
Towards a Secure RPL
- Ground Truth -

Martin Landsmann

AW2 - Report

Fakultät Technik und Informatik
Studiendepartment Informatik

Faculty of Engineering and Computer Science
Department of Computer Science



Martin Landsmann

AW2 - Report

Eingereicht am: July 28, 2013



Martin Landsmann

Thema der Arbeit
AW2 - Report

Stichworte
LLN, RPL, 6LowPAN, Routing, Internet of Things, IPv6, Sensorknoten, IT-Sicherheit

Kurzzusammenfassung
The IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) has recently been introduced

by the IETF as the new routing standard for the Internet of Things (IoT). It is organized in a

hierarchical graph, optimised for routing towards a root node. A node in such a Destination

Oriented Directed Acyclic Graph (DODAG) advertises its distance to the root node, its rank, to all

adjacent nodes. Joining a DODAG, a node selects parents and announces a higher rank producing

a fully connected DODAG with unambiguous hierarchical relations. Although RPL deVnes

basic security modes, it remains vulnerable to topological attacks, which facilitate blackholing,

interception, and resource exhaustion.



Martin Landsmann

Title of the paper
AW2 - Report

Keywords
LLN, RPL, 6LowPAN, Routing, Internet of Things, IPv6, Sensor-nodes, IT-Security

Abstract
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by the IETF as the new routing standard for the Internet of Things (IoT). It is organized in a

hierarchical graph, optimised for routing towards a root node. A node in such a Destination

Oriented Directed Acyclic Graph (DODAG) advertises its distance to the root node, its rank, to all

adjacent nodes. Joining a DODAG, a node selects parents and announces a higher rank producing

a fully connected DODAG with unambiguous hierarchical relations. Although RPL deVnes

basic security modes, it remains vulnerable to topological attacks, which facilitate blackholing,

interception, and resource exhaustion.
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1 Introduction

This report introduces and discusses security approaches for the routing protocol for low power

and lossy networks (RPL)[1]. The Vrst part gives a brief introduction about the operation

components of RPL, required as knowledge foundation in this report, and introduces their related

vulnerabilities.

The main part of this report focus on related work on securing RPL. In this part three works that

addressed the security issues of RPL are discussed.

Finally a summary on the results of the introduced works is given and potentials and challenges

of coming work.

History The ROLL working group of the Internet engineering task force (IETF) made a survey

in mid 2009 on existing routing protocols for low power and lossy networks [2]. They identiVed

the requirements for such a routing protocol and had a deeper look into existing standardised

protocols. As a result of the survey, it has been shown that none of the examined protocols

satisVed the speciVed requirements.

This was the basis for a speciVcation of a new routing protocol for low power and lossy networks

that meets all the collected requirements.

The IETF started to elaborate the new protocol in the same year which Vnally resulted in the

RFC6550, deVning RPL in early 2012.

1.1 RPL basics

RPL is built on top of the IPv6 [3] variant for constrained network devices (6loWPAN) [4]. It is a

hierarchical converge cast protocol, with the main traXc pattern from the nodes towards the sink

or root node. The topology is constructed proactive while fail and error handling is performed

reactively.

Node joining When a node joins the RPL topology it Vrst listens to advertisements of adjacent

nodes oUering routes towards the root. These hello or information messages are distributed

periodically from every node to the adjacency.
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1 Introduction

Each advertisement contains the information about the distance to the root, the rank.

A joining node chooses a beneVcial node as parent for routing, i.e. a node with a possibly low

distance to the root.

It increments the parent node’s rank by one, and takes it as own distance to the root. In turn it

advertises this information periodically.

Eventually a hierarchical topology constructs in this proactive manner. This procedure forms a

routing graph without the need that a node has to care of the child and further distant nodes.

Routing Forwarding of traXc upwards to the root causes consistency checks on every node

that routes packets. Due to the topology construction, every node can determinate if a message is

forwarded to the right direction, which must be always upwards towards the root node. One

exception are special marked messages allowing routing in opposite direction. These types are

not considered in this report. So, if a message has been forwarded to a node it has to been sent

from a node with greater rank than the receiving node.

If the rank reduction is violated when forwarding, a node determinate a path inconsistency.

This simple, yet eUective check, prevents or at least detects appeared topology loops. If such

inconsistency occurs, the involved nodes try to resolve it locally.

This immediately performed reactive local repair mechanism between the involved nodes rear-

ranges the rank relations and paths of them.

