Rior

.. in the Internet of Things

Bachelor Project (PO)

Introduction to CoAP
Hamburg 27.03.2023

José Alamos jose.alamos@haw-hamburg.de
Leandro Lanzieri leandro.lanzieri@haw-hamburg.de

Prof. Dr. Thomas C. Schmidt INET AG, Dept. Informatik HAW Hamburg t.schmidt@haw-hamburg.de

CoAP: Constrained
Application Protocol

why do we need a web protocol for loT?

e \Web services on the Internet nowadays expose RESTful APIs

e Avoid fragmentation (silos) of loT by:
o Using and extending existing standard Web technologies
o Providing standardized metadata

o Integrating platforms, underlying protocols and application domains

why do we need another web protocol?

e HTTP does not fit the constrained devices commonly found in the IoT:
o Many 8-bit microcontrollers
o Limited RAM and ROM
o Battery-powered or severely energy constrained
o Lossy wireless networks (e.g., 6LOWPAN)
o Unreliable transports

o Small link-layer frames

CoAP: Features

e Low header overhead and parsing complexity
e Supports URIs and Content-type

e Optional reliability (retries)

e Unicast and multicast requests

e Defined over multiple transports (including DTLS for security)

e For detailed information:
o RFC 7252

o https://coap.technology

https://coap.technology

REST model interactions

e Servers expose resources under URLs:

coap://nodel.example.com/temperature

e Clients operate on the resources utilizing methods:

o GET

o POST

o PUT

o DELETE

e The semantics of each method will ultimately depend

on the specific application

REST model interactions

Client Server
e Servers expose resources under URLs: ! i
Confirmable
coap://nodel1.example.com/temperature | GEITéig':pS;??;re |
e Clients operate on the resources utilizing methods: ----------------------------------- ACK --------------------------------
o GET “22.5 C”
! (Token ©0x71) !
o POST 0SSN |
o PUT 4 4
o DELETE | Confirmable |
POST /light
i "oNM i
e The semantics of each method will ultimately depend L _(_T_c_>_|_<__e_|j____0_}§_7_2_)_ ______________________ N:
on the specific application ACK
i 2.04 Changed i
i (Token 0x72) i

REST model interactions: separate response

e Server responses may be separate due to:
o Long response processing time.

o “Real-world” actions (e.g. switching a lock).

e Servers confirm requests by sending an ACK,
and send responses at a later time, with a

matching token.

REST model interactions: separate response

e Server responses may be separate due to: Client Server
o Long response processing time. Confirmable
o “Real-world" actions (e.g. switching a lock). | POST /door/e1 |
! open !
e Servers confirm requests by sending an ACK, __________________________ (Token@x63)
and send responses at a later time, with a ! c i
: ACK :
matching token. i i
7 7
i Confirmable i
: 2.04 Changed !
i (Token 0x63)
ACK

REST model interactions: observation

e Resources may change over time (e.g. the
value of a light switch).

e Periodically polling resources consumes a lot
of energy and bandwidth.

e The observe extension allows clients to
request for notifications whenever the
resource has changed (this is up to the server

to determine).

REST model interactions: observation

e Resources may change over time (e.g. the
value of a light switch).

e Periodically polling resources consumes a lot
of energy and bandwidth.

e The observe extension allows clients to
request for notifications whenever the
resource has changed (this is up to the server

to determine).

