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ABSTRACT

Connected cars are a rapidly growing segment of Internet of Things

(IoT). While they already use cellular networks to support emer-

gency response, in-car WiFi hotspots and infotainment, there is

also a push towards updating their firmware over-the-air (FOTA).

With millions of connected cars expected to be deployed over the

next several years, and more importantly persist in the network

for a long time, it is important to understand their behavior, usage

patterns, and impact Ð both in terms of their experience, as well

as other users. Using one million connected cars on a production

cellular network, we conduct network-scale measurements of over

one billion radio connections to understand various aspects includ-

ing their spatial and temporal connectivity patterns, the network

conditions they face, use and handovers across various radio fre-

quencies and mobility patterns. Our measurement study reveals

that connected cars have distinct sets of characteristics, including

those similar to regular smartphones (e.g. overall diurnal pattern),

those similar to IoT devices (e.g. mostly short network sessions),

but also some that belong to neither type (e.g. high mobility). These

insights are invaluable in understanding and modeling connected

cars in a cellular network and in designing strategies to manage

their data demand.
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1 INTRODUCTION

The rapid adoption of connected devices is fueling a growth in

Internet of Things (IoT). Since the communication characteristics

of typical IoT devices are different from traditional cellular devices,

there is a widespread expectation that they will have an impact on
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cellular networks. In particular, the common wisdom is that the

signaling load of IoT devices differs significantly and will motivate

a different approach to managing IoT device connectivity.

In this paper, we focus on connected cars, a rapidly growing seg-

ment of IoT that defies this wisdom. Connected cars today use cel-

lular networks to support emergency response, in-car WiFi hotspot,

infotainment, and other forms of vehicular communication. They

also use the network to convey telemetry information and manufac-

turers are seriously considering cellular networks to push firmware

over-the-air (FOTA) updates [10]. Forecasts predict that 90% of cars

will be connected by the year 2020 [17].

The different types of use cases supported by connected cars

result in unique communication patterns. Connected cars differ

significantly from traditional IoT in terms of data volumes they

generate given the infotainment capabilities they support and be-

cause of the large volume FOTA downloads (updates ranging from

Megabytes to even Gigabytes are not unheard off [7]). At the same

time, the fact that they show up in the network periodically, and

are almost always mobile (and traveling at high-speed) makes them

different from mobile phones. Next, given that the average life of

modern cars is over 11 years [6] and rising, connected cars that

come out today need to be supported for a lot longer than typical

cellular phones (life expectancy of 4.7 years [3]). This fact can po-

tentially be an issue as shown by the case of San Francisco Muni

bus system. Heavily dependent on GPRS, the upgrade to 3G/4G

equipment in the buses was delayed which caused several issues

due to the shutdown of 2G networks [14]. Finally, many of the

updates to cars tend to be time critical given the types of features

that are controlled by software as well as the safety and regulatory

implications of these updates [13]. Managing large volume down-

loads, at high speeds, and supporting devices that are typically

considered legacy is going to require innovative network planning

and management strategies. It may necessitate the use of smart

policies and network control mechanisms for the management of

network demand, especially at peak hours.

To design the right kinds of policies and mechanisms, it is nec-

essary to understand connected car behavior and the potential

impact that they may have on the cellular network. In this paper,

we conduct a large-scale measurement study of connected cars in a

major cellular network to provide insights and basis for studying

and modeling connected car impact in such environments. Using

anonymized call detail records for a random set of one million

connected cars from one manufacturer over the 90-day period, we

seek to understand various aspects of connected cars, including the

spatial and temporal distribution of cars’ connections to the net-

work, the mobility patterns of connected cars, the typical network

conditions that connected cars face, and the distribution of their

connections and handovers over various radio frequencies.
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Based on our analysis, we make several important observations.

Connected cars have a very different connectivity pattern than smart-

phones. In particular, cars’ sessions are shorter and in many cases

concentrated in network busy hours. This is not entirely surprising

given that most of them can connect only when their engines are

running, and commute happens during network busy hours. How-

ever, this has implications when it comes to delivering software

updates in a timely manner. We also observe that connections to

each radio cell are generally short, which is a combination of mo-

bility (handovers) and small data transfers. Furthermore, cars can

concentrate in large numbers within cells increasing the poten-

tial for congestion. Most importantly, we observe that cars can be

clustered according to predictability in their behavior. This indicates

a potential for intelligent capacity and network management in

terms of connectivity and content delivery for connected cars.