1.1.1 Vulnerabilities

Global repair Tying on the last paragraph, if the number of inconsistencies exceeds the

possibility to resolve them locally, or if the topology is degenerated due to local repairs, the root

node can designate a global reconstruction of the topology. A new topology identiVer, i.e. the

increased "topology" version number, is then distributed by the root node. Upon reception it

causes every node to drop all routes and rejoin the topology, which recreates a new graph. This

global repair mechanism, that aUect all nodes, is obviously vulnerable and needs to be protected

against deliberate misuse.

Rank exploitation The next vulnerability originates in the fact that nodes try to have a parent

with possibly low rank. So if a node advertises a deliberate low rank it can pull a major amount

of routes and traXc. This can lead to a situation where traXc can not be forwarded towards the

root. It can happen if a node takes such a deliberate low rank, that it only has incoming and no

outgoing routes. Or if it just drops the received messages not forwarding them.
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2 VeRA - Version Number and Rank

Authentication

The authors of VeRA [5] elaborated and discussed approaches to provide protection against

malicious version number updates, generating global repairs, and deliberate rank announcements.

Both properties have been protected in a way that each node can verify their correctness.

2.1 Version number protection approach

Their method to protect the version number and their updates uses a reverse hash chain approach.

Each element of this chain represents a veriVable secret, that is linked with the numeric version

number. The hash chain is constructed as follows, the root chooses a random number r , and

computes a hash of it. The resulting hash is again hashed and then again and so forth, until we

hashed r , n times. Finally we have a hash chain of n elements, that is:

Vi = hn+1−i(r)

The reverse manner is indicated by the Vi. In the construction phase of the hash chain the i is

decreased from n down to 0. This results in V0, that represents the n times hashed r.

2.2 Rank protection approach

The rank protection hash chain consists initially only of the Vrst hash element. The root chooses

a random number xi for each new version Vi and hashes the xi once. The corresponding rank to

this hash is 0, representing the root rank.

All further ranks are computed from this root rank hash element. For every rank this root rank

element is hashed the number of times of the rank distance to the root rank j, that is:

Ri,j = hj+1(xi)
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2 VeRA - Version Number and Rank Authentication

Ri,j and the numeric rank j are distributed by each node in their periodic route advertisements

as rank information.

The VeRA approach provides a reverse hash chain for each version number, and a procedure to

link a numeric rank to a corresponding hash chain element. For the protection purposes, the

following message is disseminated through the topology during the built up phase:

〈V0,MACV1(R1,l), {V0,MACV1(R1,l)}sign〉

This bootstrap message consists of two parts. On the left side we have the initiating information

required by a node to perform the veriVcation procedures, and a signature over them on the right

to secure authenticity. The components of the bootstrap message are from left to right:

• V0, the n times hashed random number r representing the initial version hash chain

element

• a Message Authentication Code (MAC) [6] taken from R1,l protected with the version

hash element of the next version V1

• Ri,l, the last rank hash chain element where l is the number or the last or highest possible

rank known to all participants in advance

• the signature {...}sign over the above elements veriVes the root as originator of the

bootstrap message

Each node veriVes the signature and keeps the containing components V0 and the MACV1(R1,l)

from the bootstrap message.

2.2.1 Version protection veriVcation

At each successive version update after the bootstrap, the root distributes this topology recon-

struction message when enforcing a global repair:

〈Vi,MACVi+1(Ri+1,l)〉

With the veriVed information from the bootstrap message, a node can check if the version update

is originated from the root. Hashing the new version hash element Vi, i times must result in V0,

which veriVes the originator of the global repair as root.

4



2 VeRA - Version Number and Rank Authentication

2.2.2 Rank protection veriVcation

The received version update message contains the MAC for the next version update. After the

veriVcation of Vi, the containing MAC is kept by the node. Then Vi is used as key for the MAC

received in the previous version update. Using the MAC with Vi as key, a node can verify the

rank j and the corresponding rank hash element Ri,j of a parent node.

First the node calculates the distance of the parent’s claimed numeric rank and the last or highest

possible rank l. It hashes the claimed rank hash element of the parent the calculated number of

times. Using Vi, the node can create a MAC over this element and check if it matches the MAC

received in the previous version update, that is:

MACVi(Ri,l) == MACVi(h
l−j(Ri,j))

Due to the trust propagation from the bootstrap message the previously received MAC is

trustworthy.

After the parent rank has been veriVed, the child node accepts the parent, and hashes the parent’s

rank hash element once to take the resulting rank hash as own.

Ri,j+1 = h(Ri,j)

2.2.3 Conclusion of the VeRA approach

Version number update protection It relies on the signed Vrst reverse hash chain element

V0 from the bootstrap message. To break the trust propagation an attacker needs to either guess

the next version element Vi+1 in the current version Vi, or try to compute the element which

would break the one way manner of the used hash function.

