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Abstract. This paper provides an overview of Distributed Denial-of-
Service (DDoS) attacks, mitigation strategies and current focus of secu-
rity research on the topic. Motivated by the threat automated attacks
represent, special emphasis is placed on automatic defensive strategies.
The paper reviews a taxonomy of DDoS attacks and defenses, distin-
guishing between preventive and reactive measures, and further classi-
fying them by deployment location and detection strategy. Preventive
approaches, such as protocol hardening, disabling amplification vectors,
takedown efforts, as well as anomaly-based reactive measures, are re-
ported on along with their limitations. A review of recent research (2023-
2025) underscores the diversity of attack and mitigation strategies, but
also reveals that only a few proposals address automatic detection in-
depth. While preventive actions are essential for protecting core infras-
tructure, they are insufficient on their own. Mitigating DDoS attacks
requires preventive and reactive techniques. The paper then delves into
machine learning model-based detection by first reporting on challenges
inherent in developing such solutions, before exploring proposals imple-
menting automatic DDoS detection using a machine learning-based dis-
tributed detection systems. The use of prefix-level clustering and moni-
toring proposed by one work is especially interesting for future work.
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1 Introduction

The Internet is an integral part of the so-called critical infrastructure. Critical
Infrastructure is a term to describe organizations and institutions of great im-
portance to the general public [37]. The Federal Office for Information Security
(BSI) even calls the Internet a "basic prerequisite for society as a whole" [35].
It is a network of networks connecting networks and end systems with each
other. The history of the Internet began approximately 60 years ago and it is
still developing along with demands from new technologies. Its main function is
the transportation of data, i.e., to provide the service of packet transportation
to the applications. As such the Internet can be divided into the core providing
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the infrastructure and the edge where the end systems such as desktops, mobile
phones or IoT devices connect to it [20]. Internet infrastructure is the deployed
system of network and service components which jointly provide the worldwide
Internet services. So everything from the fiber, cables and routers, as well as the
Domain Name System (DNS) and routing protocols, to data centers are part
of the Internet Infrastructure, whereas user-faced applications such as email are
excluded from it |6} 35].

Distributed-Denial-of-Service (DDoS) attacks pose a high risk to critical in-
frastructure [35} |4]. During DDoS attacks an adversary aims to achieve either
resource or bandwidth consumption of a target to cut it off from the rest of the
Internet [3]. Furthermore, the BSI finds in its report on the state of IT-Security
in Germany for the year 2024 that the quality and quantity of DDoS attacks
have increased [4]. The advancement of Artificial Intelligence (AI) is likely to
further increase the risk of attacks, as assessments of the National Cyber Se-
curity Centre (NCSC) [30] and its German pendant the BSI report [5]. They
argue that Large-Language-Models (LLMs) at first increase the ease of malware
creation and performing attacks before actors with more resources are able to
use Al to considerably improve their capabilities. In both cases (actors with a
lack and those with an abundance of resources), an increase in frequency and in-
tensity of cyber threats is expected. While attackers can use Al to automate and
aid evasion and scalability, the same is true for defenders, who can implement
measures of their own and benefit from the usage of AI [30].

This is where Al:Autolmmune, a project aiming to support defenders in
securing the Internet, which HAWs INET Group is a part of, takes on the chal-
lenge. The focus of this paper is the automatic detection and mitigation of DDoS
attacks, leading to the following question:

How can DDoS attacks be automatically detected and mitigated?

To approach this topic an overview of DDoS attacks, targets and defenses is
provided first, before taking a deeper look into the current automatic defensive
measures being developed. The remainder of this paper is structured as follows.
Chapter 2 covers the background of DDoS attacks, including the history, classi-
fication of DDoS attacks as well as DDoS mitigations and DDoS topics currently
discussed in the major security conferences. Chapter 3 follows with a specific fo-
cus on the automatic detection and mitigation of attacks. Here challenges when
developing machine learning (ML) models for detection are presented. Further-
more, two papers on developing such a model are examined to illustrate how
these challenges manifest in practice. The results of this examination guide rec-
ommendations for further directions in the conclusion.

