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1 Introduction

The Web is since its incarnation formed by classic client/server architectures using the HTTP(S)

protocol. There are several use cases, though, where a peer-to-peer (P2P) approach is preferable.

Additionally, the reliance on servers that users have no control over can pose a security and

privacy risk for sensitive data.

A set of new web technologies called WebRTC is currently under development to enable a real

browser-to-browser communication channel (see Vgure 1.1). WebRTC enables web applications

to establish a direct communication channel between two browsers without relaying the data

through a web server. It consists of an API [1] deVned by the W3C and a set of underlying

protocols deVned by the IETF Rtcweb Working Group [2]. The possibility of establishing peer-to-

peer channels between two browsers and the expected broad deployment (a browser is installed

on most current consumer devices from PCs to phones to TV devices) opens the opportunity for

new use cases that were only possible until now by directing all traXc through a central server

or by using proprietary technology plugins like Adobe Flash.

Such use cases range from simple real-time P2P audio/video chats to browser-based content

delivery networks, streaming audio/video or Vle sharing to virtual whiteboards or collabora-

tive editing of documents. More complex use cases involve asynchronous server-less content

publishing and consumption that we will explore in detail below.

Currently, Google and Mozilla are working intensely on implementing WebRTC in their

browsers Chrome and Firefox, respectively. Many of the speciVed features already work in stable

or beta versions of either browser. Still, though, the speciVcation process still continues. As such,

the speciVcation details are likely to change in the next month. These details include but are

not limited to supporting audio/video codecs (mostly a matter of non-technical arguments such

as potential patent claims) or feature groups such as identity veriVcation of peers and bundling

media streams.

At the heart of WebRTC lies the possibility of establishing audio/video channels using the

Secure Real-time Transport Protocol (SRTP) and data channels using the Stream Control Trans-

mission Protocol (SCTP) over Datagram Transport Layer Security (DTLS) over UDP. Such data
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1 Introduction

channels can exchange arbitrary binary or string-type data (see Vgure 1.2) and serve as the

foundation of our work.

HTML/DOM JavaScript

Browser

Server

JavaScript HTML/DOM

Browser

WebRTC Channel

HTTP HTTP

Figure 1.1: Schematic view of a WebRTC connection. The server delivers applications (consisting
of HTML, CSS and JavaScript code as well as resources such as images) to all the
client browsers. Additionally, the server handles the signaling of a WebRTC connec-
tion, therefore serving as a central connection establishment entity. After the inital
connection establishment, the server may be shut down.

In this project report, we present the results of our eUort to implement a generic user-centric

content-sharing facility using WebRTC. Our Vrst step to reach this goal was to implement a

Peer-to-Peer network using WebRTC as underlying transport technology as outlined in [3].

WebRTC Data Channels [4] allow for the secure transfer of generic data (text, binary data) from

one browser to another. They comprise the main transfer mechanism used to build the P2P

system described in this report. On top of these Data Channels, we implemented a protocol

suitable for joining the WebRTC network and for maintaining connections between clients.

The resulting JavaScript library provides an API for applications to store content in and

retrieve content from the underlying P2P network; it can be used as a drop-in for existing web

applications. On top of this library, we implemented demo applications that serve as simple use

cases and as a measurement for the ease of the API of the core library.

The remainder of this report is organized as follows. We deVne the problem scope in detail

and outline related work in chapter 2. The architecture of our proposed solution is explained

in chapter 3 and the intermediate steps and results of our implementation eUort is discussed in

chapter 4. There we describe the API of our publishing library, while chapter 5 depicts a number

2



1 Introduction

of demo applications built on top of the resulting core library. In chapter 6 we draw a conclusion

and give an outlook on future work.

IP

UDP

TURN/STUN/
ICE

SRTP/SRTCP DTLS

SCTP

Data Channels

Connection
Management Audio/Video

Figure 1.2: The protocol stack of WebRTC is divided into a connection management component
for establishing and maintaining connections even across middle boxes, an A/V
component and a Data Channel component. Both audio/video data as well as Data
Channel streams are encrypted end-to-end using SRTP/SRTCP and DTLS, respectively.
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2 Browser-based Publishing and Related
Work

2.1 Problem Statement

With the uprise of Web 2.0 technologies over the past ten years, Web platforms have shifted

from pure content silos to services for publishing user-generated content. Today, users also see

the Web as a platform to share media, documents and exchange individual information such as

instant messages among each other. Currently, perceiving user-generated content on the Web

follows a centralized, host-based approach. Examples for such central content sharing community

platforms are Facebook, Flickr and Youtube. Publishing content on the Web thus requires access

to infrastructure such as Web servers and name resolution services like DNS. Content addresses

(HTTP URLs) are tightly bound to speciVc hosts via their DNS name.

The concept of Information-centric Networking (ICN) [5] approaches the problem of content

dissemination on the network layer and elevates the meaning of content by assigning explicit

identiVers to data rather than referring to the location of content, e.g. by using an HTTP URL.

Content can be stored directly in the network which inherently provides functionality to store

and cache it. The ICN approach, however, suUers from conceptual vulnerabilities as Wählisch

et al. [6] have pointed out. Besides unresolved security issues, every content publication act

requires modiVcations of the control plane. As such, the control plane is inadvertently opened up

towards end users.

In contrast to ICN, our approach is not supposed to operate on Internet-scale and runs on the

application rather than the network layer. It provides an infrastructure-independent name and

content access architecture. Web application providers could potentially beneVt from such a

system by reducing both the bandwidth consumed on the server side as well as transfer delays.

