
Learning Group Extensions for
diaspora*
Steffen Brauer

Project 2 Report

Fakultät Technik und Informatik
Department Informatik

Faculty of Engineering and Computer Sci-
ence
Department of Computer Science

Steffen Brauer

Project 2 Report

Submitted at: 31. March 2015

Contents

Contents

1 Introduction 2

2 diaspora* 3
2.1 Features . 5
2.2 Pod Architecture . 6

3 Learning Groups 7
3.1 Concept . 8
3.2 Specification . 9
3.3 Implementation . 10

4 Analytical Graph Database 12
4.1 Formal Model . 13
4.2 Graph Database Engine . 14
4.3 Viewer . 17

5 Evaluation 18
5.1 Feedback Group . 18
5.2 Group Management . 19
5.3 Analytical Database . 21

6 Conclusion and Outlook 24

1

1 Introduction

1 Introduction

In the last years, qualification trends in society have shifted responsibility for learning
and education more and more into the hands of individuals. The new technologies
and the open Internet have granted easy ways to access content, communication, and
collaboration in learning. Online Social Networks (OSN) play an important role in
this context. They stimulate their users to socialize with friends and communicate to
each other. Discussions in groups are user-triggered and do not need a moderator or
facilitator. Our work tries to open the learning process and the building of learning
groups to become part of social Internet eco system.

This report covers the extension of the open source social network diaspora* with an
eLearning environment, including a content network and a group formation component.
In previous work, we characterized our approach of an eLearning environment as an
Online Social Network (OSN), which is extended with eLearning features [1]. Such an
eLearning-enabled OSN allows users to self-pace learning on topics of personal interest
and teams of personal choice. To follow the non-hierarchical paradigm of the social web,
we remove any kind of instructor from our platform. This removal leads to questions in
the design of such an eLearning system:

1. How to stimulate a team building process that is effective for learners?

2. How to provide access to the relevant content for a learning group?

3. How to facilitate a consistent learning progress, include feedback and corrective
actions?

An approach to answer the first question is given in [2]. Here we introduce an algorithm
to form groups from the social graph based on learning style, knowledge and intergroup
structure. Preliminary work on the second question is based on the Learning Content
Management System (LCMS) Hypermedia Learning Object System (hylOs) [3]. hylOs is
an adaptive eLearning content management system and runtime environment, built upon
an information object meta-model [4] tailored from the IEEE LOM (Learning Object
Metadata) standard. The work of With[5] focus on the reasoner of the hylOs system and
aims to integrate the content-network in our eLearning environment. To combine the
social graph required for team building and the content-graph, we develop the concept of
an eLearning-enabled OSN [6]. We analysed the concept of Personal Learning Networks
(PLN) that describe how Internet users organize their learning contacts and map this

2

2 diaspora*

concept to a formal graph structure consisting of learning relevant entities as vertices
and semantic relations as edges.
Based on this conceptional background, we report on the implementation of two

components of our eLearning-enabled OSN. We take advantage of the open source
social network diaspora* that provides the typical features of an OSN and can be easily
extended. We first implement the group learning component that covers all features,
which are needed to enable the communication within and management of the learning
groups. The second component adds a graph representation to the learning network.
Learning entities are represented by vertices and edges correspond to different relations
between them. This graph implements the concept of an eLearning-enabled OSN by
combining the social and content network and provides an analytical data source for
our team building algorithm. The remainder of this report is structured as follows: In
the next section, we introduce the open source social network diaspora*. Sections 3 and
4 outline the concepts and implementations of the two components introduced above. A
brief evaluation of the components is given in section 5. The last section summarises the
achievements and presents the next steps in the development of our learning network.

2 diaspora*

diaspora* 1 is an open source implementation of a distributed Online Social Network.
It is written using the Ruby on Rails Framework2, which applies a 3-tier architecture
to the application including recent Web technologies. It is also easily extendible using
rails engines, that are loosely interconnected to the main application, but have full
access to its code. This enables our extensions to reuse some parts of diaspora* and to
deeply integrate it into the existing system, but the code is clearly separated. This is an
advantage of extending diaspora* in contrary to using an API of a large commercial
social network with limited data access and little possibilities of integration.

