routing table consisting of selected identi�ers

and corresponding connections to each peer. When a traversing lookup arrives, the protocol

chooses a nearby peer out of its routing table to send the request to. �is is possible because of

the consistent mapping of data and peers to the same identi�er space and thus maintaining a

mathematical relation between each other.

DHT-based systems can make certain assumptions about the number of overlay hops it

takes to reach the peer that holds the content, typically O(logN) where N is the number

of participating peers ([7] give further details about di�erent overlays). Structured overlays

are typically based on similar designs like ring- (e.g. Chord or Pastry) or geometry-based

approaches (e.g. CAN). Besides the usage as a basis for structured overlays, DHTs also �nd a

use in other systems such as the Apache Cassandra NoSQL-Database
1
, the Amazon SimpleDB

Key-Value store
2
or the GlusterFS distributed �lesystem

3
.

In section 3, popular design decisions and tradeo�s of DHT-based systems will be further

elaborated on while evaluating di�erences and spo�ing possible issues with the introduced

WebRTC-based implementation.

1

h�p://cassandra.apache.org/

2

h�p://aws.amazon.com/de/simpledb/

3

h�p://www.gluster.org/
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3 DHT Design Decisions and Implications
on Performance

In this section, design decisions that have been rendered for existing DHTs and their implication

on performance will be discussed. To do so, a typical DHT architecture is introduced �rst.

A�erwards, the most prominent design decisions and their performance implications are

discussed. �en, performance metrics and measurement conductions that are speci�c to P2P

systems are introduced. �e section ends with a summary that concludes the di�erent aspects.

3.1 Abstract Architecture

Figure 3.1 shows the simpli�ed abstract architecture of the web-based P2P system this work

contributes to. It is based on the API proposal by Dabek et al. [5] containing a key-based-

routing-layer. �is approach allows for interchangeable DHT implementations and a loosely

coupled, application-layer independent development process. Moreover, the similarities to

other implementations allow us to easily adapt the design decisions further elaborated on in

section 3.2.

Application

PeerManager

Routing

Routing API

PeerManager API

Peer 1 Peer 2

WebRTC

Application

PeerManager

Routing

Routing API

PeerManager API

WebRTC

Figure 3.1: Abstract architecture based on the common API by Dabek et al. [5]
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3 DHT Design Decisions and Implications on Performance

3.2 Design Decisions and Performance Characteristics

DHTs use diverse techniques such as di�erent routing mechanisms, proximity neighbor selec-

tion, erasure coding, replication and server selection to accommodate for varying application’s

requirements. Dabek et al. [4] summarize the e�ects on performance (namely latency and

throughput) from prominent DHTs by using both a simulator with an Internet latency model

and a custom implementation of a DHT named DHash++ that combines multiple techniques

to optimize latency and throughput capacities. �is section will present key results in further

detail by explaining the design decisions and how they a�ect performance.

Data Layout. DHTs might not store actual data but use a separate layer of indirection,

i.e. the values might only consist of a link to the actual data (such as an URL). Generally

speaking, integrating lookup and storage functionality in the DHT bene�ts latency because

the data can be piggybacked on the fetch response instead of triggering a new request to the

indirection layer.

DHTs that store data have to decide on the size of the data units. A data unit might refer to

a disk sector-like fragment of a �le, a whole �le or even an entire �le system image. In general,

large unit sizes lead to a inferior number of lookups while spli�ing large �les into smaller units

distributes the load over more peers.

Another arising design question of data layout is the location of the data unit. If a particular

data unit is likely to be read by peers in a speci�c geographical location, it makes sense to

condense data units instead of spreading them widely. On the other hand, this makes the

system more vulnerable to network outages and leads to an uneven balanced load distribution

in the system compared to a system with randomly placed data units.

Iterative vs. Recursive Routing. A number of hops is required to reach a key’s corre-

sponding peer. �e requests can be routed over theses hops in an iterative or recursive manner

as shown in Figure 3.2. Apparently, recursive routing reduces the latency by half because

intermediate hops forward the request directly instead of answering with the address of the

next hop.

�e downside of recursive routing is a more di�cult failure detection. When an intermediate

peer fails to route the request, the sender cannot immediately take notice and thus cannot retry

or reroute as fast as by using iterative routing. Dabek et al. suggest a combination by providing

a fallback mechanism from recursive to iterative routing a�er numerous failed a�empts.