The clients, on the other hand, beneVt by not being required to rely on a server for sharing

content with other users. As the browser is the natural application platform for the Web, we

want to leverage its broad deployment and operating system independence. WebRTC provides

the required transport mechanism by oUering the Data Channel protocol that is used to transfer

generic data directly between two browsers.
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2 Browser-based Publishing and Related Work

2.2 Related Work

Various approaches to ICN have been proposed that provide eXcient user-centric publishing

mechanisms [7]. For addressing content, there exist two major techniques: Using either a Wat

identiVer or a naming hierarchy. The Data-oriented Network Architecture (DONA) [7] is an

example of an architecture that uses Wat identiVers. The DONA approach assures self-certifying

names. Hierarchical identiVers on the other hand, that are used for example in Content-Centric

Networking (CCN) [7] allow for content aggregation on intermediate routers. Additionally, such

namespaces allow for wildcard searches.

Research on leveraging native browser technologies for content distribution has already

been addressed by Zhang et al. [8] introducing an implementation of a browser-based content

delivery network (CDN). The authors have investigated the possibilities of building a CDN

service that is based on a centralized P2P network using the Flash plugin provided by Adobe.

Their implementation is centered around a coordinator node that holds mappings between peers

and the data stored on these peers. Every distributed asset in the P2P network is fetched using

JavaScript from one of the participating peers. Taking advantage of this solution requires the

modiVcation of the HTML code and the setup of the controller.

Meyn [9] examines a way to distribute the load and stream video content between browsers

using WebRTC, thus reducing the bandwidth cost of content providers. The author uses a

BitTorrent-like architecture involving a tracking server for discovering content. The integration

of WebRTC into the current SIP ecosystem for real-time conferencing is evaluated in [10].

Despite ongoing research eUorts with regards to WebRTC and Browser-based content dis-

semination, most research focuses on the audio/video capabilities of WebRTC, using SRTP for

real-time or streaming audio/video transfer between browsers.

From the beginning of our project, we have focused on a second component of WebRTC,

namely the Data Channel. The possibilities of leveraging WebRTC to change the way users share

and access content on the Web make up our research focus for which not much related work

exists today. The latest commercial eUorts in this direction focus on diUerent use cases such as

site-supporting Browser-based CDNs1,2 and Vle-sharing applications3,4.

1https://peercdn.com/
2http://swarmcdn.com/
3https://rtccopy.com/
4https://www.sharefest.me/
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3 Concept of a Browser-based P2P System

The objectives stated below and shall give a broad overview of the planned concept, while the

latter sections dig deeper into the concept:

• The implementation shall allow browsers to form a P2P system.

• The resulting implementation shall be a JavaScript library that is usable as a simple drop-in

by web applications. This library is then able to introduce a data sharing facility on top of

the P2P system to all users of those web applications.

• The library shall use only standard browser techniques so that every user is able to beneVt

from it out of the box. The communication shall occur via WebRTC Data Channels, further

explained below.

• The server component shall incorporate as little functionality as possible. In this way, we

push most of the functions to the client-side application code and the server code becomes

easily interchangeable, reWecting a mostly server-less architecture.

• There shall be an emulator that is able to run our code for testing and measurement

purposes.

3.1 Functional Description

After deVning our objectives, we were able to break down the functionality of the implementation

into four building blocks, namely the WebRTC Handshake Procedure, Connecting to a Bootstrap

Node, Joining the P2P Network and Exchanging/Routing Messages that are described here.

WebRTC Handshake Procedure

Exchanging messages as well as forming and joining the P2P system involves making use of the

WebRTC oUer/answer handshake mechanism. Because it dictates some of the design decisions of

the software architecture, we took great care in evaluating this procedure.

6



3 Concept of a Browser-based P2P System

Connecting two peers using the WebRTC handshake involves a rather complex negotiation

sequence [11] as shown in Vgure 3.1. The sendOUer and sendAnswer messages contain SDP-

information that are exchanged using an arbitrary channel like a WebSocket connection to a

signaling server. This allows the peers to learn about each other (e.g., NAT traversal options,

supported codecs) and agree on parameters for the connection.

JSEP Signaling Sequence

Alice

Alice

Bob

Bob

createOffer()

setLocalDescription()

sendOffer

setRemoteDescription()

createAnswer()

setLocalDescription()

sendAnswer

setRemoteDescription()

DataChannel established

Figure 3.1: Alice establishes a WebRTC connection to Bob by following the JSEP signaling
sequence using an arbitrary channel to transmit the oUer/answer messages.
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3 Concept of a Browser-based P2P System

Connecting to a Bootstrap Node

New peers join the P2P network by establishing a WebSocket connection to a bootstrap server that

is connected to a certain number of peers which have previously joined the network. Thereafter

this WebSocket connection is used to signal the WebRTC handshake, resulting in a direct WebRTC

connection between the newly joined peer and at least one of the other peers. Once a peer has

joined the network it may disconnect from the server without losing the capability of transferring

data to/from other peers as shown in Vgure 3.2.

Peer 1 Peer 2
Data Channel

Peer 3
Data Channel

Server

W
e
b

S
o
ck

e
t

1 2

3

Figure 3.2: Peer 1 wants to communicate with peer 3. Therefore it sends the data via the open
Data Channel to peer 2 which in turn routes it to peer 3. The server is not involved in
this process at all.

