
Bringing Name-based Publishing to the Web

Christian Vogt
HAW Hamburg

Departement of Computer Science
Hamburg University of Applied Sciences, Hamburg, Germany

christian.vogt@haw-hamburg.de

ABSTRACT
Name-based publishing decouples content from location by
omitting host information in the identifiers and building
name resolution into the underlying network itself. This
concept allows for highly scalable and efficient dissemina-
tion of content in widely distributed systems and is one of
the main building blocks in the vision of Information-centric
Networking (ICN). This paper illustrates the motives behind
naming content, compares different approaches and outlines
implications on software architectures. While ICN remains
a vision of the future, this paper additionally illuminates
our approach to name-based publishing that is usable as of
today. Brower-based Open Publishing (BOPlish) paves the
way to the aforementioned communication concept by re-
ducing the scale to designated Interest Groups instead of
targeting the Internet as a whole.

Keywords
Naming Content, Information-centric Networking, Internet
Architecture, Content Dissemination

1. INTRODUCTION
In recent years, our understanding off user-generated content
has changed. Instead of residing on an individual’s personal
computer, people want to share their media and documents
with other users and access them anywhere. The Internet
allows for such an always-on access model and an increasing
number of users move their content to cloud services on the
Web. Such services include Dropbox, Flickr and Youtube,
each having its distinct use case. While providing an in-
expensive and easy way to handle user-generated content,
these platforms suffer from privacy issues and lack interop-
erability with each other. Moreover, transferring content to
such a platform also means handing trust and control over
the content to the service provider.

Content on the Web is mostly addressed by HTTP URLs.
Such URL always references a location denoted in the host
part of the URL. This host-based approach reflects the cur-
rent one-to-one Internet architecture but makes these URLs
far from ideal for one-to-many communication. Cloud ser-
vices use Content Delivery Networks (CDN) to distribute
the load on their servers and be able to reduce RTDs and
increase bandwidth when accessed from around the globe.
As the host-based HTTP URLs do not support multiple lo-
cations of content, CDN providers redirect requests using
modified DNS servers or HTTP redirects.

A novel approach to handling user-generated content is pur-
sued by Information Centric Networking (ICN). ICNs core
idea is to evolve the network architecture to a data-centric
design and interpreting data as a first class citizen of the
architecture. Different ICN proposals have been introduced
that try to accomplish the task of creating a data-centric ar-
chitecture. ICN uses names to identify content but does not
include a location in the name. Instead, the network itself
can resolve the name of the content to a beneficial location.
By caching the requested content on the way from the source
to the receiver, subsequent requests can be answered with
low RTDs and high bandwidth. In this paper, we focus on
the naming, name resolution and data routing aspects of the
different proposals to gain knowledge that can be reused in
our own approach.

Both approaches, using CDN or ICN for name-based pub-
lishing are problematic. CDNs are expensive and propri-
etary. Application providers have to depend on a centrally
controlled, closed infrastructure as a vital component of
their system. ICN, on the other hands, is transparently
built into the network layer but is still in its infancy. It has
unsolved problems [11] and its broad deployment is far off.

This paper gives an overview about current and future name-
based publishing techniques (Section 2) and our own, novel
approach that is called Browser-based Open Publishing (BOP-
lish) in Section 3. In Section 4, the resulting architecture is
evaluated and the paper is concluded with an outlook.

2. PROBLEM STATEMENT AND
RELATED WORK

To showcase the problem of host-dependent content, con-
sider a simple web site. When a browser is pointed to a
URL such as http://www.nytimes.com, it first resolves the
DNS name to an IP address of a single host (one of its DNS
A records; 170.149.168.130 in this case). Afterwards, it
downloads the HTML code from that source by using a
HTTP GET request. The HTML may include references
to content such as pictures (see Figure 1) which are subse-
quently downloaded from the initial host address.

