
… in the Internet of Things

Bachelor Project (PO)
Introduction to CoAP
Hamburg 27.03.2023

José Álamos jose.alamos@haw-hamburg.de
Leandro Lanzieri leandro.lanzieri@haw-hamburg.de

Prof. Dr. Thomas C. Schmidt INET AG, Dept. Informatik HAW Hamburg t.schmidt@haw-hamburg.de

CoAP: Constrained
Application Protocol
RESTful APIs for the IoT

Why do we need a web protocol for IoT?

● Web services on the Internet nowadays expose RESTful APIs

● Avoid fragmentation (silos) of IoT by:

○ Using and extending existing standard Web technologies

○ Providing standardized metadata

○ Integrating platforms, underlying protocols and application domains

Why do we need another web protocol?
● HTTP does not fit the constrained devices commonly found in the IoT:

○ Many 8-bit microcontrollers

○ Limited RAM and ROM

○ Battery-powered or severely energy constrained

○ Lossy wireless networks (e.g., 6LoWPAN)

○ Unreliable transports

○ Small link-layer frames

CoAP: Features
● Low header overhead and parsing complexity

● Supports URIs and Content-type

● Optional reliability (retries)

● Unicast and multicast requests

● Defined over multiple transports (including DTLS for security)

● For detailed information:

○ RFC 7252

○ https://coap.technology

https://coap.technology

REST model interactions
● Servers expose resources under URLs:

coap://node1.example.com/temperature

● Clients operate on the resources utilizing methods:

○ GET

○ POST

○ PUT

○ DELETE

● The semantics of each method will ultimately depend

on the specific application

REST model interactions
Client Server

Confirmable
GET /temperature

(Token 0x71)

ACK
“22.5 C”

(Token 0x71)

Confirmable
POST /light

“ON”
(Token 0x72)

ACK
2.04 Changed
(Token 0x72)

● Servers expose resources under URLs:

coap://node1.example.com/temperature

● Clients operate on the resources utilizing methods:

○ GET

○ POST

○ PUT

○ DELETE

● The semantics of each method will ultimately depend

on the specific application

REST model interactions: separate response
● Server responses may be separate due to:

○ Long response processing time.

○ “Real-world” actions (e.g. switching a lock).

● Servers confirm requests by sending an ACK,

and send responses at a later time, with a

matching token.

● Server responses may be separate due to:

○ Long response processing time.

○ “Real-world” actions (e.g. switching a lock).

● Servers confirm requests by sending an ACK,

and send responses at a later time, with a

matching token.

Client Server

Confirmable
POST /door/01

“open”
(Token 0x63)

Confirmable
2.04 Changed
(Token 0x63)

ACK

ACK

REST model interactions: separate response

REST model interactions: observation
● Resources may change over time (e.g. the

value of a light switch).

● Periodically polling resources consumes a lot

of energy and bandwidth.

● The observe extension allows clients to

request for notifications whenever the

resource has changed (this is up to the server

to determine).

REST model interactions: observation
● Resources may change over time (e.g. the

value of a light switch).

● Periodically polling resources consumes a lot

of energy and bandwidth.

● The observe extension allows clients to

request for notifications whenever the

resource has changed (this is up to the server

to determine).

Client Server

GET /sw/01
Observe: 0

(Token 0x54)

2.05 Content
“OFF”

Observe: 44
(Token 0x54)

2.05 Content
“ON”

Observe: 12
(Token 0x54)

2.05 Content
“ON”

Observe: 60
(Token 0x54)

Resource discovery: /.well-known/core
● Clients can discover which resources a given server provides

● The interface accepts GET requests, and returns a list of resources in LinkFormat:

 Client Request:
GET /.well-known/core

 Server Response:
2.05 Content

 </sensors/temp>;if="sensor",
 </sensors/light>;if="sensor"

URIs Attributes

Resource discovery: /.well-known/core
● Clients can discover which resources a given server provides

● The interface accepts GET requests, and returns a list of resources in LinkFormat:

● Query filter parameters can be added, when a resource with specific metadata is required:

Request: GET /.well-known/core?rt=light-lux

Response: 2.05 Content
 </sensors/light>;rt="light-lux";if="sensor"

Filter by resource type

 Client Request:
GET /.well-known/core

 Server Response:
2.05 Content

 </sensors/temp>;if="sensor",
 </sensors/light>;if="sensor"

URIS Attributes

Resource discovery: resource directory
● In some scenarios direct discovery of resources may not be possible

○ Long-sleeping nodes

○ Multicasting not efficient

● Resource Directories (RD) contain information about resources in other servers

● A Resource Directory has two interfaces

○ Registration interface: servers register their resources

○ Lookup interface: clients look for resources exposed by servers

Resource discovery: resource directory
Operation flow

1. The server finds the RD

○ Statically configured

○ Discovery procedure (e.g. multicast)

2. The server registers itself on the RD by sending information about its resources

○ The server may periodically update the registration

3. The client performs a lookup on the RD, to find a resource with specific characteristics

○ It may use the observe mechanism to be notified about new resources

Resource discovery: resource directory
1. A server finds the RD (may be static or via discovery)

2. The server registers, and sends information about its resources

Request:
POST coap://rd.example.com/rd?ep=node1
Content-Format: 40
Payload:

</sensors/temp>;rt=temperature-c;if=sensor

Response:
2.01 Created
Location-Path: /rd/4521

Resource discovery: resource directory
3. The server may periodically update the registration

4. A client performs a lookup on the RD, to find a resource with specific characteristics

Request:
GET /rd-lookup/res?rt=tag:example.org,2020:temperature

Response:
2.05 Content
Payload:
<coap://[2001:db8:3::123]:61616/temp>; rt="tag:example.org,2020:temperature"

Resource discovery: resource directory
The client can even take advantage of the observe mechanism, to be notified about newly

registered nodes

Request:
GET /rd-lookup/res?rt=tag:example.org,2020:light
Observe: 0

Response:
2.05 Content
Observe: 23
Payload: empty

(at a later point in time…)

Response:
2.05 Content
Observe: 24
Payload:
<coap://[2001:db8:3::124]/west>;rt="tag:example.org,2020:light",
<coap://[2001:db8:3::124]/south>;rt="tag:example.org,2020:light",
<coap://[2001:db8:3::124]/east>;rt="tag:example.org,2020:light"

Securing CoAP: DTLS
● Datagram Transport Layer Security

○ Four different modes

■ NoSec: no protocol-level security

■ PreSharedKey: Symmetric keys

■ RawPublicKey: Asymmetric keys

■ Certificate: Asymmetric keys with X.509 certs.

○ Nodes establish a point-to-point DTLS session

■ Provides authentication, integrity, and

confidentiality

■ Intermediate nodes (e.g., gateways) need to

decrypt and re-encrypt

● Difficult to cache

● Difficult to proxy

IEEE 802.15.4

6LoWPAN

IPv6

UDP

DTLS

CoAP

Securing CoAP: OSCORE
● Object Security for Constrained RESTful Environments

○ Uses pre-shared keys

○ Security at object level (no point-to-point session)

■ The original CoAP message is encrypted

and encapsulated as a COSE object (CBOR

Object Signing and Encryption)

■ The encapsulated message is nested in an

outer CoAP message

■ Provides integrity, authenticity, and

confidentiality at CoAP level

■ Allows protecting multicast messages

■ Allows caching and proxies

IEEE 802.15.4

6LoWPAN

IPv6

UDP

CoAP OSCORE

Questions?