Joining the P2P System

After the initial bootstrap, the client has to discover other peers it shall connect to. This behavior

depends on the type of the P2P network that is to be formed. A simple approach is to let the

peer connect to all other known peers, eventually forming a full mesh. As this approach does

not scale well with an increasing number of peers, a more sophisticated approach would be to

form a structured P2P network using a DHT protocol like Chord [12] that guarantees logarithmic

scaling to a large number of peers.

Exchanging/Routing Messages

Message routing depends heavily on the chosen P2P network topology. Routing in a full mesh

is trivial because the peers can directly exchange messages while a DHT imposes hop-by-hop

routing as shown in Vgure 3.2. The Vgure demonstrates the exchange of a message between peer

1 and peer 3 via an intermediate hop (peer 2). Due to the peculiarities of the underlying WebRTC
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3 Concept of a Browser-based P2P System

technology, peer 3 cannot directly answer (because no Data Channel connection is established

yet). Instead, it has to follow the WebRTC handshake procedure in advance (described above) or

again use hop-by-hop routing to deliver the answer to peer 1.

3.2 Software Architecture

3.2.1 Component Oriented vs. Layered Approach

When outlining the components of our library and their interaction with one another, we

explored several approaches previously proposed that dealt with the implementation of P2P

overlay networks. The Vrst one is proposed by Dabek et al. in [13]. The authors put forward

a uniVed API for the implementation of structured P2P networks. As a part of this work, they

analyzed common patterns of diUerent structured P2P systems and abstracted them so that every

overlay implementation can expose the suggested API without losing capabilities. This common

API is called the key-based routing API (KBR). On top of the KBR layer, Dabek et al. identiVed

additional abstractions that are only marginally elaborated on in the given paper.

The main idea behind the KBR API (or Dabek API) is that every structured overlay maps IDs

from an ID space to every node employing a function speciVc to the implementation (Chord,

Pastry etc.). This abstraction is then used to deVne KBR-speciVc API calls such as route(),

forward() and deliver() for passing messages between nodes. Additionally the Dabek API

deVnes methods for accessing the routing state on a node. In their evaluation the authors suggest

implementation schemes for diUerent applications on top of the KBR API. These include DHTs,

group communication applications, and data replication mechanisms.

The proposed approach of exposing a handful of methods to establish a key-based routing and

thus abstract away the actual routing implementation is Wattering. Nevertheless we found the

paper to be not extensive enough when it comes to the question of how the KBR layer is to be

implemented. Especially in the context of WebRTC connection establishment and maintenance

require a great deal of eUort because of the oUer/answer nature of JSEP. The authors of [13] do

not mention how applications shall be able to bootstrap a local P2P node by connecting to another

peer or a bootstrap server. Also they make no recommendation of how the KBR implementation

shall interact with the underlying network, be it IP or – as in our case – WebRTC DataChannels.

Therefore we tried to Vnd prior work that dealt with the actual details of implementing P2P

systems and structuring code besides the API. Eventually we discovered OverArch, where the

authors propose a detailed architecture for structured and unstructured overlay networks [14].

They start by pointing out the shortcomings of the Dabek API:

9



3 Concept of a Browser-based P2P System

• It is focused on structured overlay networks thus disregarding unstructured P2P systems

• It provides no clear deVnition of neighbors, replica sets and r-roots

• The paper details only the KBR API, leaving out the other needed components in a P2P

implementation

• The strict layered approach is too inWexible

Instead of just deVning a set of APIs, the OverArch authors have Weshed out a detailed

description of the required components of a P2P application implementation. These include

a component for underlay and overlay connection management, a bootstrapping component

as well as the services known from the Dabek API such as KBR, DHT and application-layer

multicast (ALM). Each component encapsulates a certain functionality and exposes an API for

leveraging this functionality to every other component.

This division into modular building blocks rather than strict layers makes it easier to orchestrate

the components in diUerent scenarios while maintaining exchangeability via a common API

like Dabek et al. suggested. The authors mention the possibility of reusing one instance of a

component in diUerent applications. In our scenario of WebRTC connections this helps in that an

application is able to provide the KBR layer with a custom bootstrap component (e.g. using a

WebSocket connection to a dedicated server). Also an application could choose from a speciVc

routing implementation. On top of that, OverArch speciVes even the inner workings of the KBR

module which helped us putting our implementation to work.

3.2.2 The BOPlish Architecture

The design of our architecture is presented in Vgure 3.3 and resembles the architecture proposed

in [14]. At the very top sits the BOPlish API which is the entry point for all applications that

make use of a P2P distributed content sharing facility. This is the developer facing part that

exposes a set of simple methods for sending and receiving data. Below that part, we encapsulated

a Router, a Connection Manager and a Bootstrapping mechanism.

The Router component is responsible for deciding where to forward packets to and thus

maintains a routing table. Our current implementation uses a topology component that builds

a full mesh of all peers for simplicity’s sake. This component exposes those methods that are

exposed by the KBR layer in the Dabek and OverArch API.

The Connection Manager component is responsible for handlingWebRTC speciVcs like creating

oUers and answers, keeping track of open connections and handling glare, the latter is further

explained in 4.1.3. To be able to join a P2P network, a node has to know at least one other

10



3 Concept of a Browser-based P2P System

node already part of that network. This is where the Bootstrap component comes into play. It

encapsulates the functionality for discovering an initial node to connect to. Since this process is

very tightly bound to the generic connection establishment in ourWebRTC-based implementation,

we included this component into the Connection Manager.

send()      setOnMessageHandler()

BOPlish API

Connection Manager

WebRTC

Bootstrap

onmessage()

send()

bootstrap()

receive()

connect()

Router

route()
registerDeliveryCallback()

addPeer()
registerDeliveryCallback()

route()

Figure 3.3: Outline of all BOPlish components and their interaction with one another. Each
component is strictly deVned by a set of API calls and loosely coupled to the other
components. This enables us to easily replace parts of the functionality without having
to refactor reliant code.

