
Distributed Processes and Actors

One Paradigm to Rule them All ?

by Nils Schnabl/HAW Hamburg/TI

4/12/2016 Distributed Processes and Actors 1

There are 4 process communication
paradigms :

Shared Memory with Locks

Software Transactional Memory (STM)

 Futures, Promises and Similar

Message Passing

4/12/2016 Distributed Processes and Actors 2

The actors are message passing
entities

As the fundamental unit of computation it has to embody :

4/12/2016 Distributed Processes and Actors 3

•processing 0

•storage 1

•communication 2

One actor is no actor,
they come in systems

 „Carl Hewitt“

4/12/2016 Distributed Processes and Actors 4

An actor can :

• create more actors Ι

• send messages to others ΙΙ

• change his behavior ΙΙΙ

4/12/2016 Distributed Processes and Actors 5

Asynchronous Message Passing

• each actor has an mail address

• messages can arrive in any order

• no intermediaries

• ordering guarantees must be implemented

• actors don‘t block ressources

4/12/2016 Distributed Processes and Actors 6

States & Actor model

• actors change state over time

• each actor has its own state due to time

• there is no global state

• if I want to have a system state, I have to
collect all states from each actor

4/12/2016 Distributed Processes and Actors 7

History of the Actor model

• Hewitt, Bishop and Steiger's (1973) publication were
inspired by physics

• Gul Agha's (1985) dissertation

• this resulted in the full development of actor model
theory

• in the 80’s at Ericsson’s Laboratory in Stockholm it
became clear that no language had a suitable
concurrency model

• Erlang took shape around 1988 by Joe Armstrong

• releasing Erlang as open source happened in 1998

4/12/2016 Distributed Processes and Actors 8

Erlang/OTP

• Erlang is a functional programming language 1
• „Standard Library“ is OTP (Open Telecom

Platform) 2

• a process in Erlang is an actor 3

• Erlang focuses failure isolation 4

• location transperancy 5

4/12/2016 Distributed Processes and Actors 9

Erlang/OTP - Supervision

• error propagation for exit
signals

• worker processes are
linked

• supervisor restarts the
group

• the other group of
processes under the same
supervisor isn‘t affected

4/12/2016 Distributed Processes and Actors 10

Erlang/OTP – Layering processes

• a layered system of
supervisors and workers

• if supervisor A dies or
gives up, any still-living
processes under it are
killed and supervisor C is
informed

• the whole left-side
process tree can be
restarted

• supervisor B isn‘t affected
unless C decides to shut
everything down

4/12/2016 Distributed Processes and Actors 11

OTP goals

• high level building blocks Productivity

• solid praxis proven components Stability

• the application structure provided by OTP makes it
simple to supervise and control the running system Supervision

• provides patterns for handling systematic code
upgrades Upgradability

• OTP is rock solid and has been thoroughly battle
tested Reliable code base

4/12/2016 Distributed Processes and Actors 12

Akka

• is an event-driven middleware framework

• is for applications in Java and Scala

• Erlang-like actor implementation

• Strong focus on configurability

• part of the Scala Standard Library

4/12/2016 Distributed Processes and Actors 13

Erlang & Akka

• Actor communication can be strongly type-
safe

• Erlang works with dynamic typing

• Akka accepts all message-types, because all
messages are encapsulated in objects

4/12/2016 Distributed Processes and Actors 14

CAF – C++ Actor Framework

• has possibilities to make all communication
type-safe

• actors in CAF are lightweight, consisting of
only a few hundred bytes

• is taking care of the low-level side of things

• Message passing is network transparent,
actors can talk to each other, no matter where
they've been spawned

4/12/2016 Distributed Processes and Actors 15

Pony

• is an object-oriented, actor-model,
capabilities-secure programming language

• Correctness. Incorrectness is simply not
allowed

• Performance. Runtime speed is more
important than everything except correctness

• if compiling, it will also working

• you can’t build a runtime error

4/12/2016 Distributed Processes and Actors 16

References

• C. Hewitt, P. Bishop, R. Steiger, A Universal Modular ACTOR Formalism for Artificial
Intelligence, in: Proceedings of the 3rd IJCAI, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1973, pp. 235–245.

• G. Agha, Actors: A Model of Concurrent Computation In Distributed Systems, Tech.
Rep. 844, MIT, Cambridge, MA, USA, 1986.

• M. Logan, E. Merritt, R. Carlsson, Erlang and OTP in Action, Manning Publications
Co., Stamford, CT, USA, 2011.

• http://letitcrash.com/post/20964174345/carl-hewitt-explains-the-essence-of-the-
actor

• http://akka.io/

• http://actor-framework.org/

• http://tutorial.ponylang.org/

4/12/2016 Distributed Processes and Actors 17