2 DDoS Background

The first DDoS attacks were reported in the early 2000s [15} |7, |36} [32]. While first
attacks have been motivated by activism and pranksters, they were then com-
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mercialized and exploited by individuals and nations alike |3} |8]. DDoS attacks
are often facilitated by botnets that are hosted via specialized services namely
Bulletproof Hosters (BPH). BPHs ignore abuse complaints and host booter ser-
vices, which provide DDoS-for-hire platforms that are resilient to takedowns
[15].

The danger they pose to the Internet remains and the damage caused by them
only seems to increase |16} 36} 39]. As such countermeasures [7] and taxonomies
have been developed early on [25]. While new countermeasures are developed
with time [40} 28|, some long-standing issues enabling attacks remain unresolved
[36, [24]. This section first covers the prevalent classes of DDoS attacks before
then introducing common defense and mitigation techniques. Concluding with
a look into current publications on the topic of DDoS and DDoS mitigation.

2.1 Classification of DDoS Attacks

Mirkovic and Reiher [25] used a diverse set of characteristics such as the degree of
automation, exploited weakness, impact on the victim and validity of the source
address(es) used for the DDoS attack to classify them. From this comprehensive
classification the distinction based on exploited weakness (semantic or brute-
force) as well as validity of the source address(es) (spoofed and non-spoofed) has
been used in following works with the addition of direct and reflected attacks
[17, [15].

The difference between semantic and brute-force, also called volumetric, at-
tacks [17], lies in the way the Denial-of-Service (DoS) is achieved. Semantic
attacks use the characteristics of the attacked applications themselves to cause
the DDoS |25} [17]. Whereas Mirkovic and Reiher [25] use TCP SYN flood [12] as
an example of a semantic attack that consumes the resources of an application,
Jonker et al. [17] explain that a semantic attack could also use a malformed
packet to cause a crash of the target. A TCP SYN flood is an attack, in which
the attacker sends a large number of TCP SYN packets to a server, causing it
to allocate resources for half-open connections that are never completed. This
can eventually exhaust the server’s ability to handle new connections, disrupting
legitimate access [12]. While a semantic attack may cause DoS by having the
target consume its resources such as memory or processing power, a volumet-
ric attack simply overwhelms the network link of the target, thus rendering it
unreachable |12} [25] 32]. The distinction between semantic and volumetric at-
tacks is often subtle, as both lead to a denial of service, but their mechanisms
differ. Semantic attacks can be mitigated by hardening protocols or deploying
defensive measures, whereas volumetric attacks cannot be patched and require
other forms of mitigation [25], e.g., traffic filtering. Note that semantic attacks
are target specific attacks whereas volumetric attacks are not [17]. Note also that
a TCP SYN flood can become a volumetric attack if the bottleneck is moved
(e.g., by implementing rate limiting) from system resources towards the band-
width [25]. This may also explain why volumetric attacks are so prevalent in the
Internet |15, (19,28, |33].
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Volumetric and semantic attacks sometimes use either spoofed or non-spoofed
source addresses [25) 17} [15]. An example of a semantic attack using a non-
spoofed address is the state exhaustion attack called SlowLoris, developed by
Robert Hansen |9} |15]. For volumetric spoofed attacks the source addresses are
often selected randomly which is why they are called randomly-spoofed DoS
(RSDoS) attacks [15]. Using spoofed addresses obscures the direct-path of the
attack and hinders mitigation |25} |36]. While semantic DoS attacks are usually
direct [25], volumetric attacks can be further classified into direct-path and re-
flection attacks |17, [15]. Direct-path attacks send the attack packets directly to
the target from machines controlled by the attacker (e.g., a single machine or a
botnet) [17]. A botnet is a number of machines connected to the Internet that
have been compromised by a malicious entity to use in attacks such as a DDoS
132].