3.3 Security

The security of the application (server and clients) has not been a primary goal for our Vrst

iteration. There is no authentication built into our architecture so that peers cannot mutually

identify themselves and everyone knowing and having access to the deployed application’s

URL can join the P2P user network. Communication security (and thus conVdentiality and

message integrity) through encryption is provided by the WebRTC implementations where every

DataChannel is established on top of a Datagram Transport Layer Security (DTLS) connection

[15]. Communication security between peers and the Bootstrap Server can be achieved by only

serving WebSockets through TLS as well using the ’wss’ URI scheme as deVned in [16].

11



3 Concept of a Browser-based P2P System

Since IDs are currently self-assigned and not authenticated in any way, malicious peers could

join the network with a peer ID that already exists and probably disconnect other members. A

secure ID generation algorithm with veriVable IDs must be integrated to mitigate this risk.

The WebRTC speciVcation envisages an identity mechanism so that peers may mutually

identify themselves using a third-party identity provider (IdP, [15]). This mechanism is currently

not implemented in any browser but at least Mozilla is working on an implementation. This

mechanism, though, is only speciVed for audio and video data passed between peers. Thus we are

working on a concept of providing actual authentication and mutual identity veriVcation without

the need to inject a central server into our architecture. We have been reluctant to mandating

any server-side authentication in our architecture because this would add complexity on the

server-side, a fact that we wanted to avoid as much as possible in our vision of a server-less web.

Currently, the most reasonable approach is to employ public key cryptography. The W3C is

working on standardizing cryptography functions exposed by browser implementations [17] so

that web applications will be able to generate keys as well as sign, encrypt and verify data. As

long as browser vendors have not implemented these features, we will make use of convenient

JavaScript implementations.

The general security problems of P2P systems also exist with WebRTC as underlying transport.

The DHT implementation must actively deal with malicious nodes, counter sybil attacks and

force some sort of trust or reputation system for nodes and ensure the usage of secure identiVers.

An overview of security issues and solutions in P2P systems is given in [18].

12



4 Implementation

4.1 Core BOPlish Library

We now want to explain the BOPlish library. As such, the diUerent components of the implemen-

tation are now elaborated on in detail. At Vrst, the BOPlish Client API and an example protocol

are introduced before digging into the lower-level Connection Manager and Router components

as well as supplementary resources such as unit tests. Figure 4.1 outlines the directory structure

of the resulting project tree.

4.1.1 Client Instantiation

To establish a connection to a BOPlish User Network, the BOPlish client application has to be

instantiated:

1 var bopclient = new BOPlishClient(bootstrapHostname , \

2 successCallback , errorCallback );

The boostrapHostname denotes the location of the bootstrap server while the successCallback

respectively the errorCallback is used to indicate to the application whether the connection

attempt has been successful or not. The BOPlish constructor then does the following:

• assigns a random id (SHA-1 hash) to this peer

• opens a WebSocket connection to the passed bootstrap servers hostname

• instantiates a ConnectionManager

• instantiates a Router and assigns the ConnectionManager

After the success callback has been called, this peer is connected to a minimum of one

other peer in the system using the BOPlish bootstrap sequence. The BOPlishClient instance

provides the setOnMessageHandler()-method to register application speciVc protocols and the

send()-method to send messages using a predeVned protocol as further described in 4.1.2.

13



4 Implementation

core

bootstrap-server

nodejs

...

python

...js

adapter.js

application.js

connectionmanager.js

peer.js

router.js

sha.js

test

...

GruntVle.js

LICENSE

README.md

package.json

Figure 4.1: Directory tree of the core library project. The two proof-of-concept servers – writ-
ten in Node.js and Python, respectively – reside in bootstrap-server, the library
implementation code sits in js and test contains all unit tests. The root directory
holds boilerplate Vles such as the grunt conVguration, the license Vle, a Readme and a
project Vle.
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4 Implementation

4.1.2 Client API & Protocols

A developer leveraging a BOPlish User Network has to implement its own application speciVc

protocol on top of the core library to communicate with other peers. In this section, a simple

request/response ping-protocol is elaborated on in detail to show how this procedure works.

As described above, the client API consists of only two main functions, namely send() and

setOnMessageHandler().

A client protocol has to have a distinct name with which it is identiVed in the Routing-

Component. In this example, the protocol is called ping-protocol. The Application Developer

registers the ping-protocol in the BOPlish core by predeVning a callback function and handling it

over to the setOnMessageHandler() as follows:

1 var pingOnMessageHandler = function(msg , from) {

2 if (msg.type === 'ping ') {

3 bopclient.send(from , 'ping -protocol ', {type: 'pong '});

4 } else if (msg.type === 'pong ') {

5 // calculate round trip delay

6 }

7 };

8 bopclient.setOnMessageHandler('ping -protocol ', \

9 pingOnMessageHandler.bind(this ));

This code registers the ping-protocol callback in the Router which can then identify incoming

messages by the protocol name and call the corresponding callback. The protocol deVnes the

subtypes ping and pong by setting the type-attribute accordingly. The Routing component is

agnostic over these subtypes and only uses the distinct name of the protocol to identify message.