Client

GET /sw/01
Observe: ©
(Token ©x54)

2 .05 Content
" ON n
Observe: 12
(Token Bx54)

2 .85 Content
" OFF n
Observe: 44
(Token ©x54)

2 .85 Content
“" ON n
Observe: 60
(Token ©x54)

Server

Resource discovery: /.well-known/core

e Clients can discover which resources a given server provides

e The interface accepts GET requests, and returns a list of resources in LinkFormat:

Client Request:
GET /.well-known/core

Server Response:
2.05 Content
</sensors/temp>;if="sensor",

</sensors/light>;if="sensor"
N J \. J
Y Y

URIs Attributes

Resource discovery: /.well-known/core

e Clients can discover which resources a given server provides

e The interface accepts GET requests, and returns a list of resources in LinkFormat:

Client Request:
GET /.well-known/core

Server Response:
2.05 Content
</sensors/temp>;if="sensor",
</sensors/light>;if="sensor"
A\ J _ J
Y Y
URIS Attributes

e Query filter parameters can be added, when a resource with specific metadata is required:

Filter by reiou rce type

r N\
Request: GET /.well-known/core?rt=1ight-1lux

Response: 2.685 Content
</sensors/light>;rt="1light-1lux";if="sensor"

Resource discovery: resource directory

e |In some scenarios direct discovery of resources may not be possible
o Long-sleeping nodes

o Multicasting not efficient
e Resource Directories (RD) contain information about resources in other servers

e A Resource Directory has two interfaces
o Registration interface: servers register their resources

o Lookup interface: clients look for resources exposed by servers

Resource discovery: resource directory

Operation flow
1. The server finds the RD
o Statically configured
o Discovery procedure (e.g. multicast)
2. The server registers itself on the RD by sending information about its resources
o The server may periodically update the registration
3. Theclient performs a lookup on the RD, to find a resource with specific characteristics

o It may use the observe mechanism to be notified about new resources

Resource discovery: resource directory

1. Aserver finds the RD (may be static or via discovery)

2. The server registers, and sends information about its resources

Request:
POST coap://rd.example.com/rd?ep=nodel
Content-Format: 40
Payload:
</sensors/temp>;rt=temperature-c;if=sensor

Response:
2.01 Created
Location-Path: /rd/4521

Resource discovery: resource directory

3. The server may periodically update the registration

4. Aclient performs a lookup on the RD, to find a resource with specific characteristics

Request:
GET /rd-lookup/res?rt=tag:example.org,2020:temperature

Response:
2.05 Content
Payload:
<coap://[20601:db8:3::123]:61616/temp>; rt="tag:example.org,2020:temperature"

Resource discovery: resource directory

The client can even take advantage of the observe mechanism, to be notified about newly

registered nodes

Request:

GET /rd-lookup/res?rt=tag:example.org,2020:1light
Observe: 0

Response:
2.05 Content
Observe: 23
Payload: empty

(at a later point in time..)

Response:
2.05 Content
Observe: 24
Payload:
<coap://[2001:db8:3::124] /west>;rt="tag:example.org,2020:1light",
<coap://[2001:db8:3::124]/south>;rt="tag:example.org,20620:1light",
<coap://[2001:db8:3::124] /east>;rt="tag:example.org,2020:1light"

Securing CoAP: DTLS

e Datagram Transport Layer Security

o Four different modes

NoSec: no protocol-level security
PreSharedKey: Symmetric keys
RawPublicKey: Asymmetric keys

Certificate: Asymmetric keys with X.509 certs.

o Nodes establish a point-to-point DTLS session

Provides authentication, integrity, and
confidentiality
Intermediate nodes (e.g., gateways) need to
decrypt and re-encrypt

e Difficult to cache

e Difficult to proxy

CoAP

DTLS

UDP

IPv6

6LoWPAN

IEEE 802.15.4

Securing CoAP: OSCORE

e Object Security for Constrained RESTful Environments

o Uses pre-shared keys

o Security at object level (no point-to-point session)

The original CoAP message is encrypted
and encapsulated as a COSE object (CBOR
Object Signing and Encryption)

The encapsulated message is hested in an
outer CoOAP message

Provides integrity, authenticity, and
confidentiality at CoAP level

Allows protecting multicast messages

Allows caching and proxies

r
CoAP OSCORE
.
UDP
IPv6
6LoWPAN
IEEE 802.15.4

Questions?