Reflection attacks have been known for more than 20 years |32] and have
continued to gain prevalence with time [33] |17} [19} |29, |28, |18|. Reflective am-
plification attacks are a prevalent form of Distributed Denial-of-Service (DDoS)
attack in which attackers send packets to third-party servers (reflectors) that, in
turn, send amplified responses to the victim, overwhelming its resources while
obscuring the attack’s true origin [15| [34]. This method exploits the character-
istics of Internet protocols, especially UDP-based services including NTP, DNS,
and LDAP that respond to small requests with much larger replies, enabling
attackers to maximize the volume of attack traffic with minimal effort [34} [33].
For example, NTP can amplify traffic by a factor of up to 4670, and remains
together with DNS the most popular protocol abused for such attacks |33} [28|
29, 119]. Attackers often use a random mix of multiple known and newly discov-
ered amplifiers, with 80% of attack events involving between 10 to 100 amplifiers
[29]. The advantages for attackers are the ability to disguise their identity and
avoid saturating their own bandwidth while using multiple amplifiers at once
[34, 33]. The ease of use and the effectiveness of reflection-amplification attacks
have contributed to their prevalence in the DDoS landscape in recent years |34}
15].

2.2 Defenses Against DDoS

Chang [7] organized Distributed Denial-of-Service (DDoS) defense mechanisms
into three main lines of defense: attack prevention and preemption, attack detec-
tion and filtering, and attack source traceback and identification. Mirkovic and
Reiher [25] introduced a taxonomy of defensive measures based on several di-
mensions, including the degree of cooperation required, the deployment location
within the network and the activity level of the defense (preventive, reactive).
The dimension activity level of the defense maps onto Chang’s |7] three lines of
defense with attack prevention and attack detection and filtering (reactive) are
the main categories.

Reactive measures can be divided into pattern-based approaches, which rely
on signatures of known attacks, and anomaly-based methods, which identify
deviations from normal behavior [25]. Further, anomaly detection itself can be
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based on standard thresholds or on trained models that must be carefully main-
tained and updated to adapt to evolving traffic patterns .

While Mirkovic and Reiher arrange the dimension of location of the
defensive measure on the same level as its activity level, Chang applies it
only to the reactive measure. Chang also differentiates between four loca-
tions along the network path—from the victim’s own network for implementing
countermeasures (directly at the victim, the victim ISP, further upstream, at-
tack source network) whereas Mirkovic and Reiher only differentiate between
three (victim network, intermediate network, attack source network). Detection
is generally easier at the victim, while filtering is most effective when applied as
close to the attack source as possible to minimize collateral damage [7“ There-
fore, Chang m suggested having the victim notify its ISP once it detects an
attack, which is how DDoS protection services operate nowadays .

Fig. 1. Classification of DDoS mitigation tactics |7,

DDoS mitigations are classified based on their activity level, deployment lo-
cation and detection strategy. This provides an overview that is detailed enough
without missing the forest for the trees and grounded in the presented prior work
[7, [25]. Figure [1] illustrates this classification.

We first go into preventive measures and challenges in implementing them
before taking a closer look at detection and mitigation methods.
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2.2.1 Prevention: Among the preventive measures are protocol hardening,
disabling reflection-amplification vectors, promoting the use of source address
validation and booter takedowns.

Protocol hardening refers to the modification of protocols abused in attacks
to prevent or at least reduce their impact [25, |33]. Measures include the in-
troduction of rate limiting on a per-submnet basis, request-response symmetry
and the introduction of session handling [33, |34]. Hardening a protocol usually
has side effects including degrading protocol efficiency (e.g. through enforcing
request/response symmetry) or making it vulnerable to DoS |33, |34].

Disabling reflection-amplification vectors aims at reducing the options a per-
petrator has to orchestrate an attack. This can be done by either decommission-
ing vulnerable servers, patching vulnerabilities or disabling parts of protocols
offering such vectors [15] |18} [34]. One example of the last mentioned is NTP
where through disabling the command "get monlist" that is of no operational im-
portance, an extraordinary amplification-vector can be removed [15]. For other
vectors this is not as easy as identifying and disabling services with response
request asymmetry takes time or is not feasible [34]. That decommissioning vul-
nerable servers has limited success as well [15] is another argument to follow
Rossow’s [33] suggestion of using secure service configurations as the default,
instead of insecure ones.

