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Abbreviations

CF. Configuration Frame. In Slipmux, a configuration frame is a SLIP encoded
CoAP message that is prefixed with the Frame Type (FT) and postfixed with a
checksum.

6, 9, 10

CRC-16. 16 bit wide cyclic redundancy check 5

CoAP. Constrained Application Protocol. Specified in RFC 7252. 6, 7, 10

DF. Diagnostic Frame. In Slipmux, a Diagnostic Frame is a SLIP encoded Diagnostic
Message (DM) that is prefixed with the Frame Type (FT).

5

DM. Diagnostic Message. In Slipmux, a Diagnostic Message is a string of UTF-8 encoded
characters without semantics except that it is intended to be human-readable.

5, 6

DT. Diagnostic Transfer. In Slipmux, Diagnostic Transfer describes the transmitting
and receiving of a Diagnostic Frame (DF).

5, 6

FT. Frame Type. In Slipmux, there are three types of frames that can be
exchanged. Diagnostic, Configuration and (IP-) Packets. They are identified by
the first byte in the frame.

4, 5, 6, 9, 11

UART. Universal Asynchronous Receiver Transmitter 2, 3, 5

nanocoap. RIOT provides two CoAP implementations: GCoAP and nanocoap. The latter
is the smaller one, but has fewer features.

6

no_std. A Rust directive to prevent loading the standard library. Colloquial used to
describe bare metal, embedded system environments.

10

stdio. standard input/output stream 5
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1 Introduction

Reliable and efficient data exchange between host computers and embedded systems is
a requirement during development of Internet-of-Things (IoT) and cyber-physical appli-
cations. Even as high-speed wireless and Ethernet interfaces have become ubiquitous,
Universal Asynchronous Receiver Transmitter (UART) communication — commonly re-
ferred to as serial communication — remains one of the most widely used mechanisms for
connecting heterogeneous devices. UART offer simplicity, low cost, and broad hardware
support, which makes it especially attractive in environments where resource constraints
or legacy compatibility must be considered. However, the simplicity of UART at the
physical and link layers places the burden of reliability, framing, and error handling on
the higher-level protocol implementation. Despite the prevalence of UART-based links
between embedded devices and host systems, the corresponding protocols are often either
plain text (ASCII) streaming or application-specific.

Embedded operating systems such as RIOT OS exemplify these challenges. RIOT OS
targets resource-constrained IoT devices and provides a lightweight multitasking envi-
ronment with a small memory footprint [1]. These characteristics are advantageous for
low-power constrained systems but also impose strict limitations on a communication
stack design. In contrast, host computers typically operate under general purpose oper-
ating systems with abundant processing power, extensive libraries, and more permissive
concurrency models. The diffrence in computational resources allows to externalise
certain computations from the constrained device to the host system. Externalising
computation reduces the resource requirements of the embedded application. This is
especially desirable for tasks that are orthogonal to the main application running on the
constrained system. For example, a configuration must be parsed and applied on the
constrained device but creation and validation of that configuration can be offloaded to
the host computer.

Slipmux is a protocol designed for serial communication [2]. It offers lightweight framing
to encapsulate and transport three different types of data over an UART. As an iteration
of the serial line IP protocol (SLIP) it maintains the same escaping scheme and the
transport of IP packets [3]. The newly added types of data are plain text as UTF-8
strings and constrained application protocol (CoAP) [4] messages. This sets slipmux in an
ideal position where it can aid to offload computation by providing machine-to-machine
communication via CoAP, while not only maintaining backwards compatibility via plain
text and SLIP, but also by remaining light on the resources it requires.
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2 slipmux

1.1 Related Work

This work is a continuation of the report [5] by the same author. The previous work
motivated the need of change for traditional shells on constrained devices and outlined a
possible future shell. In particular, it focussed on user experience (UX) and user interface
(UI) enhancements when interacting with such a device. Both UX and UI are orthogonal
tasks that can be externalized to the host computer in order to free up resources on
the constrained device while also yielding better results. Slipmux has been implemented
before by Lobaro [6] in C [7] and Golang [8] but both projects seem incomplete. In
addition, the projects are abandoned with the last public code change in May 2020 [9].