The social graph of diaspora* is distributed over a network of independent federated
servers—so called pods—that are administrated by individual so called podmins [7].
When joining the network, a user has to choose a pod. The personal data are only
stored within the database of the chosen pod. There is no centralized indexing instance,
which has access to the whole social graph and personal data of all users. To find users
in diaspora* an ID is assigned to each user during the registration process. The scheme

1https://joindiaspora.com/
2http://rubyonrails.org/

3

2 diaspora*

of the ID follows the WebFinger protocol, defined in RFC 7033 [8]. It includes the
username and the pod separated by a @ (e.g. bob@bob.diaspora.example.com). The
WebFinger protocol

"is used to discover information about people or other entities on the Internet
that are identified by a URI using standard Hypertext Transfer Protocol
(HTTP) methods over a secure transport. A WebFinger resource returns
a JavaScript Object Notation (JSON) object describing the entity that is
queried. The JSON object is referred to as the JSON Resource Descriptor
(JRD)." [8]

The communication between users, who are not on the same pod is handled via
encrypted messages exchanged between the pods. The encryption is handled by asym-
metric encryption using a key pair that is generated and assigned to the user during
registration. The exchanged messages follow the Salmon protocol3 that was designed to
migrate social media data between different sources and also provides its own signature
handling. When a user signs a post as public, the post is sent to all people sharing
with the user, even if she is not sharing with them. This update process is handled by
the Active Stream protocol4 and a PubSubHubbub Server5. The following features are
supported by the diaspora* federation:

• User A initiates a relation to user B,

• User A wants to cancel the relation to user B,

• User A posts something,

• User A comments on a post,

• User A marks a post with a "like",

• User A sends a private message to user B,

• User A requests profile information of user B,

• User A retracts a post,

• User A retracts a like or comment.
3http://www.salmon-protocol.org
4http://activitystrea.ms/
5https://code.google.com/p/pubsubhubbub/

4

2 diaspora*

While we aim to apply the federation between the pods to the group learning component,
we implement the learning network as a central social network in the first version and
concentrate on the key features of the learning components.

2.1 Features

diaspora* supports the core features of a typical OSN like sharing content with others,
private messaging and user discovery. In the following, we want to introduce the features,
that distinguish diaspora* from other OSNs.

Contacts A user can start sharing with another user. The semantic of this relation is
that the posts of user A are delivered to user B. This relation is directed and needs not
to be acknowledged by user B. But user B receives a notification when user A started
sharing and can also start sharing with user A. With these directed edges, the social
graph of diaspora* can be described as a directed push network between users. The
persons user A is sharing with are called contacts. The sharing relation is not restricted
to a pod, but can be established between all registered diaspora* users by using the
WebFinger protocol. An in-depth discussion of how users connect in diaspora* can be
found in section 4.

Aspects When user A starts sharing with user B, A has to attribute an aspect to
B. This feature is designed to support a context-dependent publication behaviour. In
different contexts like work, family, or friends, a person can act differently according
to appropriate norms and accepted conventions. These so called facets [9] or foci
[10] describe different social aspects in the life of a person and provide the theoretical
background of selective sharing features. Besides the selective sharing of posts, diaspora*s
aspect feature implements a selective reception of posts generated by the contacts in
each aspect.

This grouping of contacts is an important feature in an eLearning context, because a
user categorizes her contacts according to learning relevant attributes. While we aim to
add a group feature to diaspora* we are interested in the impact of groups in the social
graph and how these communities distinguish from groupings created by a selective
sharing feature. In [11] we analysed the selective sharing feature of Google+. Here the
groupings of contacts are called circles. While in traditional communities users join on
their own will, the circles are created by a peer user from her own ego-network. We
tried to explore the effects of these different building mechanisms on the social networks

5

2 diaspora*

and on the processes of selective sharing therein. Based on a Google+ data set [12]
with shared circles, we characterized the structures of circles that are embedded in
the Google+ social graph. We started with the classification of the used data set by
comparing it characteristics to other Google+ data sets. Comparing two social networks
of circular structures with two data sets that are built from traditional communities, we
could show that i) circles form pronounced community-like structures in Google+, and
ii) circles attain an individual structural signature. In particular, circles are significantly
less separated from the remaining network than classical communities. Selective sharing
in Google+ is thus more diffuse and less confined.

Tags During the registration process, a new diaspora* user can select different tags to
follow. The followed tags have individual streams, a collection of posts, that contain all
posts visible to the user that are marked with the tag.
In social networks, tags are used to mark posts and other content with keywords to

describe its context [13]. Marked with a ’#’, tags are interpreted by the network and
posts and content marked with the same tag can be found by clicking on the tag.
The scope of tags in diaspora* is limited by the visibility of posts. When a post is

not visible to the user, because she does not share with the author or the post is not
public, the tag connection is hidden. Another limitation is that only posts can be found,
which are stored in the local pod. Posts are stored on the senders and recipients pods,
which leads to an imbalance of public information on different pods. This is a problem
of the current diaspora* implementation, which could lead to a development against the
distributed nature towards to only few large pods.

2.2 Pod Architecture

Diaspora* consists of a network of distributed pods. All pods are equal peers in the
network and use the same source code. The architecture of a pod follows a classic 3-tier
architecture: Database, Server and User Interface (Figure 1).