Figure 1: HTML snippet that mandates the browser
to request additional content from the current do-
main’s webserver

Now, maybe the web site is owned by an international ser-

vice provider and gets requested from all around the world.
Until now, we are requesting content from a single source,
which in our case of nytimes.com is registered in NYC, New
York. This is problematic from many points of view: a) The
web site owner needs a beefy machine and/or internal load
balancing to handle all the content requests b) Client re-
sponse times from a geographical far place will be very high
due to long routes c) Unnecessary load is put on the In-
ternet’s core routers when multiple clients request the same
content which gets repeatedly routed all over the world.

An issue resides in the address that is used to reference re-
sources on the Web. HTTP uses a URI scheme that denotes
a host name (that resolves to an ip address via DNS) of a
single location. Thus, by using these URLs we introduce a
binding between the name of the content and its location.
As a result, content that is available at multiple locations
has to have multiple distinct URLs. Moreover, if the loca-
tion changes, accessing the content becomes impossible until
the DNS A records are changed to the new location. Such a
change takes hours or even days to be propagated through
the DNS infrastructure.

2.1 CDN Approaches
Content Delivery Networks (CDN) aim to provide high vol-
ume content to the network edges by using widely distributed
infrastructure in order to optimize performance and/or save
bandwidth. The content is replicated to a big number of
servers (so called surrogates) that are spread out to reach
network proximity to a large number of clients. CDNs are
typically operated by large companies (e.g. Akamai [7])
that only provide their service for a considerable amount
of money. In order for a CDN to work, the requesting client
has to be redirected to a nearby surrogate. As of today,
two approaches are widely used to do so, namely DNS- and
HTTP-based redirection.

2.1.1 DNS-based Redirection
Every valid fully qualified domain name (FQDN) on the In-
ternet can be mapped to a authoritative DNS server. With
DNS-based redirections, DNS is configured to delegate name
resolution to a server managed by the CDN provider. The
provider then uses policies and/or metrics like geolocation
and delay measurements to determine a nearby surrogate.
This approach is easy to implement since only the DNS con-
figuration is changed. On the other hand, the approach has
a site-wide scope, meaning that the web site owner cannot
pick the content that is to be served by the CDN. A com-
mon use case is to only serve big, static content (like images
and videos) over the CDN and serve dynamic content di-
rectly. Thus, such a per object resolution is not possible
using DNS-based redirections.

2.1.2 HTTP-based Redirection
Another mechanism that is widely used by CDN providers
as of today is HTTP-based redirection. The authoritative
DNS server of the domain that is to be served through the
CDN is not changed, but the HTML code used to reference
external resources. Considering the example from above,
the delivered content is rewritten as shown in fig 2.

The host name cdn.org now refers to the CDN provider

Figure 2: HTML snippet that mandates the browser
to request additional content from an external do-
main cdn.org

which, like with DNS-based redirection, uses custom author-
itative DNS servers to redirect the cdn.org requests to a
nearby surrogate. This approach allows for finer granularity
of the request routing mechanism as the website owner can
control which resources are served by the CDN. On the other
hand, it requires a tedious amount of work to change all re-
source URLs of the domain and map them to the respective
CDN URL.

2.1.3 Summary of CDN approaches
We have seen two different mechanisms for content distri-
bution that have a common goal: Circumvent the location-
dependence of HTTP URLs. As of today, CDNs are widely
deployed and make up an increasing portion of the Internet’s
traffic. Cisco even expects that CDNs will carry over half of
the Internet’s traffic in 20171.

Because classic CDNs require a huge amount of widely dis-
tributed infrastructure, they are typically owned by big com-
panies that sell their content delivery service to customers
that can afford it. A few recent approaches to so-called
hybrid CDNs try to use the requesting clients of the CDN
as surrogate servers in a P2P manor to reduce the need in
self-owned infrastructure. This in turn can lead to reduced
costs for the CDN clients. Most hybrid CDNs make use of
HTTP-based redirection as explained above (e.g. [1]).