This allows for extendable, yet simple-to-use client protocols.

Whenever the peer receives a ping-message, the pingOnMessageHandler is called by the

Router and (in this case) answers with a pong-message by calling the send()-method on the

BOPlishclient-instance with the recipient id, the protocol type and the payload. The ping-

protocol is started by sending a ping-message to the remote peer that is to be pinged:

1 bopclient.send(toPeerId , 'ping -protocol ', {type: 'ping '});

The ping-protocol described above is a simpliVed version of the implementation found in

the demo repository (see protocols.ping.js). Other protocols used by either the demo applications

described in 5.2 or the core library described below:

15



4 Implementation

Topology Protocol

The topology protocol is used to query neighboring peers for topology information (i.e. the

IDs of their neighbors). To start the gathering process, the method sendRequest() is called

which sends a request message to all peers in this peer’s routing table. Upon receiving a

topo-protocol-request, the protocol answers with a list of peers it is connected to.

When receiving the answer containing the connected peers, the application can decide whether

to traverse deeper and send requests to the IDs of the peers contained in the answer. Contrary to

a Wooding-based approach, this behavior prevents the requesting peer from being overwhelmed

by answers as the application can always decide to stop sending new requests.

The protocol is registered in the Router component (4.1.4) using the identiVer topo-

protocol. It deVnes the subtypes request and response.

Discovery Protocol

The discovery protocol is used by the Router after the bootstrap sequence to Vnd other peers in

the network to connect to. This protocol is comparable to the topology protocol but simpler. As

it is part of the bootstrap sequence, it is mandatory to implement. Rather than residing in its own

Vle, it is deVned in the core and built into the Router component.

To kick of the discovery mechanism, a discovery-request is sent to a remote peer which

answers with a list of ids it is connected to. Upon receiving the answer, it is passed to the

ConnectionManager component to proceed with the bootstrap sequence (see 4.1.3).

The protocol is registered in the Router component (4.1.4) using the identiVer discovery-

protocol. It carries the subtypes request and answer.

Signaling Protocol

The signaling protocol is used to communicate with the bootstrap server over WebSockets and for

in-band signaling over the peer-to-peer Data Channels. Like the discovery-protocol, the protocol

is deVned in the core (built into the ConnectionManager) as it is mandatory to implement. It

encapsulates the WebRTC oUer/answer mechanism and aggregates the diUerent messages types

in a BOPlish compatible format as further described in 4.1.3.

The protocol is registered in the Router component (4.1.4) using the identiVer signaling-

protocol. It carries the subtypes offer, answer and denied.
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Bopcast Protocol

The bopast protocol is a communication protocol that handles group management. Using

this protocol, a simple application-layer multicast can be implemented. Figure 4.2 shows a

sequence diagram outlining the steps to form a group of three participants. First up, Bob sends

a register-request to Alice. She adds Bob to her list of receivers and acknowledges with a

register-response. When Bob receives the response, he also adds Alice to his list of receivers.

At this point, Carol wants to join the group. She sends a register-request to one of the peers

in the group (Bob, in this case). Bob adds Carol to his list of receivers, acknowledges the request

and propagates it to all existing members of the group (Alice, in this case). Alice receives the

propagated request and also adds Carol to the group. Alice then sends an acknowledge to Carol

which makes Carol add Alice too.

Carol

Carol

Bob

Bob

Alice

Alice

register-request

addReceiver(Bob)

register-response

addReceiver(Alice)

register-request

addReceiver(Carol)

register-response

addReceiver(Bob)

register-propagate

addReceiver(Carol)

register-response

addReceiver(Alice)

Figure 4.2: Bopcast sequence diagram showing the process of forming a group of peers

Bob, Alice and Carol can now communicate over the bopcast protocol using the send-method

which delivers the message to every peer in the list of receivers.

The protocol is registered in the Router component (4.1.4) using the identiVer bopcast-

protocol. It carries the subtypes register-request, register-propagate,

register-response and deliver.
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4.1.3 Connection Manager

The Connection Manager (residing in connectionmanager.js) is responsible for establish-

ing WebRTC Data Channels between peers. Every peer holds exactly one instance of the

ConnectionManager class. To establish a connection to the P2P network, this class exposes

the bootstrap() method that takes a Router instance as argument, creates an oUer and lets

the router forward this oUer to another peer (see section 4.1.4 for details of how messages are

forwarded). Upon receiving an appropriate answer, the Data Channel is established, a Peer

instance created and passed on to the router for further processing (e.g. adding it to the peer

table, depending on the routing protocol).

Since all connection establishment in WebRTC is asynchronous, the Connection Manager

must store the state of every connection and act appropriately on every possible state change.

Therefore we implemented the Connection Manager itself as a state machine that is outlined

in Vgure 4.3. In fact, this state machine is divided into a “bootstrapping” phase and a “regular”

phase.

As long as the Connection Manager resides in the bootstrapping phase, it does not accept

incoming connection requests until a Vrst connection is established to reduce complexity. This

can be interpreted as the “happy path”: Create an oUer, wait for the answer, accept the answer

and pass on into the regular phase. In the regular phase the Connection Manager can be used to

actively initiate a connection (create oUer, send oUer to other peer, receive answer, accept answer,

wait for connection establishment) or accept incoming connection requests (accept oUer, create

answer, send answer to peer, wait for connection establishment).