Database The database stores the models created in diaspora*. While all migrations
are handled by the Ruby on Rails framework, the database needs less configuration and
maintenance. Possible implementations are MySQL6 or PostgreSQL7.

6http://www.mysql.com/
7http://www.postgresql.org/

6

3 Learning Groups

User Interface
Client Side (backbone.js / handlebars)
Server Side (HAML + SASS)

Server Apache / Rails / Application

Database MySQL or PostgreSQL

Figure 1: diaspora* Architecture Overview

Server The Server handles the incoming HTTP requests and passes them to the
through the Rails framework to the application code. Requests can come from users or
other pods. The incoming requests are mapped to a corresponding controller following
the REST paradigm [14]. The inner of diaspora* is designed according to the Model
View Controller Pattern. Here the model represents an entity and handles the storage
in the database. A view generates a presentation of a model using predefined templates.
The manipulation of models and rendering of views is handled by the controller. Besides
the Web interface the server component of diaspora* handles the messages exchanged
between the pods using the Salmon protocol.

User Interface The User Interface (UI) is implemented on the server and the client
side. Static content is rendered at the server and sent as HTML code. Posts and
messages are queried as JSON Objects by javascript using backbone.js 8 and handlebars
9. Both approaches are not clearly separated from each other.

3 Learning Groups

The learning groups are in the center of the eLearning extensions for diaspora*. We aim
to create a learning environment that enables users to learn on topics of personal interest

8http://backbonejs.org/
9http://handlebarsjs.com/

7

3 Learning Groups

without any instructor [1]. Our concept is based on Personal Learning Environments. A
PLE consists of a set of several web services, which can be used to consume content from
social web services like Twitter, Blogs or discussion forums. Besides the passive content
consumption, communication services take an important role. In contrary to Learning
Management Systems (LMS) Personal Learning Environments focus on the user and the
personal characteristics and commit the control to the user [15]. A new term in the area
of PLEs are Personal Learning Networks (PLN). They describe the social relationships,
which are created during interaction through the PLE. Couros [16] uses the definition
that,"personal learning networks are the sum of all social capital and connections that
result in the development and facilitation of a personal learning environment". Warlick
[17] stresses the importance of aggregation, to see what is going on inside the PLN,
but he although mentioned the importance of a variety of information sources. The
objective of our platform is to provide an environment for learners to maintain their
Personal Learning Network (PLN) combined with formal open learning groups. Learners
browse the network, initiate connections to others with the same interests and can start
groups to work on collaborative task. These tasks, called topics, are created by other
learners and cover any kind of activity like creating a piece of content or exchange their
knowledge in discussions. To describe the context of a task, the creator has to assign
tags to it that allow its categorization and make it searchable.

3.1 Concept

A learning group can be open or closed. If the group is open, other users can join in the
active state at any time and the group can be found by all other users of the learning
network. If the group is closed, other users have to be invited to join. Only members
are able to see the group in the system. During the learning process, members can join
a group according to its visibility or leave it. The group members define, when the
goal of collaboration is reached by voting for it. The final result should be any kind
of artefact. A learning group can have three different states (see Figure 2): The group
does not exist, or it is active, or it is frozen. When a user creates a group, a name and
a description need to be assigned. In addition, the creator has to decide, whether the
group is open or closed. Now the state of the group changes from no group to active.
In the active state, content can be shared within the group and members can discuss
about the topic. It is possible that new members can join according to the visibility of
the group. To terminate the active state, all members have to agree that the task of
the topic is completed. In this case, the group freezes and changes to the frozen state.

8

3 Learning Groups

No Group

Active

Frozen

create freeze

destroy

Figure 2: Life cycle of a learning group

Now it is not longer possible to join or post something in the group. But the group is
still visible to its members and can be used as an archive. Members of a frozen group
can request to delete it. When all members agree, the group is deleted and the state is
again no group.

3.2 Specification

Based on the concept of the learning groups, we develop a specification, which describes
the features that have to be added to diaspora* to enable a group learning experience.
Besides the learner, topic and group are the main entities. A topic consists of a title, a
description (including a task), a goal and several tags, which characterize the context of
it. It is possible to create a group on a topic or select it in the group creation process.
A group has a name, a description, a topic the members are working on and a state.
These two entities are created and modified by the learners as follows:

1. A user, who is logged in, can create a topic.

2. A user, who is logged in, can create a group. The user has also to select whether
the group is open or closed.

3. At any time in the active state, new members can be invited to join by other
members. A text can be added to the invitation. The invited user becomes a
member, when she accepts it.

4. Each member of a learning group can create a post in the group. All other group
members receive a notification about it.

5. Posts from a group can be reshared as normal posts in diaspora*.

9

3 Learning Groups

6. Group members do not need to share with each other. If a member of a group
wants to share with the other group members, she can create an aspect consisting
of the group members.