2.2 ICN approaches
Todays Internet architecture is founded on a host-centric ap-
proach which was designed for one-to-one communication.
However, as the rise of CDNs indicates, todays Internet ser-
vices mirror one-to-many communication for which the ar-
chitecture has not been built for [4]. ICN is a revolution-
ary vision to build a clean slate architecture that better fits
group communication claims and treats information (instead
of location) as the main building block [5]. This is achieved
by allowing content receivers to ask for information, not for
location. The underlying network layer is capable of direct-
ing the request to a location completely hidden from the
requesting client. As a result, the location of data becomes
irrelevant, making it simple to introduce caches distributed
throughout the network. Many architectures have been in-
troduced, the most prominent being DONA [6] and NDN
[5]. The approaches have a common goal but differ largely
in their data naming schemes and the name resolution of
these identifiers. Moreover, the naming scheme also dictates
how the data routing works [3]. We will now take a closer
look at these differences. For a deeper exploration of the
different ICN architectures, [12] gives an in-depth summary.

2.2.1 Naming
By using HTTP, we can address content that resides on
a remote host. In ICN, there is no distinct host we can
connect to. Therefore, the identifiers change to not denote a

1according to Cisco’s VNI forecast

host anymore (like in HTTP) but to name the content itself.
Two rivaling approaches exist on how to do that, either use
hierarchical or flat (e.g. a hash) names (Figure 3).

ndn://alice/images/image.png

dona://134(...)0f6:dfe(...)164

Figure 3: NDN hierarchical identifier and DONA
flat identifier

Hierarchical names have the benefit that they can easily
be aggregated. When considering that the routers use the
names of the content to decide on the next hop, it is prefer-
able to reduce routing table sizes by aggregating names.
NDN uses such hierarchical names and even requires exces-
sive aggregation to allow for reasonable sized routing tables.
Aggregation could e.g. be performed at the ISP level (with
ISPs assigning prefixes to their customers) but this reintro-
duces a binding to location. The existence of the location-
identity binding is the main argument for flat names (as used
in DONA), which allow for a complete decoupling of loca-
tion and identity but cannot easily be aggregated. Coping
with a huge amount of unaggregatable identifiers requires
either huge routing tables or external infrastructure. Find-
ing a scheme that allows for both, effective aggregation and
location-independence of the system without bloating rout-
ing tables is still subject to research activities [3].

Another aspect of the debate between flat and hierarchical
names is the decision between human-readableness and self-
certification. While DONA can use a cryptographic hash of
the content as its identifier and thus offer implicit content
certification, NDN has to use an external trust mechanism.

2.2.2 Name Resolution and Data Routing
In order to find a specific piece of content, ICN uses name
resolution to find a location just like CDNs use DNS to find
a nearby surrogate. When a location of the content is found,
it has to be transferred to the requesting entity. Therefore,
data routing is used to find a path over which the actual
content is transferred. Depending on the ICN implementa-
tion, data routing and name resolution can be coupled (e.g.
NDN) or decoupled (e.g. DONA). In a coupled approach,
the data routing follows the reverse path of the path found
by the name resolution. In a decoupled approach, the data
routing is independent of any previously found paths.

Coupling the data routing means to either a) store routing
states in the intermediate hops traveled by the name resolu-
tion query or b) integrate this information into the content
query packets on the way. Decoupled approaches allow for
more flexibility as control and data flow can be separated.

2.3 Providing a Path to
Name-based Publishing

This section described two contrasting approaches, namely
CDN and ICN, that share the same goal: Mitigating the fact
that the Internet evolved from a host-centric to a content-
centric platform. To cope with the new requirements, CDNs
introduce a widely deployed, proprietary infrastructure and
operate on the application layer. ICN visions an architec-
ture that centers around the content itself making efficient
group communication possible by routing on names instead

of locators. As of today, CDNs are widely deployed while
ICN remains a concept of the future with many open issues.

This results in a chicken-and-egg problem as CDNs already
seem to offer what is promised by ICN: An efficient publish-
ing infrastructure. CDNs, though, are neither openly avail-
able nor do they allow for user-generated content. More-
over, because CDNs operate on the application layer and
are mostly proprietary, sharing content between web ap-
plications or even different CDNs requires service-specific
APIs. In a ICN-world, sharing content between services is
implicitly achieved because the network itself allows for the
required interoperability.