Another area where the use of default configurations could reduce the preva-
lence of DDoS attacks is source address validation (SAV) [24]. SAV stops spoofing
and therefore would completely prevent spoofing-based attacks such as reflection
and RSDoS [15, 24, 32, 33|. The Spoofer measurement project from CAIDA [24]
developed a way to measure whether SAV is activated in a network and argues
that missing incentives are a reason for the lack of deployment. Luckie et al.
further argue that internalizing the cost of not using SAV through regulation
could be a way to further promote its deployment [24].

The takedown of booter services on the other hand seems to not have a lasting
effect [15]. Collier et al. 8] measured the impact of takedowns and showed that
there is no consistent effect. They observe a reduction in recorded attack numbers
after publicized court cases and takedowns, but even the effect of wide-ranging
disruptions only last between 10 to 13 weeks [8]. However, Collier et al. also
report that awareness campaigns in the UK deterred potential new customers
of booter services [§]. Vu et al. [38] find that while booters are resilient, safety
perceptions of users and providers are changing. This suggests that takedowns
do have their place in DDoS prevention, even if they only act as awareness
campaigns.

2.2.2 Detection and Filtering: Detection and filtering of traffic as a measure
against DDoS attacks has been either implemented as discussed by Chang [7] as
a service that so-called DDoS protection services (DPS), CDNs or IXPs provide
[15, 16, [19] and is being developed further |26| 40} 41]. Filtering at the victim
network does allow for a fast response once an attack has been detected, but
forces the victim to bear the brunt of the attack [15].
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A DPS redirects traffic either by DNS or BGP into their own infrastructure to
filter it |16]. The customer notifies the provider when an attack is noticed who
then uses deep-packet inspection or application proxies to identify and block
DDoS traffic at network or application layers [15]. This method is called scrub-
bing as legitimate traffic reaches the network while the "dirty" traffic is removed
[19]. Jonker et al. [16] found that there has been an increase in adoption of
cloud-based DPSs with a relative growth of 1.24x compared to the previous 1.5
years, which is pushed by large webhosters enabling such services for millions of
addresses at once.

Another option is to discard DDoS traffic for specific prefixes in the Internet
core before reaching the target network |19} |40]. This is called blackholing or re-
mote triggered blackholing (RTBH) and leads to collateral damage as legitimate
traffic from the prefix(es) identified as the attack source is dropped as well |15].
This would explain why Kopp et al. [19] found that only 3.82% of DDoS attacks
are blackholed when they looked at Internet traffic captured at a major IXP.
Nawrocki et al. [27] analyzed RTBH at a large European IXP finding that it
only drops about 50% of unwanted traffic and that collateral damage is a minor
consideration.

Ryba et al [34] provide an overview of methods for detecting and predicting
amplification attacks, but also conclude that most methods focus on filtering at
the victim and are attack specific. Wichtlhuber et al. [40] argue for a distributed
system to be deployed at IXPs instead of approaches detecting and filtering close
to the edge. They developed a system to scrub traffic which is further analyzed
as an example of developing an ML model for automatic detection in section [3]
The rationale for using a model-based system is its ability to adapt to changing
attacker behavior [26].