Rank authentication The approach provides a node with the knowledge to be able verifying

the claimed rank j of a parent node. To break the rank hash chain procedure, an attacker has

to obtain an early rank element such as Ri,0. This would provide the necessary information to

compute all successive rank hash elements. To forge an own veriVable rank hash chain R′i,0,

the attacker needs the knowledge of the next version hash element Vi+1. With this knowledge,

forging a veriVable MAC for the current version is possible.
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3 Evaluating Sinkhole Defense Techniques in

RPL

The authors elaborated and evaluated a sinkhole detection and prevention mechanism [7] It

provides protection against malicious packet drop, i.e. a sinkhole attack. They used a VeRA

based approach to prevent an attacker from deliberate choosing a low rank and pulling routes

for a malicious packet dropping. This mitigated the impact of sinkhole attacks originated from

topological constellations. Additionally they elaborated the parent fail-over approach to detect

sinkholes.

3.1 Sinkhole defense technique - parent fail-over

The root node expects an amount of delivered messages from all nodes in the topology. If the

quantity of messages falls below a threshold, the node is recorded into the unheard nodes set

(UNS). The authors note that the lower limit of the UNS has to be carefully chosen. A low

threshold limit would rise the false detection rate. Contrary a high threshold limit would weaken

the protection.

Every node falling under the delivery threshold ends up in the UNS. This list of missing nodes is

signed by the root node, and periodically distributed in the topology. The UNS distribution is

distinct to the topology traXc. It is performed using the adjacent or neighbour connection of the

nodes. Upon reception of an UNS, a node veriVes the signature and checks if it is scribed into the

list. If the node Vnds itself listed, it drops the parent node, blacklists it, and chooses a diUerent

parent for routing.

3.2 Conclusion of this work

The parent fail-over technique successfully detects and prevents sinkole attacks and attacking

nodes. The authors evaluated roundly their approach, and have shown that it can signiVcantly

improve the delivery performance of the topology.

Additionally they discovered a rank replay vulnerability in VeRA.
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4 Topology Authentication in RPL (TRAIL)

The authors identify and provide a Vx for a new rank vulnerability in VeRA. Additionally an

approach to protect VeRA against rank replay attacks is introduced [8, 9]. Finally they present a

new approach to protect the routing hierarchy in RPL distinct to VeRA.

This chapter focus on the Vrst two contributions, and brieWy introduces the base idea of TRAIL

[9], that is a work in progress approach.

Facts on the vulnerabilities in VeRA The validity of the last rank hash element Ri,l of the

current version is protected with a MAC using the current version element Vi as key. A version

update message containing Vi, also contains the successive version MAC, MACVi+1(Ri+1,l). To

compute an authentic MAC over a forged rank hash chain the successive version hash element

Vi+1 is required.

The security of the scheme relies completely on this version element as key, which is an absolute

suXcient condition in the cryptographic context. The trust from the signed bootstrap message

is not propagated to Ri,l during successive global repairs. Only the Vrst rank hash chain has a

direct correlation to this message.

4.1 Attacking VeRA

A malicious node receives a version update message from the root, to switch from Vi−1 to Vi, i.e.

〈Vi,MACVi+1(Ri+1,l)〉.
The malicious node does not distribute the received version update message to its neighbours

and children. Possibly it attempts to disturb neighbouring performed distributions to hide the

version update message from propagation. Then the node waits until the next version update,

receiving the successive information 〈Vi+1,MACVi+2(Ri+2,l)〉 from the root withholding its

distribution again.

From this moment on, the malicious node exploited all information and keys to perform a delayed

rank forgery attack. That is, it Vrst creates a deliberate rank hash chain R′i,l. Then it uses the last

received version hash element Vi+2 to create an authentic MAC over the forged rank hash chain,

MACVi+2(R
′
i,l).
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4 Topology Authentication in RPL (TRAIL)

It distributes 〈Vi+1,MACVi+2(R
′
i,l)〉 to cause its child nodes to switch to the next but delayed

version Vi+1. This breaks the security of the rank hash chain and the protective MAC. At the

next version update from Vi+1 to Vi+2, the malicious node can compute and claim all ranks for

its own.

The described procedure can be repeated on every genuine successive version update.

4.1.1 Protecting VeRA against rank forgery

The authors propose a nested rank encryption chain to recreate a trust propagation link between

the bootstrap message and every rank hash chain. The change to VeRA is that all rank hash

chains R0,l...Rn,l are computed for all version reverse hash chains V0...Vn in advance by the

root node.