In the next chapter, BOPlish is introduced. BOPlish allows
clients to join an overlay network over which content can
be distributed. The content is named similar to the ICN
approaches – without a location property in the identifiers.
With the classical CDN approaches, users do not directly
publish content. Instead, only the service providers are al-
lowed to access the CDN-specific APIs. As a result, users
do not have any direct control over their content. In BOP-
lish, we try to mitigate that fact by giving control back into
the users hand. As such, BOPlish focuses on user-generated
data meaning that every consumer can also be a publisher
(so called prosumer). BOPlish tries to counter the the cur-
rently observed shift to only use a few, very large service
providers such as Google, Facebook etc. by offering an open,
decentralized publishing infrastructure.

Just like CDNs, BOPlish operates on the application layer
which enables wide deployment as of today. Instead of op-
erating on an Internet-wide scale like ICN does, we limit the
scope of the content publication to interest groups of specific
content.

3. BOTTOM-UP APPROACH TO
NAME-BASED PUBLISHING

The BOPlish content sharing facility consists of a JavaScript
library that can be included in todays web applications ei-
ther by running directly in the browser or on a server using
a JavaScript runtime environment like Node.js. A potential
user navigates to a web page and automatically joins the
content publishing infrastructure. After the user has joined
the overlay network, he can request content or publish con-
tent himself. It is important to note that the overlay can be
spanned across web sites, as such a user that joined from ex-

ample.org can communicate with a user from example.com.
This allows for a freely, domain independent content distri-
bution which is not tied to specific services. BOPlish uses
WebRTC as its transport mechanism, allowing for point-
to-point connections between the client’s browsers. In this
section, we will go through the different aspects of the ar-
chitecture by focussing on the content naming scheme, the
name resolution facility and the data routing as introduced
by ICN in Section 2.2. The BOPlish architecture described
in this section is subject to ongoing work and shall provide
an overview about the similarities to other approaches (i.e.
CDN and ICN).

Figure 4 shows an overview of the current BOPlish archi-
tecture further described in [10], [9]. It consists of three
components: a) The Name Resolver API that uses a dis-

Name Resolver API

"user@identity.org"

goto XYZ1

3

2

DHT

"/beer.png"

4

010011...

Content API

Figure 4: Nodes in BOPlish retrieve content by is-
suing a lookup of the content’s user ID to the under-
lying DHT (1) which returns a pointer to the actual
node that holds the content (2). This pointer is then
used to open a WebRTC Data Channel to the peer,
query for the content (3) and transfer it (4) [9]

tributed hash table (DHT) to allow for the resolution of
location-independent identifiers; b) The Content API that
can be queried by a remote host to access the content that is
announced by the publisher; c) A bootstrap component that
allows a new user to join the existing network (not shown in
Figure 4).

3.1 Naming Content in BOPlish
In order to give names to content, we use the URI scheme
shown in Figure 5 (a). The significant difference to HTTP
URLs (or any other location-based URIs) described above is,
that the namespace of the URI does not denote a location
(like in URLs) but an location-less identity. Figure 5 (b)
shows how BOPlish URIs could look like. alice denotes an
identity that can be fed into the name resolution system.
It is important to note that even if the content location
changes, this URI will stay the same.

(a) bop:namespace:protocol

[/protocol-specific[?parameters]]

(b) bop:alice:document/img/images.png?

csum=sha1:1234abc...

Figure 5: BOPlish URI syntax (a) and example BO-
Plish URIs for file transfer (b)

Besides the location property, the content name denotes a
file-system like path that corresponds to a specific piece of
content. Content is not restricted to files, it is easily possible
for a user to publish an API that allows for other use cases
(e.g. chat, media streaming etc.). Moreover, the path may
contain wildcards that allow for searches and aggregation
of content. The query-part of the URL optionally denotes
parameters which might be used to verify the integrity and
authenticity of the received content.

3.2 Name Resolution and Data Routing
in BOPlish

We identified name resolution as a technique of ICN ap-
proaches. Instead of operating on the network layer like
ICN, we introduce an overlay network which is capable of
unbinding the relation between location and content iden-
tifier. This mechanism is realized by using a DHT which
uses a hash of the identifiers as key and returns a pointer to
the node that holds the content as value. This indirection
allows the system to handle names and locations separately
which we identified as a requirement for a content-centric
architecture above. Because only the name-location resolu-
tion depends on a DHT and we limit the scale to specific
interest groups instead of the Internet as a whole, the DHT
can be designed to be highly churn-resistant and redundant.
This is a crucial requirement as DHT implementations tend
to be fragile when peers join/leave the network in a high
frequency [8].