7. When all group members tag the topic goal as reached, the group is closed and
other users are no longer able to join.

8. Recent posts of the groups the current user is a member of are aggregated to a
separated stream.

9. A Member of a frozen group can request to delete it. The other members have to
acknowledge the request.

3.3 Implementation

To extend diaspora* with learning groups, we chose to create a rails engine, so there is
a clear separation of diaspora* and our learning extension. Rails engines have a own
MVC structure and run in the same web server environment as the original application.

We aim to reduce the changes in the diaspora* code, to simplify the installation and
update process. We achieve this requirement by adding hooks in the loading routine
of the engine, which add the migration and locales paths to the main application. In
addition, we encapsulate the learning related behaviour of the user model in a learner
module. It includes the associations to the group entities and some helper methods. To
enter the learning engine, there is a learning sidebar, that has to be included in the
main_stream file of diaspora*, to make the features of the engine visible to the user.

Another objective was to adopt the existing style of diaspora*. We reuse the standard
layout and the existing style sheets.

The data model of the group learning engine shown in Figure 3 contains the entities we
need to implement the group management. All entities are added to the database except
for the Learner entity, which extends the User model of diaspora*. The migrations
of the engine are run in the diaspora* environment and stored in the same database.
Tagging is implemented using the ActAsTaggableOn 10 Gem. It handles the storage
and parsing of the tags in posts and enables to store taggings on different models.

In Figure 4, we show the models, views and controllers implemented for the learning
group management. The entities from the data model can be found with corresponding
models, views and controllers. In addition, there are two more categories of model:

10https://github.com/mbleigh/acts-as-taggable-on

10

3 Learning Groups

Group

Group
Invitation

Group
Membership

Group
Post

Topic

Learner

1
1

1

N

N

N

N

1

N

N

N

N

1

1

1

1

Figure 3: Data model of the group learning engine

notifications and observers that stand for several models, which handle the notifications
for new group posts or invitation. The observers are described in detail in section 4.2.
Besides the additional models, there are two controllers with views. The ReshareGroup-
PostsController implements the feature of converting a group post to a regular one
and aggregation of information from the group learning component is handled by the
LearningController.

While users can post content in the learning groups, we aim to integrate this posting
in the diaspora* implementation. Advantages of a deep integration are the reuse of
features and code of diaspora* and a small difference in the usability of the social network
and the eLearning system. The post model is tightly bounded to streams, aspects and
the visibility management. Posts can be public either or belong to an aspect, which
does not map well to group posts. Here the members do not have to share with each
other. One possibility in existing systems is that all group posts are public posts in
the social network. But this contradicts the closed group concept. So it is necessary
to implement group specific posts that are bound to groups, but can be reshared by
members to make them available in the network. diaspora* has a notification system
that, for instance, informs the user when a new message is received or a post is liked.
We integrate notifications for an invitation to a group and new group posts. Even if the
notification system is implemented very generically using different classes to represent
the notifications, the method which creates the notifications uses a switch case statement
that limits the possibility of new notifications. The statement distinguishes between the

11

4 Analytical Graph Database

TopicsController

ReshareGroupPostsController

LearningController

GroupPostsController

GroupMembershipsController

GroupInvitationsController

GroupsController

Controller

GroupMembership

GroupPost

Topic

GroupInvitation

Group

Notifications

Observers

Model

ReshareGroupPost

new publisher

Learning

show sidebar

GroupInvitations

index new

GroupMemberships

index new edit

GroupPost

index new show

Topics

index new show sidebar

Groups

index new show sidebar

View

Figure 4: Overview of the Models, Views and Controllers implemented.

targets of the notification (e.g. Comment, Like or Reshare), to select the object, which
should be linked to and calls model specific methods. We can avoid this restriction by
overwriting the make_notification method in the new notifications.

4 Analytical Graph Database

Diaspora* uses a MySql or PostgreSQL database to store its models. The scheme used
here is normalized and optimized for read and insert operations, but lacks usability
and performance by analytical queries. The term analytical database derives from the
field of Business Intelligence. Here an analytical database has an optimized scheme for
querying historical aggregated business data to support the controlling. While analytical
database often has a multidimensional scheme, we choose a graph scheme, so we can
easily map our eLearning-enabled OSN concept to the database and are able to traverse
the graph without large join tables by just following the edges. To query the graph
database, we do not use SQL, which is not suitable for graph related task. Instead, we
use the Gremlin11 graph traversal language. To enable an easy-to-use and fast analysis

11https://github.com/tinkerpop/gremlin/wiki

12

4 Analytical Graph Database

of the social network in diaspora* and our extensions we set up an analytical graph
database. Its task is to hold a copy of the entities of the eLearning-enabled OSN graph
structure to analyse the social graph and serve as a data source for recommendation
algorithms.