Glare Handling

Between all these states, though, scenarios diUerent from the happy path may occur, e.g. after

creating and sending an oUer the Connection Manager may receive an oUer from the exact same

peer it has sent an oUer to. In this situation we have two competing oUers that – not properly

handled – would result in two Data Channels between two peers. This situation is called glare or

call collision and must be handled by WebRTC applications.

Our simple approach to handling this situation relies on the uniqueness of the “sess-id” Veld in

the “o=” line of every initial oUer. The current draft version of [11] states:

The value of the <sess-id> Veld SHOULD be a cryptographically random number.

To ensure uniqueness, this number SHOULD be at least 64 bits long.”
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bootstraping phase

regular phase

bootstrapping

b-have-local-offer

create offer

b-have-remote-offer

receive offer

b-pending-answer

send offer

b-have-answer

create answer

offer denied

ready

receive answerb-pending-connection

send answer

onconnection

pending-connect

connect

have-remote-offer

receive offer

have-local-offer

create-offer

pending-answer

send offer

receive answer

have-answer

create answer

pending-connection

send-answer

onconnection

start

bootstrap

Figure 4.3: The Connection Manager implements a state machine consisting of a bootstrapping
and a regular phase. The bootstrapping phase is entered for acquiring an initial
connection to an arbitrary peer. After this connection has been established, the regular
phase is entered in which additional connections can be established.
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Although the draft only puts a SHOULD constraint on the concrete Veld value we have

experienced that at least Firefox and Chrome use (non-cryptographically) random unique values1.

When an oUer A is received in the regular phase by the Connection Manager, it checks whether

an oUer has been sent to the sender of A. If this is the case, the session IDs of both oUers are

compared and the oUer with the lower session ID is discarded. This way both peers synchronize

through the session ID, know which oUer is discarded and can react appropriately without any

additional message exchange.

In the bootstrap phase, though, the Connection Manager does not know where the Vrst oUer

is sent to because the recipient is chosen by the bootstrap server. Therefore every oUer that is

received while the peer is bootstrapping is regarded as coming from a potential bootstrap partner

and the same glare handling as in the regular phase is applied.

4.1.4 Router

The Router component constitutes the heart of the core BOPlish library. It is responsible for

disseminating messages arriving from the client layer through the network. Additionally it

receives messages from the bootstrap server and maintains its routing table. These four methods

make up the public API of the Router:

• addPeer(peer)

• getPeerIds()

• route(to, type, payload)

• registerDeliveryCallback(msgType, callback)

Since the other components don’t make any further assumptions about the Router it can be

exchanged quickly and easily. Our current implementation creates a fully meshed P2P network,

in the next iteration we plan to exchange this implementation with a Chord DHT. The following

description focuses on the full mesh implementation.

All messages that enter and leave the Router component are simple JSON objects that have the

properties type, from, to and payload. The payload designates the application-layer data that

is delivered to the registered callback. An example routing-layer message looks like this:

1 {

2 to: "f9c89ceb726436bb0d7074c08788d08e0e974dbf",

1https://mxr.mozilla.org/mozilla-central/source/media/webrtc/signaling/src/sipcc/core/

gsm/gsm_sdp.c#5434
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3 from: "48142 a86bd1dc7c2be81df1c5ca6d0a98c328f4b",

4 type: "ping -protocol",

5 payload: {

6 "date": "Mon Nov 11 2013 17:44:05 GMT +0100 (CET)",

7 "type": "pong"

8 }

9 }

When a Router instance receives a message, it Vrst checks whether the to Veld equals the ID

of this instance. If this is the case, the registered callback (if any) is invoked with the payload

and from Velds as parameters. If the to Veld is not equal to the Router instance’s ID the Router

searches for a peer with that ID in its peer table. If it Vnds one, the message is passed as is via

the existing DataChannel connection. Otherwise, the Router forwards the message through the

fallback signaling channel which is a WebSocket connection to the signaling server in our case.

Since the server holds connections to all connected peers it knows exactly where to forward the

message to.

As stated in section 4.1.3 the Connection Manager uses the Router to even route the Vrst

oUer to an arbitrary peer. Since the remote peer’s ID is unknown in this state, the to Veld is

left empty which causes the Router to forward the message through the Bootstrap Server. The

server then designates a connected peer as the bootstrap peer and forwards the oUer through the

corresponding WebSocket (for details about how this is done see section 4.2).

After the Vrst peer has been added to the peer table via the addPeer method, the full mesh

Router starts a neighbor discovery by sending a message of the type ’discovery-request’ to its

only peer. The latter then sends a ’discovery-answer’ with a list of all its connected peer’s IDs as

payload. Upon reception of this answer the Router mandates the Connection Manager to connect

to each of these peers eventually connecting to all peers in the network.

Limits

The described mechanism for bootstrapping the P2P network using discovery messages is rudi-

mentary and may result in an incomplete mesh conVguration as seen in Vgure 4.4. On top of

that a full mesh construction using WebRTC peers does not scale well to the extent that browsers

have hard-coded limits of the maximum number of calls. For current Firefox implementations

this limit is set to 512.

2https://mxr.mozilla.org/mozilla-central/source/media/webrtc/signaling/src/sipcc/core/

includes/phone_platform_constants.h#193
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Since our plan is to replace this Router with a DHT implementation we will not handle these

limits any further and instead focus on developing the DHT.

p0 p3

p1 p2discover

discover

(a)

p0 p3

p1 p2

(b)

Figure 4.4: When two peers p2 and p3 join the network in parallel – each using a diUerent
bootstrap peer – as seen in (a) the current Router implementation may lead to a
network as outlined in (b) where no full mesh is constructed because the link between
p2 and p3 is missing.

