Quality of Service in Multimedia Networking

- The QoS Problem in Packet Networks
- Network QoS Operations
 - Shaping
 - Queuing & Dropping
- Architectures: DiffServ & IntServ
- Traffic Engineering
 - Multi Protocol Label Switching

	_	
_	_	
_	_	
	_	

QoS – Layered Model

Perceptual Quality of Service Specification - User Layer

Application Quality of Service Specification - Application Layer

System Quality of Service Specification - Operating System Layer

Network Quality of Service Specification - Device / Networking Layer

Problem Statement

o The standard Internet is 'Best Effort' service

- Re-routing Change of link properties (wireless!)
- Heterogeneous link transitions Congestion
- o New sensitive applications
 - Interactive media streams (for medical treatment ...)
 - Remote real-time controls
 - 'Synchronous' IP (I-SCSI)
- o ISPs want to sell special services
- ★ Use bandwidth effectively ★ Avoid congestion collapse

Recall: VoIP/VCoIP Real-Time Requirements

- ! Latency $\approx < 100 \text{ ms}$
- ! Inter-stream Latency \approx < 30/40 ms audio ahead/behind
- ! Jitter ≈< 50 ms
- ! Packet loss $\approx < 1 \%$
- ! Interruption: 100 ms \approx 1 spoken syllable
- ! Packet reordering may cause loss & jitter

Criticial Issue: Jitter Main Jitter Sources

 \Rightarrow Processing & multiplexing at end systems

- o Under user / end system control
- ⇒ Statistical multiplexing at (physical) network devices
 - o Mainly LAN controlled
- \Rightarrow Random queuing delays at routers
 - Accumulate in (unknown) wide area transport

Jitter Source: End Systems

Adjust processing complexity and load

Introduce Jitter-hiding buffers/delays

- Fixed Buffer
- Adaptive Buffer:

If p_i = Time of playout for the *i*-th packet (of timestamp t_i) Then for appropriate K (e.g. 4 like in TCP)

 $p_i = t_i + d_i + K J_i$ is an appropriate over estimator

But: playout delays may be only adjusted between spurts

 ∇ Playout delays distract interactivity

Jitter Source: Network - Statistical Multiplexing

- Packet delays are added randomly
- Sensitive to instantaneous load (UDP bursts)
- Timing 'out of control', even in over provisioned networks
- ► L2 Approach: 802.1p packet priorisation

Ethernet 802.1Q/p - Tagging

Tag Protocol Identifier=0x8100 Priority Tagging for 802.1p

Canonical Format Identifier VLAN ID: 802.1Q Mapping

10 • Prof. Dr. Thomas Schmidt • http://www.informatik.haw-hamburg.de/~schmidt •

Jitter Source: Routing - Queuing Delays

- Queuing time in FIFO depends on queue length & loss strategy
- Load adds random delays
- Insufficient buffer space results in packet discarding
- May remain bound in over provisioned networks ?

11 • Prof. Dr. Thomas Schmidt • http://www.informatik.haw-hamburg.de/~schmidt •

The Nature of Internet Traffic

Internet traffic is mainly the sum of congestion controlled TCP flows with sudden bursts (UDP sources ... viruses/worms)

o Bursts are uncontrolled and unlimited by the transport layer

o 'Regular' TCP traffic is self-similar, not Poissonian

- Peaks add up on fractional time scales
- No i.i.d. 'Ups and Downs'
- Overflow probabilities decrease very slowly, not exponentially
- ⇒ There is no reliable *and* no reasonable Internetwork resource bound

What can a Network do?

Shaping & Selecting:

- o Control network entry points
- Prevent bursts / overloads entering the network

Priority Queuing:

o Forward packets at different priorities

Buffering or dropping:

- Buffer queues add delay, no 'reasonable' length
- Rule of thumb in use: link capacity x <RTT>flows
- 'Blind' dropping can be harmful
- → Try to use selective mechanisms

Traffic engineering:

o Balance traffic flows according to network resources

13 • Prof. Dr. Thomas Schmidt • http://www.informatik.haw-hamburg.de/~schmidt •

Traffic Shaping

- Simple á priori macro control: Leaky Bucket
- Traffic shaping: controlled distribution across network (per port, per protocol or per flow)
- May limit average rates, peak rates and burst sizes
- Fairly static: needs continuous monitoring
- Problem: network resources unused?