1.2 Objective

The goal of this work is to provide infrastructure for future work. Specifically, it should
enable building an application on top of it during the next project. This infrastructure
consists of two implementations of slipmux. One implementation is a driver within RIOT
and is written in the C programming language. The other is a higher level library in the
Rust language, intended for development on general purpose computers running Linux
or MacOS.

1.3 Outline

The remainder of the report is organised as follows. Section 2 introduces the technical
background of communication via UART and outlines the key features of the slipmux
protocol. Section 3 introduces the RIOT SLIP driver and its extension into a full slipmux
driver, followed by Section 4 with technical background on the new Rust based slipmux
library. Finally, Section 5 concludes with a summary of findings and directions for future
work.

2 slipmux

Slipmux is a lightweight multiplexing approach for using a single UART interface to
support diagnostic output, device configuration, and IP packet transfer on constrained
IoT platforms [2]. Many experimental IoT boards offer low-cost serial ports which are
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2 slipmux

typically used either for firmware loading, human-readable input / output or SLIP-based
IP packet transport (RFC 1055 [3]). Slipmux unifies these functions in a protocol that
maintains compatibility with existing SLIP tools while adding well-defined framing for
non-packet traffic.

At the physical and link layers, slipmux assumes a UART connection consisting of a
TX-, an RX- and a GND pin. Further physical interfacing is out of scope for slipmux.
It adopts the SLIP frame delimiter and escape mechanisms (0xC0 and 0xDB) without
modification. Each slipmux frame begins with a single “initial byte” that identifies the
Frame Type (FT):

• 0x45–0x4F: IPv4 packets (retaining the first byte of the IP header)
• 0x60–0x6F: IPv6 packets
• 0x0A: UTF-8 diagnostic messages (ASCII-safe, newline-prefixed, unidirectional from

device to host)
• 0xA9: CoAP configuration messages with a 16-bit PPP-style CRC appended

Packet transfer frames remain bitwise identical to SLIP, ensuring immediate interop-
erability with existing utilities, such as tunslip [10]. Diagnostic frames provide human-
readable debugging output multiplexed over the same link, while CoAP frames enable
structured configuration and state retrieval. For CoAP, the draft defines the URI scheme
coap+uart to address resources on serial devices and specifies that frames failing CRC
validation must be silently discarded.

Slipmux does not implement session-level interleaving; messages are strictly sequential.
However, it allows aborting a partially transmitted frame by sending the SLIP escape–
END sequence (0xDB 0xC0). Unknown or unsupported initial bytes must be ignored to
preserve forward compatibility.

Security considerations mirror those of the encapsulated payloads: diagnostic text should
be sanitized to avoid terminal escape exploits, and CoAP exchanges provide no intrinsic
protection unless supplemented with object security (RFC 8613) [11].

By combining diagnostic output, configuration, and packet forwarding on a single serial
link, slipmux eliminates the need for separate interfaces or ad hoc command shells and
aligns well with the minimalism and scriptability expected in constrained IoT environ-
ments.
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3 The Slipmux Driver in RIOT

Slipmux uses the 16 bit wide cyclic redundancy check (CRC-16) IBM-SDLC to check for
correctness of received frames. In preparation for the new slipmux driver, this CRC-16
subtype was added to RIOT on 16th June 2025 via #21552 [12]. RIOT already provides
a SLIP driver [13], which could easily be extended to handle slipmux as well.

3.1 The SLIP Driver of RIOT

RIOT already provides a SLIP driver [13]. As SLIP is a predecessor to slipmux, this
driver is a good starting point for the integration of slipmux. As the unescaping of the
incoming data stream is done byte wise, a state machine is used that maintains the driver
state in between the callbacks. For outgoing packets, the escaping is done on the fly as
listed in Listing 1. The behaviour of the existing SLIP driver follows the scheme below:
A. Creates a network interface in the RIOT network stack.
B. Registers a callback for the UART receive interrupt.
C. That callback receives one new byte from the UART per call.
D. A state machine keeps track of the SLIP escaping and framing.
E. Data bytes for the incoming network packets are stored in a chunked ring buffer.
F. A fully received SLIP frame completes the current active chunk in the ring buffer.
G. The network interface is informed that a new packet is available.
H. Once the packet is processed in the network stack, the chunk gets released and is

available for new data.