4.2 Bootstrap Server

The Bootstrap Server has two distinct tasks: Deliver the application and act as fallback signaling

channel using WebSockets. For delivering the application, no special functionality must be

implemented because the HTML, JavaScript and CSS Vles are simply statically delivered to

clients. For fallback signaling the server must handle WebSocket connections to URLs of the

form ’/ws/PEERID’ where ’PEERID’ denotes the Peer’s self-assigned ID. OUers and answers must

be forwarded via the appropriate WebSocket connection using the ’to’ Veld from the routing

message. Initial oUers that contain an empty ’to’ Veld must be forwarded to a random peer

that is diUerent from the one in the ’from’ Veld. The speciVed message format and behavior

for signaling allowed us to implement two independent servers using Python and JavaScript,

respectively, which are described further below.

4.2.1 Python

The Python implementation using the Flask web micro framework3 is very simple and consists

of 80 lines of code. For bootstrapping the environment the well-established tools virtualenv

and pip are used that ship with most Linux distributions and are available for MacOS X, too.

Using these tools all necessary libraries are installed to the local environment with the command

3http://flask.pocoo.org
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pip install -r requirements.txt. Starting the server is as simple as calling python run.py

which causes the server to listen on TCP port 5000 at 0.0.0.0.

4.2.2 Node.js

Node.js is a server-side runtime environment for JavaScript applications. It oUers a built-in web

server that is used to deliver the static Vles to the browser along with a server-side WebSocket

implementation to handle the fallback signaling traXc. npm, the standard Node.js packet

manager is used to install the dependencies via a single npm install command in the bootstrap

server’s path. Starting the server is done similar to the python implementation by calling

node run.js 0.0.0.0 5000. As the test framework is also using Node.js, this module can be

conveniently used for unit testing 4.3.

4.3 Environment

During the implementation phase of the BOPlish project, we have used several third party

software to aid the development process.

Source Code Management We used a shared git repository for revisioning our code. The Vrst

iterations were stored on a private server and after releasing the code on GitHub4 we now

work on a public GitHub repository all the time.

Build Process For automating tasks such as generating HTML documentation from the anno-

tated source code, running unit tests or building a miniVed version of the JavaScript library

we opted for the Grunt JavaScript task runner5. A single Vle named GruntVle.js serves as

conVguration for the diUerent tasks. This makes it very convenient to e.g. run tests where

one just calls grunt test.

Testing Strategy Since the very beginning of the BOPlish project, we created unit-tests along-

side with the code that helps to reach a certain level of code quality. We opted for the

mocha testing framework6 which is running on Node.js. Additionally, we are using the

sinon.js7 framework that allows for stubs and mocks in an asynchronous context. We also

created a Grunt task to run the tests during the build process.

4https://github.com/boplish
5http://gruntjs.com/
6http://visionmedia.github.io/mocha/
7http://http://sinonjs.org/
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Documentation Strategy We started to document our code from the very beginning using

JSDoc8. This works similar to the well-known Javadoc documentation format where

comments in the source code are augmented with annotations so that classes, methods,

members and callbacks are recognized as such. A Grunt task integrates JSDoc into our

build environment so that grunt jsdoc builds the documentation.

Deployment Strategy Currently, we are deploying BOPlish by updating the code repository

and using the build process on the deployment target server manually. When the project is

more mature, we are planning to automate this task.

8http://usejsdoc.org/
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5.1 Emulator

The eUorts of implementing the WebRTC protocol stack are currently mainly focused on browsers.

As of today, Google Chrome and Mozilla Firefox have the most complete implementations. An

initial goal of the project was to implement an emulation component that allows for unit and

scalability testing. Because using a complete browser for such a task is ineXcient, we planned for

a solution that works on the command line and can easily be scripted. This becomes especially

important when the number of peers in the network rises as manual starting and testing a

growing number of nodes is a tedious task.

The initial plan was to use the WebRTC components of the browser on its own. Unlike Mozilla,

Google encapsulates the WebRTC components in the libjingle library1. As this C++ library is not

dependent on the browser instance, it can be run independently. By creating bindings between

the C++ code and an adapter, an emulation component could be created. Using Node.js as the

base for such an emulator would allow us to reuse the existing BOPlish code which is mainly

written in JavaScript and, apart from the WebRTC components, could run in Node.js out of the

box without requiring a complete browser stack.

While this solution seems to be an applicable task, multiple problems arose during the planning

phase. First of, using the libjingle library means tying the emulator to the Google implementation.

At the time of planning the emulation component, the SCTP stack that allows for SCTP-based

Data Channels was not implemented yet but the Data Channels were instead based on an

deprecated SRTP approach. Because of this, libjingle broke compatibility with the Mozilla Firefox

implementation which was our main development platform. Secondly, the libjingle library was

very much in Wow, resulting in a buggy build process and constant API changes making it hard

to adapt to the rapid updates.

As of today, the situation has improved a lot and the implementations will be compatible

in the foreseeable future. Multiple projects aiming to bring WebRTC support to Node.js have

since been started using the same approach that has been described above. The most promising

1https://code.google.com/p/webrtc/
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ones are node-webrtc2 and node-peerconnection3. As soon as the WebRTC implementation are

interoperable, we will take a closer look at the libraries that yield the binding between libjingle

and Node.js, eventually allowing us to run BOPlish without a browser. The next step would then

be to build an statistic gathering as well as an evaluation component.