14	•	Prof. Dr. Thomas Schmidt	٠	http:/www.informatik.haw-hamburg.de/~schmidt	
----	---	--------------------------	---	--	--

_	_
	_
_	

15 • Prof. Dr. Thomas Schmidt • http://www.informatik.haw-hamburg.de/~schmidt •

Priority Queuing

- Identified traffic assigned to different queues
- Needs scheduling: Weighted Round Robin
 - Class Based Queuing
 - Weighted Fair Queuing

16 • Prof. Dr. Thomas Schmidt • http://www.informatik.haw-hamburg.de/~schmidt •

Queuing

Class Based Queuing - CBQ:

Transmits packets from highest nonempty queue first

(Weighted) Round Robin - WRR:

- Visits queue after queue in round robin fashion
- Picks 1 (N_i) packets from queue i
- Problem: does not account for packet lengths

Weighted Fair Queuing - WFQ:

- Visits queues in round robin fashion
- Donates a predefined data rate to each queue

Dropping

Old better than new (WINE):

On overload drop newest packet first (TCP-like)

New better than old (MILK):

On overload drop oldest packet first (Real-time data)

Random Early Detection (RED):

- Start discarding packets prior to overload
- Observe watermarks of queue lengths
- Idea: TCP will slow down on packet loss
- Problem: UDP some ideas of selective discards

Example: Balanced Network with Maximal Delay

- Suppose a traffic flow enters a network through a leaky bucket with average rate *M* and burst limit *B*
- Suppose routers with balanced links of transmission capacity T and WFQ forward this flow with rate $T\omega$
- Furthermore $M \leq T \omega$, then:

 $\frac{B}{T\omega}$ is the maximum queue delay for any packet.

Traffic Classification

How to identify packets for QoS treatments?

- Per port (simple & rough)
- Per TOS/Traffic Class field
 - Labelling from application or at network entry point
- Per flow

Identifying Quintuple in IPv4

- Source & Destination Address
- Transport Protocol
- Source & Destination Port
- Problem: Packet fragmentation, header compression, encryption

IPv6: Flow Label

20 • Prof. Dr. Thomas Schmidt • http://www.informatik.haw-hamburg.de/~schmidt •

Policy-based Routing

- Policy defines
 - Forwarding and queuing strategies
 - Call admission control rules
 - Leaky bucket parameters
 - Dropping conditions
- Policy might depend on
 - Type of traffic (classification)
 - Overall resource consumption (metering results)
 - Externals like time of day, authenticated user, ...
- Automatic Policy Distribution: COPS
 - A server actively installs policies into devices

IntServ – Integrated Service Architecture

Ambitious Solution (RFCs 2205-2212) with

- Per-flow resource reservation & queuing at all routers
- Quality of service for sessions (end-to-end)
- Hard guarantees desired
- Two service types defined:
 - Guaranteed Service: guarantied bandwidth, firm bounds on end-to-end queuing delays
 - Controlled Load: approximates congestion-free network

But

- High complexity
 Low scalability
- Needs support of all routers

22 • Prof. Dr. Thomas Schmidt • http://www.informatik.haw-hamburg.de/~schmidt •

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

- Vulnerable to flow state attacks

IntServ

- Provide mechanisms to reserve resources (link bandwidth, buffers) at routers along the path of each flow.
- Flow context used to drive a token bucket
- Initial call setup to implement QoS states at routers:
 - Requested QoS Rspec
 - Traffic characteristic Tspec
- Signalling process with Resource reSerVation Protocol (RSVP)
- Initiates virtual queues at routers: one for each flow

Resource reSerVation Protocol (RSVP)

- Signalling protocol to reserve router resources along a path
- RFC 2205 (Zhang et al, 1997)
- Resource reservation for multicast distribution trees (including unicast)
- Destination oriented reservations
 - Sender pushes periodically PATH messages (establish router states)
 - Receiver answers with RESV packets
 - Routers interpret these along the paths
- Involves applications and all intermediate devices
- Soft-State-Concept: reservation states with lifetime

24 • Prof. Dr. Thomas Schmidt • http://www.informatik.haw-hamburg.de/~schmidt •

Group Reservation RSVP defines QoS paths from receiver (to specific source) Resource reservations are merged when possible (on flow identification)