The SLIP driver contains an optional extension that follows slipmux and allows for
Diagnostic Transfer (DT). It is used to provide regular standard input/output stream
(stdio) over UART while SLIP is used.

The behaviour of the existing stdio extension can be described as below:
A. Registeres itself to RIOT as a stdio provider.
B. Encodes all stdout as Diagnostic Frame (DF).
C. Adapts the drivers state machine for the new Frame Type (FT).
D. Directly passes received data bytes to stdin (no intermediate buffer).

For outgoing DT, the extension reuses the on the fly escaping (Listing 1). Since this
escaping is not FT aware, the Diagnostic Message (DM) gets prefixed with its FT first.

5
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3 The Slipmux Driver in RIOT

3.2 Extending the Driver for Configuration Messages

With SLIP and DT already implemented, only the processing of configuration messages
is missing to fully implement slipmux. This breaks down to a few tasks:
A. Add the new FT to the state machine.
B. Allocate and manage memory for receiving and processing the new frames.
C. If the CRC is correct, extract the configuration message from the frame.
D. Process the configuration message.
E. Transmit the response, if any, after processing.

Adding a new FT to the existing state machine is straightforward as it repeats the
existing pattern of the other two FTs. The final state machine is shown in Figure 2.
It keeps track of the frames FT, that is currently decoded. This is necessary so the
decoded data is passed to the correct consumer. For Configuration Frames (CFs) and
packets, this is their respective chunked ring buffer. DMs are directly passed to the stdin
pipe. When a CF is fully received, the decoder marks the chunk in the ring buffer as
completed and then notifies the waiting processing thread via a thread flag. Afterwards
it returns to the idle state. Similarly, when a packet is completed, the respective chunk
is marked as completed too. In this case the waiting thread is the network interface and
it is notified using a netdev_event. The resulting processing pipeline, in which minor
behaviour changes depend on the frame type, is depicted in Figure 1.

As mentioned, incoming CFs are stored in a chunked ring buffer. This is identical to the
handling of packets. Ring buffer have the useful property that their content is not copied
nor moved during consumption. As such they are a common choice for buffering data
streams. This ring buffer is chunked as it operates with variable length content, which
fits storing CFs as their length is variable and not known in advance.

To process fully received configuration messages, the slipmux driver starts its own
Constrained Application Protocol (CoAP) server. The server thread waits for the notifi-
cation that a new configuration message is available in the ring buffer. It expects the
data to be in the format of CoAP requests with the postfixed checksum as defined in
[2] (see Section 2). The server first checks whether the checksum is correct and if it is,
processes the CoAP request using the nanocoap backend, otherwise the request is silently
dropped. The processing result is a CoAP response. The result is prefixed with the FT
and postfixed with a newly calculated checksum. The prepared response is sent via the
SLIP driver, which handles further esacping and framing (see Listing 1).
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3 The Slipmux Driver in RIOT

Even though the processing thread is a CoAP server, the network stack is not involved.
This approach is convenient for devices that do not have other networking capabilities as
it removes the heavy dependency of a network stack. On the other hand, this is wasteful
for devices that already run their own CoAP server, which currently cannot be reused.

This extension got merged into RIOT on 7th July 2025 via #21418 [14].