A truly comprehensive solution would require cooperation between multiple
ISPs and or IXP, which is challenging [15]. However, efforts to support cooper-
ative filtering are another piece in the puzzle of DDoS mitigation [15]. Wagner
et al. [39] developed a collaborative DDoS Information Exchange Point (DXP)
to report amplification DDoS reflectors or targets to improve detection and mit-
igation. They underscore the opportunity of cooperation. Simply exchanging
information between network providers makes it possible to detect and mitigate
the majority of attacks, dropping as much as 90% of traffic locally [39]. Further,
they listed the following challenges for detecting the attacks [39|:

— short duration of attacks (95% of attacks lasting less than 50 minutes)

— usage of multiple protocols (most attacks involve 3 or more amplification
protocols)

— setting appropriate thresholds (thresholds local to one network fail to detect
attacks routed via multiple reflectors)

Wagner et al. also confirmed the detection method Kopp et al. [19] used for
differentiating between attack and benign traffic during a reflection-amplification
attack. The filter Kopp et al. proposed is a threshold of 1 Gbps inbound traffic
from more than 10 reflector IPs with the same source port [19]. This is an
example of a global threshold [39].
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2.3 A Look Into Current DDoS Research Landscape

A look at DDoS related papers submitted to the top four security conferences
(ACM CSS, NDSS, IEEE S&P, USENIX Security) reveals 14 related papers. This
signals a continued interest on the topic. The papers are subsequently classified,
before taking a closer look at the proposed mitigation measures.

2.3.1 Attacks: Starting with papers focused on attacks, both semantic |1}, |11}
14| 22| 45| as well as volumetric [13], 21}, |31}, 42| attacks are represented. Papers
covering semantic attacks all report on DNS vulnerabilities leading to a DoS of
the domain resolution service. Duan et al. for example developed an approach to
dissect the name resolution process to study amplification vulnerabilities in DNS,
uncovering compositional amplification (CAMP) vulnerabilities that can be used
against the DNS infrastructure itself [11]. E.g., a CAMP attack against an ar-
bitrary nameserver exploits several vulnerabilities to achieve a multiplication of
the amplification factor. By using NS records, it triggers multiple independent
queries, which cascade into further queries, ultimately consuming resources and
resulting in a DoS [11]. Heftrig et al. [14] (KeyTrap) and Zhang et al. [45] (RUC)
cover vulnerabilities in DNSSEC specifically.

The DNS also plays a central role as a reflector and amplifier in Li et al. [21]
and Xu et al. [42] who describe techniques for volumetric DDoS attacks. While
Pan et al. [31] and Guo et al. [13] also focus on volumetric attacks, they present
more complex approaches (application layer traffic loops and CDN infrastructure
as a reflector).

2.3.2 Mitigation: The papers solely focusing on mitigative measures are split
between prevention and detection. Vu et al. |38] cover the effects of an ongo-
ing global intervention including booter takedowns, while Yoo et al. [43| and
DeLaugther and Sollins |10] both propose mechanisms extending TCP for ad-
ditional shielding against misuse in attacks. Yoo et al. [43] propose using pro-
grammable switches to improve existing SYN-cookies, whereas DeLaugther and
Sollins [10] introduce proof-of-work (PoW) to TCP as a highly scalable tech-
nique.

All of the papers written on DDoS attack detection are based on programmable
switches, distributed, focus on scalability and use anomaly-based detection |26]
41, |46]. Zhou et al. |[46] (Mew) and Wu et al. [41] (Lemon) did not directly de-
velop methods to detect attacks but rather present improvements in measuring
traffic, which in turn is then the basis for the application of detection methods
(e.g., statistic-based for Lemon). Both systems claim to be resource friendly and
scalable. Mew is developed specifically as an adaptive link-flooding defense sys-
tem, allowing changes in defense policies without halting switches [46]. Lemon is
a routing-oblivious detection system and supports flexible configurations of flow
keys as well as the deployment of diverse DDoS attack detection algorithms [41].
While Zhou et al. |[46] only mention Mew relying on flow state, Wu et al. [41]
specify Lemon as sketch-based. A sketch is a random aggregation of IP flows,
for more information on the theory behind sketches refer to Li et al. [23].
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Misa et al. [26] (ZAPDOS) on the other hand use a ML model for volumetric
DDoS detection, that relies on attack signatures at the source prefix level and ex-
ploit inherent clustering of addresses. Making use of a so far unused pronounced
cluster-within-cluster property (Prefix-level attack signatures) to classify attack
and benign source prefixes. Both attack and benign sources are not uniformly
distributed across the IP address space, but instead form distinctive clusters
within hierarchical prefix structures [26]. Misa et al. argue that since reflectors
are typically misconfigured servers with high-bandwidth connections and stable
up-time, they are mostly clustered in address regions associated with networks
that have these characteristics, e.g, lax update policies and high-bandwidth con-
nections. For botnets, Misa et al. point out that several studies confirm DDoS
attacks via botnets generally do not use spoofing and that botnets accessed
through a provider differ in price based on the region of the bots, thus leading
to clustering in certain, more affordable regions. Further, benign traffic itself is
clustered, which enables detection to focus on a small number of prefixes even
when the attacker uses spoofing [26]. To hide his attack from such a detection
an attacker must invest additional resources to infer source addresses closer to
benign traffic [26].