RSVP Functional Blocks

26 • Prof. Dr. Thomas Schmidt • http://www.informatik.haw-hamburg.de/~schmidt •

RSVP per Router Scheduling

27 • Prof. Dr. Thomas Schmidt • http://www.informatik.haw-hamburg.de/~schmidt •

DiffServ- Differentiated Service Architecture

Less ambitious solution (RFC 2475,3260) with

- Different services for different classes of traffic
- No guaranteed quality of service (end-to-end), but
- Controlled Per-Hop Behaviour (PHB):
 Expedited / Assured Service Groups
- Using
 - Traffic classification (ToS/Traffic Class = DiffServ field)
 - Per-class queuing (no distinctive flows)

Aiming at scalable, efficient, easy-to-deploy QoS services_

Differentiated Services: Components & Terminology

- Service Level Specification (SLS): a set of parameters/values, which together define the service offered by a DS domain
- SLS is based on Traffic Condition Specification (TCS): a set of parameters specifying classifier rules an a traffic profile
- Classifying, metering and marking at boundary nodes, no application dependence
- At Router
 - Queuing and forwarding based on DiffServ Codepoints
 - Traffic aggregation according to Codepoints
 - No connection states

_	_
	_
_	_

29 • Prof. Dr. Thomas Schmidt • http://www.informatik.haw-hamburg.de/~schmidt •

Diffserv: Traffic Conditioner

- Classifier: Separate packets into classes
- Meter: Measure submitted traffic for conformance profile
- Marker: Polices by (re-)marking packets with codepoints
- Shaper/Dropper: Delays / discards packets

30 • Рюг. л. тногназ оснинис • <u>пар./www.iniornauk.naw-namburg.uc/ оснинис</u> •

DiffServ: Service Details

- To attain "Network Services", isolated per-hop behaviours must be coordinated to PHB groups:
- Expedited Forwarding Behaviour (EF):
 - "Virtual leased line" service
 - Simple service model for small delay/real time apps
 - Aggregated flows bound by peak bandwidth
 - Ingress router: policing/dropping Egress router: shaping
- Assured Forwarding Behaviour (AF):
 - Complex service type with support for bursty flows
 - Defines different classes with independent resources as AF instances
 - Three drop precedences for each class ("Bronze", "Silver", "Gold")

Resource Allocation

Resources are allocated by marking IP packets with appropriate DiffServ Codepoints at boundary nodes (also network transition points):

- Static: Mark packets by IP-address and/or protocol port
- Bandwidth Broker (RFC 2638): Unit to configure resources from network-wide policy table (at ingress+egress routers)
- Dynamic with BB: Router states are monitored by BB to optimise network resource utilisation and performance (dynamic TCSs).
- QoS signalling: Common Open Policy Service Protocol (COPS, RFC 2748)

DiffServ Field: Codepoints

- Defined in RFC 2474 ++
- General form: xxxxxRR (= 64 possible Codepoints)
- Standard Assignment: xxxxx0 (Default: 000000)
- IPv4 compatibility: xxx000
 Queue-Service and Congestion Control as in RFC 1812
- Assured Forwarding as in RFC 2597: Four classes, each with three drop precedences – AF1x, AF2x, AF3x, AF4x, x= 1 ... 3:
- Expedited Forwarding as in RFC 3248: 101111
- Experimental: xxxx1

Drop Prec:	Class 1	Class 2	Class 3	Class 4
Low	001010	010010	011010	100010
Medium	001100	010100	011100	100100
High	001110	010110	011110	100110

DiffServ Virtual Queues: Mapping Problem

- DiffServ does not define implementation details (separation of forwarding & control)
- Problem: Mapping of logical to physical resources
- L3 virtual to physical queues: Vendor implementations LAN resources Packet 3 (e.g. 802.1p): IEEE & RFC 2814-16 Packet 4 physical queue WLAN resources: scheduler IEEE 802.11e, 802.16, ... Diffserv queue

Diffserv Architecture

35 • Prof. Dr. Thomas Schmidt • http://www.informatik.haw-hamburg.de/~schmidt •

IntServ vers. DiffServ, Quo vadis QoS ?