5.2 Demo Applications

During the work on the BOPlish core, we implemented several demo applications that assisted in

showcasing our work. Moreover, the demos allow to prematurely Vnd problems related to the

user-facing BOPlish API (see Vgure 3.3 for an overview on the API). To separate the core BOPlish

library from the application code, the demos reside in its own repository4.

Figure 5.1: BOPlish demo client interface in a Firefox Browser

The demo applications use the Bootstrap CSS Framework5 that allows for cross-browser

web frontend development. Even though all major browsers are capable of displaying the

frontend, only Firefox (stable build) and Chrome (nightly build) have currently implemented the

mandatory WebRTC components to run BOPlish. The demo is reachable by pointing a user’s

browser to a HTTP URL where a standard web server (e.g. apache) serves the Vles to the browser.

When loaded, the application shows a header and menu bar with entries for the various demo

applications as well as a Veld that contains the randomly chosen id of this peer (see Vgure 5.1).

2https://github.com/modeswitch/node-webrtc
3https://github.com/Rantanen/node-peerconnection
4https://github.com/boplish/demos
5http://getbootstrap.com
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Upon startup, the demo application establishes a WebSocket connection to a BOPlish bootstrap

server and instantiates a boplish client that uses the signaling-protocol to connect to the

network (see 4.1.2).

5.2.1 Message Inspector

The purpose of the Message Inspector app is to showcase the communication between the peer

and the network and an simple, real-time debugging interface for the BOPlish protocols. The

applications view (see Vgure 5.2) is separated into three colums. The Vrst column shows a list of

peers this peer is connected to (ids are shortened to 8 characters). The functionality of the two

buttons next to the peer id is described below:

• Ping: sends a ping-protocol request to the corresponding peer (see 4.1.2)

• Bopcast Registration: sends a bopcast-protocol register-request to the corresponding

peer (see 4.1.2)

Figure 5.2: BOPlish Message Inspector demo application
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The second column shows all messages that are handled by this peers Router instance.

Incoming messages are marked green, outgoing messages are marked yellow. Blue markings

indicate a message that is forwarded to another peer in the routing table as the receiver is not

this peer. The messages are inserted on top of the list in real time. Upon clicking a message in the

list, the third column shows the messages content.

5.2.2 Topology Viewer

This demo application showcases the topology of a BOPlish User Network by displaying a graph

of the network (see Vgure 5.3). Nodes in the graph reWect the diUerent peers while a dark blue

colored node mirrors the peer that is running the topology viewer. Links between the nodes show

a Data Channel connection between the corresponding peers.

Figure 5.3: BOPlish Topology Viewer demo application

Buttons allow the user to interact with the topo-protocol that is used to gather the needed

information (see 4.1.2). Send Request sends a single topo-protcol request to all connected peers.

Upon reception of the answers, the response is fed into a module that renders the graph using
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the d3.js library6. Start and Stop Interval can be used to start/stop a sequential dispatching of

topo-protocol requests to automatically update the graph when new peers join the network.

Finally, Reset resets the graph and makes the application forget all the node and link information

learned.

5.2.3 Game

The game is a simple application that uses the bopcast-protocol to showcase multi-user group

communication. After registering other peers using the bopcast-protocol procedure, all peers

in the registered group can use the controls to move the red circle on the black grid. All changes

to the position will be synchronized to the whole group.

Figure 5.4: BOPlish Game demo application

6http://d3js.org/
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5.2.4 Chat

Similar to the game application, the chat also uses the bopcast-protocol to send and receive

data to/from groups of recipients. After registering a group, all participants can send and receive

textual chat messages. A username can be freely chosen while it defaults to the id of the peer.

Figure 5.5: BOPlish Chat demo application

30



6 Conclusions and Outlook

In this report, we have introduced an extendable architecture that lays the foundation for a

decentralized content-publishing facility between browsers. Our current experience of com-

bining WebRTC with Peer-to-Peer networking leaves us conVdent that a deeper exploration of

the possibilities provided is well worth it. We have already planned next steps with regards

to further investigating user-centric content publishing in browsers by extending our current

implementation [19]. We are intensely watching and participating in the ongoing research and

implementation activities by W3C, IETF and browser vendors to handle potential problems/in-

compatibilities caused by the non-Vnal state of the speciVcations as early as possible.

Name Resolver API

"user@identity.org"

goto XYZ1

3

2

DHT

"/beer.png"

4

010011...

Content API

Figure 6.1: Our vision of a name-based content
publishing architecture using Web-
RTC as further outlined in [19].

Topics that are to be investigated more thor-

oughly with regards to WebRTC are the se-

curity and privacy of users. We will further

cover these as part of our ongoing research and

implementation eUorts, as well as reVne the ar-

chitecture described in this report and in [19]

to have an implementation that enables inter-

est groups to share content by name without

relying on a central content server or having to

register DNS names (see Vgure 6.1 for a broad

overview). The next steps are divided into these

categories:

• Replace the full mesh Router with a Chord DHT implementation.

• Incorporate a standalone WebRTC emulator for functionality and performance testing.

• Investigate strategies to further simplify the BOPlish deployment.

• Implement the Naming and Content Retrieval API.

• Investigate security enhancements with regards to authentication, ID generation/assign-

ment and privacy.
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