5



3 DHT Design Decisions and Implications on Performance

Recursive Routing Iterative Routing

Figure 3.2: Recursive and iterative routing in a DHTwith round shapes for sender (le�), receiver

(right) and rectangular for intermediate peers that route the request

Proximity Neighbor Selection. If taken into account that a short hop count in the overlay

can result in signi�cantly longer paths in the underlay, proximity neighbor selection (PNS)

enables a DHT peer to in�uence the choice of peers in its peer table. A search algorithm has to

be used to �nd nearby peers whereas the crucial part of this algorithm is a e�cient latency

prediction between peers that only consumes minor peer resources (such as Vivaldi [3]).

By using PNS, Dabek et al. achieve an approximated 1.5 times the average round trip time

compared to the underlying network regardless of the system’s peer count.

Transport and Congestion Control. Typical DHT implementations use either a TCP- or a

UDP-based approach that is compatible with todays broadly deployed IP-stack. �e usage of

custom protocols on top of UDP are able to increase performance by using a congestion control

that is speci�cally suited for P2P communication purposes. �e web-based DHT introduced

in this paper, though, depends on the WebRTC DataChannel as its transport mechanism that

is based on a DTLS over SCTP over UDP approach. At the time of writing, the DataChannel

speci�cation is not �nalized and is expected to change in the near future, therefore performance

related assumptions have to be pushed to future work.

3.3 Churn Impact

Rhea et al. [9] reveal that deployed DHT systems, contrary to simulation-based results, su�er

from major performance losses or even break down when exposed to high churn rates. To

encounter this issue, they present Bamboo, a churn-resilient DHT implementation. �is section

describes the key design decisions that led to increased resistance against churn and their

implications on performance.

6



3 DHT Design Decisions and Implications on Performance

Fast and accurate failure detection. In section 3.2 iterative and recursive routing have

been confronted and the results show that the latency bene�ts from recursive routing come

with a price of more complicated failure detection. Using recursive routing also brings the

advantage of a smaller number of connections because there is no need to establish additional

connections to the intermediate hosts. �is in turn makes failure detection easier because

each peer only has to monitor the peers in its routing table making recursive routing a good

choice for systems with a high rate of churn. To accommodate the more complicated failure

detection, static resilience can be used to give intermediate peers the opportunity to choose an

alternative path for the request. �us, the initiating peer does not have to be informed about

peer failures in the overlay path.

Reactive vs. proactive failure recovery. To detect these malfunctioning links between

peers, a reactive or proactive strategy can be used. Proactive recovery reacts to failed links

by immediately searching for a new peer imposing load on the system. If the increased load

overburdens the network, a positive feedback loop is formed and the network can collapse.

�erefore, periodic failure recovery with �xed intervals has an advantage although it cannot

bring the system back to a consistent state as fast and imposes management tra�c even if no

requests are pending.

3.4 Measuring Performance

In contrast to client/server systems, even simple measurements of P2P systems such as link

stress can be di�cult to perform as no central node exists but measurements have to take a great

quantity of links into account. Simulation (such as p2psim
1
) and Emulation (such as ModelNet

2
) approaches are possible encounters for complex measurement scenarios. While a simulator

mimics the behavior of a complete system, an emulation can replace the original implementation

or parts of it and behave just like the real one (including external communication). �erefore,

simulation can evaluate and compare DHT algorithms such as the base Pastry or Chord ones

but have to be implemented on top of the simulation framework, thus the code is mostly not

reusable for a real implementation. Emulation, on the other hand, allows a real implementation

to be tested by providing an environment with realistic latency and throughput characteristics.

To be able to compare di�erent DHTs in scenario-based approaches – that allow for repro-

ducible environments – is a crucial requirement to evaluate the variety of design decisions

1

h�p://pdos.csail.mit.edu/p2psim/

2

h�p://modelnet.ucsd.edu/
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3 DHT Design Decisions and Implications on Performance

presented in chapter 3 and their implications on performance. �e choice of emulation or

simulation depends on the use cases as stated above but emulation seems to provide a more

practical oriented approach.

Once a measurement environment has been set up, the next step is to �nd metrics that

describe performance a�ributes of the system. Some of the metrics that are commonly used

in 1:1 communication like Link Stress, Node Stress and Packet duplicates can be reused while

other, more �ne-grained metrics like Delay Stretch and Lookup Sucess Rate have to be chosen

to characterize the special nature of DHTs.

Delay Stretch. By using a overlay schema like chord, intermediate routing steps are in-

troduced that lengthen the path between two peers. Delay Stretch is de�ned as the ratio

between the resulting path and direct communication between these peers using a distance

metric like round-trip delay:

d :=

∑
distxy

distuv
,mit x, y : intermediate peers on the routing path from u to v.