Figure 1: Abstract overview on the processing pipeline of the slipmux decoder in the
RIOT implementation. When a new byte is received and feeded into the slipmux decoder
it first is un-escaped (if neccessary) then, depending on the current frame type, it is
written to its destination. For diagnostic data this is Stdin, Configuration and Packet
data is saved into the respective ring buffer. Once a frame if fully received, the ring buffer

is finished and the consumer of the buffer is notified.
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3 The Slipmux Driver in RIOT

Figure 2: The state machine of the slipmux decoder used in the RIOT implementation.
Transitions are stepped whenever a new byte is received. Each transition is guarded by
the value(s) that the new byte might have. A transition annotated with ‘other’ matches all
remaining byte values for the given state. The bytes 0x0a, 0xa9 and the ranges 0x45..0x4f
and 0x60..0x6f are the encoded FT. The byte 0xdb starts an escape sequence which is
followed by either 0xdc (escaped End-Frame) or 0xdd (escaped escape). Lastly, 0xc9 ends
a frame. Illegal and error related transitions are omitted from this diagram. The outlined

arrows hint the corresponding side effects for the application.
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3 The Slipmux Driver in RIOT

void slipdev_write_bytes(UART_t UART, const uint8_t *data, size_t len)

{

    for (unsigned j = 0; j < len; j++, data++) {

        switch (*data) {

            case SLIPDEV_END:

                /* escaping END byte*/

                slipdev_write_byte(UART, SLIPDEV_ESC);

                slipdev_write_byte(UART, SLIPDEV_END_ESC);

                break;

            case SLIPDEV_ESC:

                /* escaping ESC byte*/

                slipdev_write_byte(UART, SLIPDEV_ESC);

                slipdev_write_byte(UART, SLIPDEV_ESC_ESC);

                break;

            default:

                slipdev_write_byte(UART, *data);

        }

    }

}
Listing 1: Data is encoded for slipmux and transmitted in a single function. If a framing
control byte is in the passed data, it gets replaced by the appropriate escape sequence.
This encoding is done without awareness for the FT, the passed data must already be

pre- and or postfixed according to their FT.

3.3 Remaining Work

• slipmux allows to abort frames during transmission on a byte boundary. This imple-
mentation does not support this. Neither on the receiving side nor the transmitting
side.

• There is no API for sending CFs proactively. Sending of this FT is only implemented
reactively, as a response to a received CF. It is unclear if such an API is needed.

• A shortcoming of the current integration into the existing SLIP driver is the inability
to build the slipmux driver without the need to include a network stack. While a
correct slipmux implementation must be able to receive IP packet frames, they can
be discarded silently if the device has no interest in them. In such case, this imple-
mentation would still includ an entire IP network stack even if it is not used. This
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4 Slipmux as a Crate

is not a shortcoming of the driver but of the underlying buildsystem integration and
configuration. As mentioned, the driver architecture already supports this.

• The processing of CFs runs in an extra thread, which directly utilizes the nanocoap-
parser and -handler. This does not take an already running CoAP server into account.
This might result in inconsistent behaviour of CoAP endpoints, depending on if they
are accessed via the network or via slipmux. In addition, this wastes both storage and
working memory.

• The upcoming Unicoap API (#PR21582) can be used to resolve the CoAP server
integration issues [15]. Once Unicoap is available, its usage for the slipmux driver will
be investigated.

4 Slipmux as a Crate

In the upcoming main project, an application (Jelly [16]) gets developed that requires a
slipmux driver as well. Instead of developing that driver inside the application, the driver
is externalized into a library of its own, hostet on Teufelchen1/slipmux [17]. The library
is written in Rust and was initially published on 4th April 2025 in version 0.1.0. The
current version available is 0.3.2, published on 18th July 2025. The Rust community calls
libraries “Crates”. Hence this driver is a crate called “slipmux” and is available for other
Rust developers on crates.io [18]. Rust has the generation of documentation from code
comments and examples as a build-in feature. This includes the compilation, execution
and testing of these documentation examples as well. The extensive documentation on
the usage of this driver gets published automatically on docs.rs/slipmux whenever a new
driver version is released [19]. The development of the driver is almost completed and
all required functionality from the slipmux draft is implemented. Only minor documen-
tation enhancement and API polishing is left to do. An extra feature of the driver is
that it cannot only be used on conventional computers but also on embedded systems
(bare metal). Such systems, where the Rust standard library (“std“ or “stdlib”) is not
available, are called no_std (which is also the name of the compiler directive to omit the
standard library) targets by the Rust community. Therefore the slipmux crate is no_std
compatible.
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4 Slipmux as a Crate

4.1 Software Architecture

The crate is split into encoding and decoding. Encoding can be done stateless while
decoding is much more involved as it requires splitting a stream of encoded data into an
unknown count of frames and returning their respective unencoded data.