Data Routing in the BOPlish architecture is decoupled from
the name resolution. Instead of using the reverse path of the
name resolution, a WebRTC connection between the content
receiver and one or more of the publishers is opened. Cou-
pling the data routing with the name resolution is also possi-
ble but routing the content through the DHT would impose
unnecessary load, leading to poor performance regarding the
name lookup. Moreover, depending on the DHT implemen-
tation, the overlay path can be disadvantageous because it
is not aware of geographical and performance properties of
the overlay hops. The reference to a location is obtained by
using the return value of the DHT name resolution proce-
dure. If the connection to the publisher fails, the content
receiver can always re-query the DHT to find the updated
location information. This allows for mobility of both, the
content receiver and the publisher because the DHT entry
can easily be updated without requiring a name change of
the content’s identifier.

3.3 Enabling Group Communication
When recalling the initial motivation of a user-centric con-
tent publishing facility, the described architecture lacks sup-
port for group communication means. Currently, content is
transferred point-to-point from user to user. ICN introduces
caches distributed throughout the network to allow for ef-
ficient group communication. Due to the flexible naming
scheme and resolution, it would also be feasible in BOPlish
to replicate and serve content from multiple peers. A promi-
nent approach to such large-scale distributed applications is
the publish/subscribe communication paradigm. [2] factor
out the requirements of such a system: The decoupling of
the communicating entities in time, space, and synchroniza-
tion. In order to fulfill the requirements, the data structure
used by the name resolver is extended as shown in Table 1.

Key Value

h(alice)
Publishers Subscribers

7→ [CurrentPubs] 7→ [(CurrentSubs.,
RequestedURI)]

Table 1: Extended name resolution data structure

As the name resolution is realized as a DHT and therefore
distributed among the participating peers, it can be viewed

as a persistent storage entity. Even when no publisher is
available, subscribers can issue an interest in the content
by adding themselves to the appropriate DHT entry. Con-
versely, the subscriber can get notified by the name resolu-
tion service when a publisher is available. Thus, a time de-
coupling is feasible. Space decoupling in BOPlish is possible
by letting the name resolution service select the appropri-
ate publisher for a requesting subscriber. As such, produc-
ers and consumers both have a limited view upon the cur-
rent state instead of requiring full knowledge of each other.
Due to the characteristics of the underlying WebRTC Data
Channel implementation in JavaScript, synchronization de-
coupling is implicitly achieved as all incoming/outgoing mes-
sages are processed asynchronously.

Extending the data scheme that is used by the name resolver
results in a flexible approach that fulfills the basic require-
ments for a pub/sub system introduced by [2]. On the other
hand, load is burdened upon DHT because updates to the
hash table’s entries have to be made for each participating
subscriber.

4. CONCLUSIONS AND OUTLOOK
This paper showed different approaches to publishing con-
tent on the Web, namely CDN, ICN and BOPlish. CDNs
are widely used as of today but suffer from their centralized
architecture, allowing a few large companies to be in charge
of a huge portion of the Internets traffic. ICN-like archi-
tectures are far away on the horizon to evolve not only the
Web but the whole Internet from a host- to a content-centric
network infrastructure. BOPlish provides a path to ICN-like
name-based publishing by introducing an overlay which does
not depend on third-party infrastructure like CDNs does.
Instead of requiring deep, network-layer changes to the in-
frastructure like ICN, BOPlish can be used as of today. By
utilizing the Web platform, current web applications can
easily be extended by a name-based content sharing facility
that also allows to distribute content among users of multiple
websites. This allows for a new type of open interoperability
between web applications that is not feasible with today’s
infrastructure.