IntServ: Flexible, granular, application oriented service but: does not scale

DiffServ: Scalable, provider oriented, easy deployable service but: application-ignorant

→ Approach: IntServ (edges) over DiffServ (core)

General Issues (RFC2990 from IAB):

- State versus statelessness in QoS?
- Inter-Domain signalling?
- Which mechanisms will form an end-to-end QoS architecture?
- Transport layer issues what to do with TCP?
- Security and accounting open ...

36 • Prof. Dr. Thomas Schmidt • http://www.informatik.haw-hamburg.de/~schmidt •

Traffic Engineering

Problem: IP routing traditionally follows shortest paths. This may lead to overloaded links, while the physical infrastructure offers meshes

Traffic engineering is concerned with

- discovering current traffic load
- discovering alternate paths
- directing traffic

Traffic Engineering

Simple Approach: Equal Cost Multipath routing (ECMP)

- Local decision at branch router
- Discovery of on-local network utilization:
 Explicit Congestion Notification ECN
 - ECN Codepoints in Traffic Class field
- Problem: Route overlays according to L2 properties or QoS requirements?
 - Initially: Exploit ATM VCs
 - IP: Source Routing or IP in IP tunnelling
- IETF's answer: Simplified `tunnel' tag (label)
 - Inserted below IP
 - Multi Protocol Label Switching (RFC 3031 ++)

_	_
_	_

Multi Protocol Label Switching - MPLS

- Shim header to label packets
- Label data limited to forwarding plane
- Label switching routers (LSR) forward on label switching paths
- Instruction Table: Label Forwarding Information Base (LFIB)
- Insert / remove labels at edge routers (LER)
- Label distribution via Label Distribution Protocol (LDP)

MPLS Tagging

Label Switched Paths

41 • Prof. Dr. Thomas Schmidt • http://www.informatik.haw-hamburg.de/~schmidt •

Label Distribution Protocol (LDP)

Functions of LDP

- Discovery of adjacent LDP peers
- Control negotiations on capabilities and options
- Label advertisement and withdrawal
- LDP peers establish sessions after Hello multicast messages that announce a label space
- Label distribution in downstream direction
 - Unsolicited, or
 - On Demand

Multi Protocol λ Switching - MPλS (GMPLS)

- Basis: Wavelength (λ) Division Multiplexing (WDM)
 - Optical packet switching (based on colours)
- Option to route IP over λs
 - Needs IP layer decision at branches
- Easier and more efficient:
 - MPLS overlays represented as λs ($\lambda = label$)
- But: heavy layer violation!

QoS via MPLS

- IntServ over MPLS
 - Set up a label switched RSVP tree
 - Extension to RSVP: RSVP-TE (RFC 3209, 3936), Label request/reserve
- DiffServ over MPLS
 - Constraint-based LS-Path setup using LDP (RFC 3212, 3468)
 - Group packets according to Codepoints
 - Differing approaches (E-LSP, L-LSP) on EF and AF service treatment

Deployment Practice:

- G)MPLS is a Success Story
 - Widely deployed at provider level
 - Some deployment across providers (e.g., tagged transit)
- IP-layer Technologies Hesitant to Spread
 - Some commercial DiffServ / Expedited Forwarding offers
 - IntServ bound to 'Walled Gardens'
- Congestion Control & Resource Pooling
 - Tendency to treat congestion on Transport layer (e.g., ECN in TCP)
 - Increasing activities to support multipath Transport

Reading

- Michael Welzl: Network Congestion Control, Wiley, Chichester, UK, 2005.
- > Adrian Farrel: The Internet and Its Protocols, Morgan Kaufmann, 2004.
- > J.Shin, D. Lee, C.Kuo: Quality of Service for Internet Multimedia, Prentice Hall, Upper Saddle River, NJ, 2004.
- Rao, Bojkovic, Milovanovic: Multimedia Communication Systems, Prentice Hall, Upper Saddle River, NJ, 2002.
- G. Huston: Next Steps for the IP QoS Architecture, RFC 2990, November 2000.
- > IETF Documents: <u>www.rfc-editor.org</u>
- IEEE Documents: <u>www.ieee.org</u>
 46 Prof. Dr. Thomas Schmidt <u>http://www.informatik.haw-hamburg.de/~schmidt</u> •

_	
_	