Besides the direct connections of learners via edges from one to another, the learners
are connected via indirect connections, for instance by editing the same content or
participating in discussions. These indirect connections bear a high potential for learner
supporting features. The direct neighbours of a learner describe her context in the
network. This context extents the profile of the leaner exclusive information. An
extended view of the context of a learner is her ego-network. The ego network of a
vertex in a social network is the sub-graph including all neighbours and the edges
between them [12]. This surrounding of a learner in the network have a high potential
for discovering new learning partners and interesting content, which can be discovered
by simply browsing the network.

4.1 Formal Model

The formal model of our eLearning-enabled OSN is introduced in [6]. It was developed
from an analytical point of view on environments and social networks Internet users
maintain in a learning context. While these networks are distributed over several online
services, they provide a rich set of information how learning takes place in a social
media environments but are hard to analyse. To enable an analysis of these Personal
Learning Networks, we map our eLearning OSN to a formal graph structure. This graph
is modelled by a directed graph with vertices of different types (see Figure 5). These
types cover all relation kinds between content objects, user profiles, groups and topics.
The (technical) links are typed accordingly. This unified approach (cf., [18]) adds many
implicit relations to the network. In this way, it is possible to find users, who have
vertices relations in common, but no personal interconnect. It also enables algorithms to
measure the strength in connectivity of two vertices by accounting for shared neighbours
or distinct paths that connect them.
To represent the actual users of the platform, they hold a profile with common OSN

attributes. As the learner vertices represent the active roles in the network, they create
or edit other vertices and connect to them. Besides learners, content is mapped to
vertices. Content vertices can refer to resources outside the platform or content objects
in the content network. While learners and content form edges by editing or consuming
relations, their contextual relations are mapped indirect using tag vertices. Topic vertices

13

4 Analytical Graph Database

Tag

Learner

Content

Group

Topic

Figure 5: eLearning-enabled OSN with multiple vertices types connected by directed
edges

can be chosen for collaborative group learning. If a group is successfully created, a
group vertex is created and all members connect themselves to it. To distinguish the
relevance of different edges in the network, we introduce weights. The calculation of the
weights is determined by the context of the connected vertices. A in detail list of the
different weights can be found in section 4.2.

4.2 Graph Database Engine

We chose the Rexster graph server for a graph database engine. It is part of the
TinkerPop2 12 graph computing framework and provides a REST API to different graph
database implementations via the Blueprint interface.

The existing ruby client for Rexster does not fulfill our requirements, because it only
returns the results of the queries as maps and does not maintain a graph structure.
Therefore, we create our own client, which is able to query and create vertices and edges
via the REST interface by representing the database entries by vertex and edge objects.

From the analytical perspective, we are interested in the graph structure and neglect
other attributes of the entities. To map the diaspora* learning entities to vertices and
edges in the graph, we have to ensure, that the identifier in both systems is unique.
diaspora* creates automatically a primary key on each table, this leads to a uniqueness
of the object in each table. While we map different models to the graph database, the

12http://www.tinkerpop.com/

14

4 Analytical Graph Database

GraphDBObserver

TagObserver
- Tag
- Tagging
- TagFollowing

LearningObserver
- Topic
- Group
- GroupMembership
- LearningObject

LearnerObserver
- User
- Contact

Figure 6: Inheritance structure and mapping of the observer

identification only by id is not possible. Therefore, we generate a new identifier, that
consists of the entity name and the key concatenated with a ’_’. Following this scheme
the group with the id 1 has the identifier group_1.

To map the learning objects from the diaspora* database to Rexster, we implemented
observers, that are executed whenever a create or update action happens on a learning
model. The observer checks, if the vertex or edge exists and updates or creates it.
We designed the observers based on their concerns and coupling. Figure 6 shows the
Inheritance structure of the implemented observers and the diaspora* models they
observe. The database connections and methods for update or create actions are handled
by the GraphDBObserver. While the objects of the group learning component can be
handled by one observer (LearningObserver), the observers for tags and learners are
much more complex. This results in a separate LearnerObserver and TagObserver. The
mapping of vertex type to the class in diaspora* is shown in table 4.2.

Vertex type Diaspora class

Learner User
Tag ActsAsTaggableOn::Tag
Group GroupLearning::Group
Topic GroupLearning::Topic
Content ContentRepo::LearningObject

Table 1: Mapping of vertex types to diaspora classes

15

4 Analytical Graph Database

User

PersonContact

AspectMemberships

Post (incl. Mention)

Conversations

Usershares with

Person

Figure 7: diaspora* entities included in a relation between two user

Edges in the graph database refer to associations in the learning engine. The identifi-
cation is done by its in- and out-going vertices. The mapping is also triggered by the
observers. While the creation is comparable to the vertices, the weights at the edges
have to be updated. In the following we state the specific requirements for each existing
edge type in the eLearning-enabled OSN [6]. The weights on the edges to and from the
content vertices are defined and implemented in the work of With.