BOPlish focusses on user-generated content. The vision of
such an architecture differs from todays use of the Internet.
Instead of handing over the content to the service provider
(or the CDN provider), users keep control over the content
shared within a BOPlish interest group. The crucial differ-
ence to todays services is, that the service does not need
to hold on to the content itself but accesses it on demand.
While this allows for the introduced service interoperabil-
ity, downsides can be identified, too. The user (instead of
the service provider) has to make sure that a copy of the
content stays available in the BOPlish network. As the BO-
Plish library is not limited to run in the browser, it could
potentially also be run on NAS-like devices that provide the
necessary availability for the specific kind of content.

We have already made good progress on the implementation
details and implemented demo applications that utilize the
core BOPlish functionality. Still, open issues remain that
have not been dealt with. Besides the common P2P security
topics, the concrete DHT implementation is an important
issue for the name resolution performance and therefore the

whole system. As DHTs tend to be fragile in regards to
performance, it has to be carefully designed. Measurements
of a larger scale have to be conducted to detect possible
shortcomings of the BOPlish architecture.

5. REFERENCES
[1] M. El Dick, E. Pacitti, and B. Kemme. Flower-CDN: a

hybrid P2P overlay for efficient query processing in
CDN. In Proceedings of the 12th International
Conference on Extending Database Technology:
Advances in Database Technology, EDBT ’09, pages
427–438, New York, NY, USA, 2009. ACM.

[2] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec. The Many Faces of Publish/Subscribe.
ACM Comput. Surv., 35(2):114–131, June 2003.

[3] A. Ghodsi, T. Koponen, J. Rajahalme, P. Sarolahti,
and S. Shenker. Naming in Content-oriented
Architectures. In Proceedings of the ACM SIGCOMM
workshop on Information-centric networking, ICN ’11,
pages 1–6, New York, NY, USA, 2011. ACM.

[4] M. Handley. Why the Internet Only Just Works. BT
Technology Journal, 24(3):119–129, July 2006.

[5] V. Jacobson, D. K. Smetters, J. D. Thornton, and
M. F. Plass. Networking Named Content. In Proc. of
the 5th Int. Conf. on emerging Networking
EXperiments and Technologies (ACM CoNEXT’09),
pages 1–12, New York, NY, USA, Dec. 2009. ACM.

[6] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy,
K. H. Kim, S. Shenker, and I. Stoica. A Data-Oriented
(and beyond) Network Architecture. SIGCOMM
Computer Communications Review, 37(4):181–192,
2007.

[7] E. Nygren, R. K. Sitaraman, and J. Sun. The Akamai
Network: A Platform for High-performance Internet
Applications. SIGOPS Oper. Syst. Rev., 44(3):2–19,
Aug. 2010.

[8] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz.
Handling Churn in a DHT. In Proceedings of the
Annual Conference on USENIX Annual Technical
Conference, ATEC ’04, pages 10–10, Berkeley, CA,
USA, 2004. USENIX Association.

[9] C. Vogt, M. J. Werner, and T. C. Schmidt.
Content-centric User Networks: WebRTC as a Path to
Name-based Publishing. In 21st IEEE Intern. Conf.
on Network Protocols (ICNP 2013), PhD Forum,
Piscataway, NJ, USA, Oct. 2013. IEEEPress.

[10] C. Vogt, M. J. Werner, and T. C. Schmidt. Leveraging
WebRTC for P2P Content Distribution in Web
Browsers. In 21st IEEE Intern. Conf. on Network
Protocols (ICNP 2013), Demo Session, Piscataway,
NJ, USA, Oct. 2013. IEEEPress. ICNP Best Demo
Award.

[11] M. Wählisch, T. C. Schmidt, and M. Vahlenkamp.
Backscatter from the Data Plane – Threats to
Stability and Security in Information-Centric Network
Infrastructure. Computer Networks, 57(16):3192–3206,
Nov. 2013.

[12] G. Xylomenos, C. Ververidis, V. Siris, N. Fotiou,
C. Tsilopoulos, X. Vasilakos, K. Katsaros, and
G. Polyzos. A Survey of Information-Centric
Networking Research. Communications Surveys
Tutorials, IEEE, PP(99):1–26, 2013.