Regarding the deployment location, Mew and Lemon do not specify further
than "network-wide" and refer to ISPs |41} 46]. Misa et al. explicitly name the
network edge as ZAPDOS intended deployment location, i.e., the victim network,
as their approach is suited to networks with tight resource constraints [26].

Table 1. Overview of DDoS detection proposals

Name Location Strategy Attacks Source

Mew intermediate (dynamic) volumetric (link- [46]
standard-based flooding)*

Lemon intermediate (statistic) volumetric [41]
standard-based

Zapdos victim model-based volumetric |26]

Table [1| provides an overview of the proposed approaches classifying them
according to figure [I} Both Lemon and Mew are labeled as deployable in an
intermediate location between the victim and the attacker, as they do not men-
tion their proposal being designed for use near the attack source. Since all three
detect attacks relying on traffic characteristics (flow level or prefix level), they
are agnostic towards the different subclasses of volumetric attacks (spoofed /non-
spoofed, direct /reflective)?. Mew and Lemon are both standard-based in so far

! While they explicitly designate it as a link-flooding defense system, their main con-
tribution is a monitoring system. As the defense policies can be changed dynamically,
it should allow for general defense against volumetric attacks.
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as that they rely on methods other than ML models to determine thresholds for
malicious behavior.

2.4 Main Takeaways

Volumetric attacks using reflectors or botnets are the most common kind of vol-
umetric attack [26]. Reflection attacks are especially efficient due to the amplifi-
cation factor the reflector usually provides |28, 34]. Reactive measures including
anomaly-based detection and filtering of attack traffic on the other hand could
completely mitigate ongoing attacks |40} |41} 44].

Misa et al. [26] describe the development of a system to automatically detect
volumetric DDoS attacks, which is explored further in the next section. Using
prefix-level clustering to exploit the properties of reflection and botnet attacks
to differentiate them from benign traffic is especially relevant as it is novel and
allows the use of more complex machine learning models with reduced monitoring
overhead [26].

3 Automatic Detection of DDoS

Next we discuss the development of ML-based automatic detection methods ref-
erencing Misa et al. [26] (ZAPDOS) and Wichtlhuber et al. [40] (IXPScrubber).
ZAPDOS focuses on defending at the victim network, while IXPscrubber fo-
cuses on intermediary networks (at IXPs). However, first pitfalls when applying
ML to the security domain |2] are introduced, so the proposed methods can
subsequently be examined using this knowledge.

3.1 Challenges in Applying ML to Detection

Arp et al. |2] examined 30 papers from top-tier security conferences regarding
ten common pitfalls in design, implementation and evaluation of learning-based
security systems, finding that all papers suffer from at least three pitfalls. Arp
et al. explain how these undermine the validity of research results and provide
recommendations to rectify or reduce the impact of the pitfalls. Those pitfalls
exist because ML "requires reasoning about statistical properties of data across a
delicate workflow" [2]. Le., incorrect assumptions and experimental biases impact
results heavily, leading to overly optimistic assessments of the developed solution.
A complete overview of issues is not possible within the scope of this work. Thus,
the goal of this section is to present the pitfalls present in most papers or directly
applicable to automatic attack detection and how to mitigate them.