Learner → Learner We define the weight of the edge from learner v to u by the
communication objects send from v to u Mv→u. In diaspora*, an edge between v and u

represents that v shares with u. This means, that content created by v is pushed to u

according to the membership of u in the aspects of v. This perspective on a relation
between users is different from the common interpretation of social relations, where
users follow each other (u subscribes to the content of v).

An overview of the entities, which represent the sharing relation on the implementation
level, is shown in Figure 7. In general, a relation is established to a user’s Person

object. The Person object is used to represent a user independent from the pod in the
communication features. The relation between two diasproa* users is maintained via the
Contact model. It is created when a user starts sharing with another user. The creation
of edges between learners in the graph database is triggered by it. The Contact model
also holds the memberships of u in the aspects of v. Post and Conversations (private
messages) are associated with Person objects on the side of v and u. A Post in diaspora*
has to direct connection to the receiver, this is not the case if it includes a Mention of
another user.

16

4 Analytical Graph Database

We implement the weight of the edge as the sum of the AspectMebership, Mention

and Conversation objects learner v and u share. Conversation objects have authors and
participants, because of the directed edges, we only sum the edges from the author to
the participants and not from all participants to all other participants. A special case is,
that users in diaspora* are able to block other users, if it happens, the edge value is set
to −1 and can not be updated.

Learner → Tag To weight the edges between a learner and a tag, we introduced an
Activity Index [2]. It represents the relevance of a user per tag. To update or create
this edge, the TagObserver monitors the ActAsTaggable::Tagging model. It is triggered,
when a tag is assigned to a taggable model. To track the learner, who assigned the tag,
we have to set it explicitly in the controller layer, because the option to track the tagger
is not set in diaspora* by default. Every tagging increments the weight of the edge by
one.

Learner → Topic The direct relation between a learner and a topic is defined by a
creation or manipulation action. Such an action increments the weight by one.

Learner → Group The edges between a learner and a group vertex is weighted by the
participation of the leaner in the collaborative work. This is measured by the number
of posts in the learning group. The implementation of this edge weight is done by
observing the GroupPost model. The edge is created after a user has posted something
to the group and increment by any ongoing post.

Topic → Tag The weights of tags per topic are assigned by the creator or learner, who
edit the topic. Each tagging increments the weight by one.

Group → Topic A group vertex always has one outgoing edge to a topic, so its weight
is always 1.

4.3 Viewer

The observers that update the analytical graph are executed by specific events. This
even-driven nature of the observers together with a lack of suitable database viewer
make the debugging a time consuming task. To overcome this we implement a viewer

17

5 Evaluation

for graph database using the d3.js JavaScript library13. It uses a data driven approach
to animate data using HTML, SVG and CSS. The file containing the viewer is in the
public folder of the diaspora* implementation. The included JavaScript code queries
the REST API of Rexster and loads all edges and vertices of the eLearning graph. The
loaded data is visualized using the force layout and colors the vertices according to the
model. Besides the key in the graph database, the edge weight is shown. With this
viewer it is possible to monitor the graph database and debug the observers.

5 Evaluation

Since this report covers the first building block of our eLearning-enabled OSN, the goal
of this evaluation is to show that the implementation of learning groups in diaspora*
full fills its specification and the analytical graph database tracks the creation of the
network. In addition, we introduce a feedback group, which create a persist way to get
feedback from test learners.
To set up the evaluation environment, we use Ubuntu 14.04.1 on a virtual machine.

Following the guide in the diaspora* wiki14. We install diaspora* 0.4.2.1 with a MySQL
database configuration. To store the analytical graph, we use Rexster in version 2.6.0
and create an empty graph. Then we integrate the group learning engine by mounting
it in diaspora* and add the learning sidebar to the main view. To store the models
created by the engine, we run the migrations to create the corresponding tables in the
diaspora* database.

5.1 Feedback Group

We create a feedback group to establish a feedback channel, which persist from the
start of this evaluation till the other two building blocks (content network and group
formation) are implemented in integrated into the test environment. Its topic is to
discuss about the concept and implementation of the group learning feature and our
platform in general.
This group establishes a fast feedback loop for the test users. During this first

evaluation, the feedback group helped to find bugs, which could be fixed immediately
and also was used to discuss the usability and possible next features.