The base idea of the encryption chain is that the last but one version rank hash chain element

Rn−1,l is encrypted using the last version rank hash chain element Rn,l as key. This symmetric

encryption results in cypher cn−1 which is used as key to encrypt the previous version rank hash

chain element Rn−2,l to cypher cn−2.

All elements of the encryption chain envelop as follows:

cn−1 = encRn.l
(Rn−1,l)

cn−2 = enccn−1(Rn−2,l)

...

c0 = encc1(R0,l)

It is assumed by the authors, that a strong symmetric cryptography scheme is used for the nested

encryption, e.g. the Advanced Encryption Standard (AES) [6] with a suXcient number of bits.

The cypher c0 is distributed in the signed bootstrap message, which is used and establishes a

trust propagation anchor.

Every successive version update message contains the corresponding cypher of the successive

version rank hash chain ci+1. With this cypher, ci can be decrypted to obtain the corresponding

rank hash chain Ri,l for the current version update Vi. More formally:

R0,l = decc1(c0)

...

Ri,l = decci+1(ci)
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4 Topology Authentication in RPL (TRAIL)

4.1.2 Rank replay protection

Repeating or replaying a learned message or information is always possible to a node. A learned

rank hash element of a parent node can be replayed by a malicious node to claim a better rank.

The authors introduce a challenge response procedure to approach this vulnerability.

It forces the attacker to either obey the RPL rank rules and take a higher rank than its parent’s, or

to be avoided by other nodes. The procedure is based on the parent child rank relationship of

RPL, with the main idea that only a proper chosen rank enables a node to solve the challenge.

Assuming two nodes. Node NRi,j , and a potentially malicious node NM , which request to route

traXc through NRi,j . NRi,j , wants proof for NM ’s rank, and creates a message containing the

IDM ofNM , e.g. the link local address, and a nonce r. Then it asks a parent node of rank Ri,j−1

to encrypt the message 〈IDM , r〉.
The parent node receives and encrypts it using the rank hash element Ri,j−2 of its own parent as

key, that is the grandparent of NRi,j .

The parent node returns the cipher c = encRi,j−2(〈IDM , r〉) back to NRi,j . NM is then asked

to decrypt the c as proof of its rank. If NM has a legitimate rank it also has a parent node which

is able to aid NM to decrypt c. If NM , solves the challenge, it has proof for its rank.

If the challenge can not be solved by NM , NRi,j does not forward traXc to, and from NM .

4.2 Distinct approach to VeRA - Trust Anchor Interconnection

Loop

The approach prevents rank spooVng and provides a path validation upwards from the most

distant nodes to the root, the leaf nodes. It uses a round trip message that validates a path towards

the root node when it returns with a valid signature.

Nodes collect nonces nc1 ...ncn from their child nodes when providing a route to them. The

collected nonces are united in a Bloom Vlter [10]BRank j , which is a space eXcient data structure

storing the information about the existence of a scribed element.

BRank j = [nc1 ...ncn ]

9



4 Topology Authentication in RPL (TRAIL)

Each Vlter is forwarded to the parent node together with an own nonce. Just as before, the parent

node unites all received child nonces in a new Bloom Vlter. Additionally all received Bloom

Vlters are merged aligned at the beginning into a new Bloom Vlter.

[BRank j1 ]

...

[BRank jn ]

=[BRank j ]

The united Vlters are attached behind the newly created Bloom Vlter from the received nonces.

[BRank j−1][BRank j ]...[BRank n]

Such arrangement constructs an array of Bloom Vlters positioned at the corresponding rank

distance to the root node. In this manner, eventually every Bloom Vlter contains all nonces from

one topological rank.

[BRank 0]...[BRank j−1][BRank j ][BRank j+1]...[BRank n]

Upon reception, the root node signs this array, and multicasts it back in the topology. Receiving

it, a node veriVes the signature and checks if the previously scribed nonce is present in the array

element of the node’s rank. If the Vlter contains the nonce the path is validated and can be trusted

to forward traXc.

4.3 Conclusion and Outlook

The version number update is protected successfully by VeRA, propagating the trust of a signature

in a reversed hash chain. The rank spooVng vulnerability can be handled with the repaired

VeRA approach, using nested encryption chains with direct relation to the signed bootstrap

message. The TRAIL approach introduces a distinct way protecting against the rank spooVng,

providing a round trip message validating all ranks at once. The sinkhole protection is addressed

by the parent fail-over technique which detects and eventually isolates sinkholes, by tracking a

message delivery threshold. Either the repaired VeRA approach, or TRAIL prevents sinkholes in

a topological context.

The presented approaches are still vulnerable against wormhole attacks. Providing knowledge

out of band with collaborating attackers enables them to bypass the securing mechanisms.
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