The most common pitfalls were sampling bias and data snooping [2]. Sam-
pling bias occurs during the data collection phase if the true underlying distribu-
tion of the input space is not represented in the sample. This can be traced back

2 Though this only means that they can in theory detect all subclasses, not that their
performance is equal for each subclass.
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to the acquisition of data for the training of the model, which is challenging.
Often one has to rely on synthetic data or combine multiple data sources. To
mitigate this issue, one can construct different estimates of the true distribution
and analyze them individually [2]. Data snooping has three expressions (test,
temporal, selective) |2]. An example of selective data snooping is the removal of
outliers based on statistics of the complete data set (training and test) that are
usually not available at training time [2]. To prevent data snooping, one should
follow the general standard of separating training, validation and test data, con-
sider temporal dependencies when creating dataset splits and complement the
experiments with recent data.

Inappropriate threat models, lab-only evaluation and inappropriate perfor-
mance measures are other prevalent pitfalls, occurring at least partially in more
than half of the investigated papers [2]. ML models are usually deployed in
hostile environments with attackers suspecting their existence and behaving ac-
cordingly. As such, the threat models need to be precisely defined and the system
validated against it. Arp et al. especially recommend focusing on white-box at-
tacks where possible [2]. Lab evaluations are often not realistic and solely relying
on them is negligent. Therefore, one should ideally deploy the system in the real
world (while keeping ethical considerations in mind) or at least approximate
real-world settings by accounting for typical dynamics encountered in practice
[2]. Evaluation of the model should include multiple metrics as simple and one
dimensional metrics may be insufficient, while complex measures could obscure
the actual performance. This is especially important for detection tasks [2].

For the field of network intrusion detection Arp et al. underline the chal-
lenge of data set collection (e.g., avoiding sampling bias) and recommend using
a simpler model as a baseline [2]. When evaluating an approach only comparing
against mostly identical learning models is not sufficient. Comparing to tradi-
tional methods is a must to convincingly justify the overhead introduced by
complex models and ML approaches in general [2]. As DDoS detection relies on
classifying attack and benign traffic, label inaccuracy has to be avoided as well.
To achieve this the labels need to be as accurate as possible and the remaining
uncertainty has to be considered as well [2].

The other pitfalls are biased parameter selection (relating to hyperparameter
and threshold selection), base rate fallacy (ignoring the base rate during evalua-
tion) and spurious correlations (the model mistaking correlation for causation).
A relevant example of spurious correlation is a model learning to detect IP ranges
instead of attack patterns if most attacks originate in one network region [2]. To
prevent this, explainability techniques should be applied [2]. While some pitfalls
may be unavoidable, corrective measures should always be taken and resulting
limitations discussed [2].

3.2 Looking at Two Development Approaches for Automatic DDoS
Detection

After reporting on the challenges inherent to developing a ML-model for security
and specifically detection, we now examine two examples of developing such a
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model. ZAPDOS [26] and IXPScrubber [40] serve as case studies illustrating how
these challenges apply detection models.

Misa et al. [26] use multiple data sources as well as synthetic data for the de-
velopment of ZAPDOS. Misa et al. created their own training data by generating
attack traffic and merging it with benign traffic. To approximate a realistic attack
setting they use data from the Mirai botnet, booter datasets as well as a special
method for creating synthetic attack sources representing spoofing-based attacks
for their attack source set. This attack source set is then used to generate the
attack traffic using six common attack types (reflection-amplification via DNS,
NTP and flooding attacks). As a source for benign traffic Misa et al. use data
from the 2019 MAWILab dataset. They aim to provide realistic attack address
distributions as well as packet-level data and take extra caution to ensure proper
separation of training and testing sets, using this method to create the training,
testing and evaluation data. Misa et al. use false-negative and false-positive rates
as their sole evaluation metrics when comparing their model to two sketch-based
statistical approaches. Adversarial considerations are discussed including attacks
with specific knowledge of how the model was trained.