4.1.1 Encoding

The encoding is stateless and only provides functions that encode data into slipmux
frames. Encoding can either be done using a user provided buffer (for no_std targets,
using no heap operations) or on the heap, returning a new buffer.

4.1.2 Decoding

Because of the streaming nature of decoding, the user has to create a Decoder object that
keeps track of the decoding state. The state is managed using a state machine. This state
machine is functional identical to the one used by the RIOT driver shown in Figure 2.
The decoding is done bytewise by calling the decode method on the object with the new
byte from the input stream and a FrameHandler. The FrameHandler is another object the
user must create, either using one of the provided ones or by implementing their own.

4.1.3 Framehandler

The FrameHandler component is used to decouple memory management from the decoding
logic. It enables to choose where to store the decoded data depending on the FT.
This allows the user fine grained control over the memory usage, which is important
when targeting embedded devices. On those devices, memory usage is often interleaved
between different functionalities. For example, this approach enables users to build a
custom FrameHandler that stores packets directly in the network stack, reducing the
overall memory required and cut down on expensive memory copy operations. When
implementing their own, the user must satisfy the FrameHandler trait listed in Listing 2.
A Rust trait is an interface, which communicates and defines if a type (e.g. a Struct)
has a specific behavior [20]. It does not define data, neither constant nor mutable. The
FrameHandler decouples by providing an excerpt of all the state transitions that might
happen during decoding. This subset consists of three events: beginning a new frame of
a specific type, adding a new data byte and finishing a frame (including error report, if
any). The events happen in this exact order everytime a frame is decoded, with adding
new data being the only event that can happen zero or more times before moving to the
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4 Slipmux as a Crate

next event (ending the current frame). One possible sequence of these events is shown in
Figure 3.

/// Callback handler for the decoder

///

/// This is typically driven by [`Decoder::decode()`], which calls it strictly

in the sequence of

/// [`.begin_frame()`][Self::begin_frame()], any number of [`.write_byte()`]

[Self::write_byte()]

/// and then [`.end_frame()`][Self::end_frame()], starting over after that.

pub trait FrameHandler {

    /// Called when the decoder identifies a frame and starts filling it

    fn begin_frame(&mut self, frame_type: FrameType);

    /// Called with each new byte that belongs to the current frame

    fn write_byte(&mut self, byte: u8);

    /// Called when a full frame has been received

    fn end_frame(&mut self, error: Option<Error>);

}
Listing 2: The FrameHandler trait that decouples decoding from memory management.

12



4 Slipmux as a Crate

Figure 3: The interactions between the data input, the Decoder and the FrameHandler
over time. The first incoming byte starts a new frame. The seconds byte is pure data
and gets saved. The third is an escape character and the fourth is the escaped data byte.

Lastly, the fifth byte ends the frame.
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5 Conclusion and Outlook

This report documents the successful extension of the RIOT SLIP driver into a slipmux
driver and the creation of a new slipmux library. It outlined that both the RIOT slipmux
driver and the slipmux crate are in a good shape and can be used for future work. The
driver can benefit from further work such as buildsystem and configuration clean up.
The CoAP server situation is non-ideal, but is functionally solid and can be replaced by
future RIOT APIs such as Unicoap [15]. The Rust crate is fully functional and ready to
be used in applications. The implementations provided will serve as a solid foundation
for future development of tooling that make use of the features provided by slipmux. In
particular, a RIOT shell that externalizes the UX and UI computation is a prime target
for further research as described in [5]. Outside of user interactions, the possible gains in
performance and code size are of high interest.
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