13http://d3js.org/
14https://wiki.diasporafoundation.org/Installation/Ubuntu/Trusty

18

5 Evaluation

Figure 8: Screenshot of the feedback group

5.2 Group Management

Figure 8 displays a screenshot of the feedback group. On the left side is a sidebar
containing the group name and description. Below that is the current status of the
group. Here the group members can mark when the group goal is reached. The sidebar
also contains a list of the group members represented by their profile pictures. When a
user is a group member, the sidebar states it and contains two buttons for inviting other
contacts or leaving the group. When the current user is not a member of the group, the
sidebar contains a join button. The bottom of the sidebar always contains links to the
recent activities, topics, groups and content pages. The topic the groups is working on
is shown on the right. Besides the name and description, the tags of the topic are listed.
Below the topic are the group posts visualized. At the beginning of the feedback group,
no post was created. In the following we want to demonstrate the other implemented
features for the group management.

Group Goal Each member of the group has to mark the group goal as reached to
change the state from active to frozen, as we state in section 3.1. An overview of the
current status is given in the sidebar of a group. There is also a button that shows a
detail view of the markings. A screen shot of this view can be found in Figure 9.

19

5 Evaluation

Figure 9: Screenshot of the group opinion whether the goal is reached

Figure 10: Screenshot of the group invitation

Group Invitations A group in our eLearning system can be open or closed. If the
group is open any user can join it. But if it is closed a new member have to be invited
out of the contacts of present group members. Figure 10 shows a screenshot of partial
view that is included in the group overview and on the recent activity page. If there
are no group invitations for the user, the view indicates zero invitations, but if the user
receives invitations, a list of the invitations can be expanded by clicking on the number
of open invitations.

Recent Activities In section 3.2, we specified a stream of group posts that are created
in the groups of the current user. Figure 11 shows this stream. Each post contains the
user, who made it, the group it is posted to and time span since its creation as well as
the content of it. Here we also see that there are currently no group invitations.

Resharing of Group Posts Because we were not able to integrate the group posts in
diaspora*, we decided to implement a resharing feature that is able to convert group
posts to default diaspora* posts. We keep the group member who created the post and
the name of the group and links to them (see Figure 12). An open question is, how the
visibility of the reshared posts is handled. In the current implementation any group

20

5 Evaluation

Figure 11: Screenshot of the recent activities in the learning groups the current user is
part of

Figure 12: Screenshot of group post that was reshared to a default diaspora* post

member can reshare any post in open as well as closed groups. This contradicts the
privacy model of diaspora*.

5.3 Analytical Database

To evaluate the analytical database, we use the viewer introduced in section 4.3. Figure
13 shows the graph after the creation of the feedback group. It displays that the
mapping from our concept of an eLearning-enabled OSN to the graph database full fills
its specification. The only registered user is user_4, who follows tag_2. This user than
created the evaluation topic topic_2 and assign the tags tag_3, tag_4, tag_5 and tag_6.
The weight of the edges between the user_4 and the tags are incremented by 1. There
is also a group_1 that is created by user_4 and works on topic_2.

21

5 Evaluation

Figure 13: Analytical graph after the creation of the feedback group

Figure 14: Analytical graph after the creation of the feedback group

22

6 Conclusion and Outlook

Figure 14 shows the graph of the analytical database after the test of all specified
features. The main test user was user_4. Its vertex has the highest degree and shows
an emphasized role in graph. Even if the graph is very small, the visualization makes it
hard to get the details of the specific edges. A clear visualization is one of our next steps
do support the debugging of our recommendation algorithms. In the current version
of the viewer, all vertices and edges are selected from the database each time, the site
is loaded. This works fine for this evaluation with just a few vertices and edges, but
will be not possible for bigger graphs. So our objective is to implement a fast and easy
way to select the relevant parts of the network and visualize it with a high amount of
information.

6 Conclusion and Outlook

In this paper, we reported about the first steps in the implementation of our eLearning-
enabled Online Social Network. The network uses the open source OSN diaspora*
to serve the main social network features. Diaspora* overcomes some of the privacy
issues, commercial OSN have by splitting the private data to several pods. We extend
the network with a group learning component and an analytical database. The group
learning component adds formal group learning to diaspora*. It includes the management
of learning topics, posting content to groups and invitation of members. The analytical
database stores the eLearning relevant data in a graph database and make it easy
accessible. In the evaluation, we show that the developed components fulfills their
requirements.

In our future work we will improve the two components by adding more features and
maintain the code. The mapping of the edges to and from the content objects was not
possible yet. This is the next step, we will focus on. During the current implementation,
the functionally was in focus which lead to a lack in usability. Its improvement will
be a continuing task in our future work. A important building block in our future is
the implementation of the group formation engine that we introduced in [2]. While
the evaluation in this report covers only the proof of full filling the specification, we
aim to create test learning groups with real users and also perform evaluations on our
recommendation algorithm with large test data.