�e delay stretch gives an assumption on the network e�ciency, being optimal at a delay

stretch of 1 while an increase results in deteriorated e�ciency. To obtain the delay stretch,

a su�cient number of peers have to participate. According to Castro et al. [2] high link and

node stress on any of the intermediate peers may distort the delay stretch measurement.

Lookup Success Rate. In a DHT, lookups are likely to fail because an intermediate peer

can at any time exit the system or be overloaded. �e lookup success rate in proportion to time

shows how the implementation reacts to certain scenarios like ou�akes or higher than usual

rates of churn. Obtaining the lookup success rate depends very much on the implementation

and if routing is done in a recursive or iterative manor. Iterative routing makes it easy to

determine lookup failure while the situation is more complex when using recursive routing as

described above.

3.5 Summary

By combining multiple techniques, Dabek et al. achieve high cumulative performance im-

provements. By using recursive instead of iterative routing the latency has been signi�cantly

reduced and proximity neighbor selection achieves 1.5 times the average round trip delay

compared to the underlying network. Further latency improvement can be achieved by using

8



specialized transport protocols. �ere are drawbacks though, that have not been taken into

account. �e authors presume that malicious nodes do not exist in the system. �ese would

have a negative e�ect on performance when taken actions against, eventually making the read

and write algorithms more expensive by introducing some kind of authentication facility.

Another factor that has not been examined by Dabek et al. is churn, the rate of peers joining

and leaving the system. As Rhea et al. [9] point out, churn has a crucial impact on performance

and many DHT implementations su�er from high rates as described in section 3.3. �e authors

introduced e�ective countermeasures by using static resilience and reactive failure recovery.

In order to identify potential performance related issues early in the development process,

emulation or simulation can be used to obtain metrics that characterize the system as good as

possible. �e test results can than be used to iteratively improve the system.

4 Web-based DHT

�e motivation driving this paper is the development of a DHT that uses WebRTC DataChan-

nel as its communication underlay, namely a web-based DHT. To drill down on the speci�c

characteristics such a web-based DHT imposes, a de�nition is given �rst of. Further on, this

chapter concludes how the insights of chapter 3 can help in designing the DHT. �e remainder

of the chapter presents our plans for future work.

4.1 Implications for a Web-based DHT

While common DHTs are built to communicate over the global Internet, a web-based DHT

can be seen as a subset of these that, in contrast, solely use the clients web browser as its

application platform. As the DHT runs in the browser, there is no need for the client to install

additional so�ware and the DHT can become an transparent component of a website enabling

a broad deployment. �ough, there are drawbacks introduced by the web environment that

have to be taken into account.

In contrast to a full �edged application that ful�lls a speci�c task, browser windows (i.e. web

sites) are opened/closed in a more frequent manner. Still depending heavily on the use case,

this can result in low session times leading to higher churn rates. �e Bamboo-DHT introduced

9



4 Web-based DHT

e�ective countermeasures, namely static resilience and proactive failure recovery which come

at a price of increased management overhead respectively greater routing complexity.

Moreover, instead of using a simple TCP socket, further complexity is introduced by the

WebRTC transport layer. How this layer a�ects the implementations’ performance can hardly

be estimated because important aspects of the speci�cation regarding congestion control and

prioritization mechanisms using the underlying SCTP layer are not �nalized. �is will be an

important subject to our future research activities.

As elaborated on in this paper, implementing a DHT that performs good under any use

case is not feasible. Tradeo�s have to be made in order to counteract increasing churn rates,

di�erent data layouts or geographical properties. �e lessons learned from the design decisions

analysis show that using an emulator as soon as possible in the design process to verify

the performance criteria is a crucial requirement. �erefore, such an emulator that supports

headless peer emulation (meaning that no actual browser window has to be running) and allows

for conducting measurements based on the introduced metrics is currently under development.

4.2 Conclusion

�is paper introduced the idea of a web-based DHT. �e most important design decisions made

by DHT designers and their e�ect on performance have been extensively studied. Each design

decision introduced a use-case related tradeo� that has to be taken into account. Moreover, it

has been shown how DHT implementations can counteract the decreased performance that a

high churn rate imposes. Finally, emulation or simulation can help to spot potential bo�lenecks

by obtaining DHT speci�c, performance-related metrics.

�is work laid the foundation for being able to plan a web-based DHT. As performance

is a limiting factor of todays DHT implementations, this work leaves an uncertainness if a

web-based DHT that has further limiting boundaries such as theWebRTC transport mechanism

will perform su�ciently well. On the other hand this depends very much on the use case,

respectively the performance requirements. �e next step will be a DHT implementation

that evolves by using metrics obtained by the emulator while testing the introduced design

approaches.
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