Their proposed method could be affected by the following pitfalls: data snoop-
ing, sampling bias, spurious correlations, lab-only evaluation, inappropriate per-
formance measures and label inaccuracy. The reason lies in their chosen data
set (its creation method) and their evaluation set up. Firstly the use of 2019
MAWTI data could lead to spurious correlations, data snooping, sampling bias
and label inaccuracy if their generated traffic has properties diverging from it.
E.g., the model may identify a pattern in the generated traffic that is irrespective
of an attack and use this to differentiate the generated traffic from the MAWI
traces. This would then result in the model detecting traffic similar to the pat-
tern instead of attack traffic. While Misa et al. do acknowledge the challenge in
data selection, they only mention the limited generalizability to network settings
beyond MAWI.

The validity of their method could have been strengthened by using explain-
ability techniques, recent and "natural" traffic captures (during development
and evaluation), a more diverse set of measures. Furthermore Misa et al. could
have discussed their labeling method as one could assume from their paper that
they simply labeled their generated traffic as malicious and the MAWTI traffic as
benign. This would rest on the (unlikely) assumption that the MAWT trace does
not contain any attack traffic.

Wichtlhuber et al. [40] underscore the importance of training data quality
and the ML pipeline itself for developing functional models. They use two dif-
ferent data sets, the ML training set mainly used for training and a self-attack
set (SAS) mainly used for validation. The training set is created using at IXPs
blackholed traffic. Wichtlhuber et al. explain their labeling method and how they
generate high-quality training data to mitigate sampling bias and label inaccu-
racy as well as consider the representativeness of their data. Wichtlhuber et al.
use blackholed traffic after balancing and filtering it so that the data set has
an equal distribution of blackholing flows and benign flows while maintaining
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the traffic properties of the blackholed traffic [40]. The SAS data is collected by
an IXP commissioning a DDoS attack on itself and represents a ground truth
baseline that they use during the evaluation to evaluate the validity of their
method. They explicitly address how spurious correlations and sampling bias
can be reduced using this second data set. Wichtlhuber et al. further integrate
local explainability (i.e., explaining model decisions for certain inputs) into their
model, helping understand classification decisions during the evaluation. The
separation of training, testing and evaluation data as well as adversarial security
considerations are covered as well. The evaluation is carried out at five com-
mercial IXPs using diverse metrics to assess performance (recall, precision, false
positive and negative rates), investigate model drift and comparing it against a
simpler baseline (a rule-tagging-based classifier), following the recommendations
laid out by Arp et al. [2].

Conclusion and Outlook

DDoS attacks are a long-standing threat that continues to grow. They directly
threaten the critical infrastructure of the Internet. We examined specific classes
of DDoS attacks, mitigation strategies, and current challenges. Previous work
found that reflection and botnet attacks make up the majority of volumetric
attacks and that adversaries are adaptable. Automatic model-based detection
is a measure against such adversaries. A model-based DDoS detection system
should be distributed, scalable, resource efficient and incentivize cooperation. It
should furthermore enable the incorporation of problem-specific knowledge such
as known reflectors or cluster properties of traffic.

The quality of the training data and ML workflow are paramount to the de-
velopment of the model. Preventing sampling bias and label inaccuracies during
development is challenging but necessary. An appropriate baseline and multiple
appropriate metrics should be used during the evaluation. For the detection of
volumetric reflection attacks the threshold proposed by Kopp et al. and con-
firmed by Wagner et al. is such a baseline. Explainability techniques should be
considered to prevent spurious correlations. Finally, the adversarial environment
has to be taken into account during the design of the ML model.

Investigating clustering of attack sources at the prefix-level through the ap-
plication of clustering algorithms like K-Means or hierarchical clustering is the
next step we plan to take. Further, we could examine statistical properties (e.g.,
entropy) of attack sources and benign traffic to better understand their underly-
ing properties. As for data sources, the CAIDA Network telescope can serve as
a source for spoofed DDoS traffic and the MAWT traces can be further explored.
Using scanners to periodically identify potential reflectors would allow us to be
privy to changes in their prefix-level distribution.
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