23

References

References

[1] H. Roreger and T. C. Schmidt, “Socialize Online Learning: Why we should Integrate
Learning Content Management with Online Social Networks,” in Proc. of IEEE
Intern. Conf. on Pervasive Computing and Communication (PerCom), Workshop
PerEL. Piscataway, NJ, USA: IEEE Press, March 2012, pp. 685–690.

[2] S. Brauer and T. C. Schmidt, “Group Formation in eLearning-enabled Online Social
Networks,” in Proc. of the International Conference Interactive Computer aided
Learning (ICL’12), M. E. Auer, Ed. Piscataway, NJ, USA: IEEE Press, Sep. 2012.

[3] M. Engelhardt, A. Hildebrand, D. Lange, and T. C. Schmidt, “Semantic
Overlays in Educational Content Networks – The hylOs Approach,” Campus-Wide
Information Systems, vol. 23, no. 4, pp. 254–267, September 2006. [Online].
Available: http://www.emeraldinsight.com/10.1108/10650740610704126

[4] B. Feustel, A. Karparti, T. Rack, and T. C. Schmidt, “An Environment for Pro-
cessing Compound Media Streams,” Informatica, vol. 25, no. 2, pp. 201 – 209, July
2001.

[5] N. With, “Modernisierung des hylOs-Reasoners,” HAW Hamburg, Tech. Rep., 2013.

[6] S. Brauer, T. C. Schmidt, and A. Winschu, “Personal Learning Networks with Open
Learning Groups - a Formal Approach,” in Proc. of the International Conference
Interactive Computer aided Learning (ICL’13), M. E. Auer, Ed. Piscataway, NJ,
USA: IEEE Press, Sep. 2013.

[7] A. Bielenberg, L. Helm, A. Gentilucci, D. Stefanescu, and H. Zhang, “The growth
of diaspora-a decentralized online social network in the wild,” in Computer Commu-
nications Workshops (INFOCOM WKSHPS), 2012 IEEE Conference on. IEEE,
2012, pp. 13–18.

[8] P. Jones, G. Salgueiro, M. Jones, and J. Smarr, “WebFinger,” IETF, RFC 7033,
September 2013.

[9] S. D. Farnham and E. F. Churchill, “Faceted identity, faceted lives: social and
technical issues with being yourself online,” in Proceedings of the ACM 2011
conference on Computer supported cooperative work, ser. CSCW ’11. New York,
NY, USA: ACM, 2011, pp. 359–368.

24

http://www.emeraldinsight.com/10.1108/10650740610704126

References

[10] S. L. Feld, “The focused organization of social ties,” American journal of sociology,
pp. 1015–1035, 1981.

[11] S. Brauer and T. C. Schmidt, “Are Circles Communities? A Comparative Analysis
of Selective Sharing in Google+,” in Proc. of 34th Int. Conf. Dist. Comp. Systems
ICDCS – WS HotPost. Piscataway, NJ, USA: IEEE Press, June 2014, pp. 8–15.

[12] J. McAuley and J. Leskovec, “Learning to discover social circles in ego networks,”
in Advances in Neural Information Processing Systems 25, 2012, pp. 548–556.

[13] J. Vassileva, “Toward Social Learning Environments,” Learning Technologies, IEEE
Transactions on, vol. 1, no. 4, pp. 199 –214, oct.-dec. 2008.

[14] R. Fielding, “Representational state transfer,” Architectural Styles and the Design
of Netowork-based Software Architecture, pp. 76–85, 2000.

[15] N. Dabbagh and A. Kitsantas, “Personal Learning Environments, social media,
and self-regulated learning: A natural formula for connecting formal and informal
learning,” The Internet and Higher Education, vol. 15, no. 1, pp. 3–8, 2012.

[16] A. Couros, Developing Personal Learning Networks for Open and Social Learning.
Athabasca University Press, 2010, no. 6, pp. 109–128.

[17] D. Warlick, “Grow Your Personal Learning Network,” Learning & Leading with
Technology, vol. March/April, pp. 12–16, Mar. 2009.

[18] E. Amitay, D. Carmel, N. Har’El, S. Ofek-Koifman, A. Soffer, S. Yogev, and
N. Golbandi, “Social search and discovery using a unified approach,” in Proceedings
of the 20th ACM conference on Hypertext and hypermedia, ser. HT ’09. New York,
NY, USA: ACM, 2009, pp. 199–208.

25

	1 Introduction
	2 diaspora*
	2.1 Features
	2.2 Pod Architecture

	3 Learning Groups
	3.1 Concept
	3.2 Specification
	3.3 Implementation

	4 Analytical Graph Database
	4.1 Formal Model
	4.2 Graph Database Engine
	4.3 Viewer

	5 Evaluation
	5.1 Feedback Group
	5.2 Group Management
	5.3 Analytical Database

	6 Conclusion and Outlook