2 RELATED WORK

Adoption of IoT is imminent and projected connected łthingsž far

outnumber smartphones and computers, with connected cars be-

coming a significant segment [17]. With widespread geographic

distribution of various devices, cellular networks are expected to

bear the majority of IoT traffic demand. In fact, the 3GPP report

projects on the order of 200,000 IoT devices per cell site, as opposed

to the current several hundred or thousand [1].

An early large study finds that IoT devices exhibit different char-

acteristics from the mainstream cellular devices, such as smart-

phones, in particular that the ratio of their uplink to downlink

traffic is much larger, their mobility is much lower, and the diurnal

traffic pattern is different [15]. However, early indications with the

increasing, but currently limited numbers of connected cars, is that

their characteristics are significantly different. Hence they deserve

a dedicated study to understand their impact on the network.

IoT devices are expected to primarily introduce high signaling

load into cellular networks, but a subset will add a large data vol-

ume. When connected cars are considered, from a smaller sample of

2,100 connected cars, we know that signaling intensity they gener-

ate can be 4-7 times higher than regular LTE devices [2], while the

average flow sizes in both uplink and downlink are similar. In the

future, connected cars are expected to introduce two types of high

data demand: user traffic, such as web browsing and multimedia

via in-car WiFi hotspots, and FOTA updates [5, 10]. Some work

already exists in the area of managing FOTA, mostly related to effi-

cient compression of updates [9, 16]. Specifications and protocols

for remote device management are defined by the Open Mobile

Alliance Device Management (OMA DM) [12]. While OMA DM

can be used to manage devices for FOTA, it is limited to protocols

for data exchange, data formats, security and fault management.

Understanding of how cars behave, what is the impact on the net-

work and when to deliver their particular downloads is still heavily

dependent on the network context.

General car mobility insights and traffic patterns have been

inferred from cellular phone connections in the past, indicating

commute patterns and network trajectories [4]. We, however, argue

that while there is correlation between connectivity and mobility,

it does not automatically imply that one could apply general mo-

bility patterns to cars. First, not all cars are connected. Hence it is

unclear how accurately general mobility patterns match connec-

tivity patterns of cars. Second, just because a car connects to the

network, it does not mean it is mobile. Finally, by the time all cars

become connected, the technology may evolve and the correlation

between connectivity and mobility may cease to exist. We aim to

expand knowledge by directly studying connected cars as opposed

to inferring their behavior from user devices like phones.

3 DATA SET AND METHODOLOGY

At the high level, we use network measurements from a large

cellular network in the United States to understand the network

behavior of connected cars. User devices, such as smartphones,

tablets or modem cards connect to a radio cell (or simply a łradiož or

a łcellž) over a certain radio frequency or a carrier. Each cell covers a

geographic area with a directional antenna and it is common to find

3 such cells covering a full circle, approximately 120 degrees each,

but there can be more or fewer cells with different coverage areas.

Multiple cells covering the same direction and area can be called

a sector. For coverage and capacity, there are typically multiple

cells per base station, anywhere from 3 to 12, sometimes even more.

There can be hundreds of thousands of cells in the networks and

the cars connect to a subset of these cells.

Our data, based on Call Detail Records (CDRs), provides infor-

mation about radio-level connections made by cars to the cellular

network, such as times and durations of connections, as well as

radio cells that they connect to, but not data volumes transmitted.

These records are anonymized and aggregated and do not con-

tain sensitive personal or identifiable information about owners

of devices or connected cars. The data set consists of over 1.1 bil-

lion connections from a random sample of 1 million cars equipped

with cellular 3G/4G modems. These provide connectivity to sup-

port emergency services, telemetry, FOTA updates and in-car WiFi

hotspot. We constrain the data set to a single car maker, also known

as Original Equipment Manufacturer (OEM). A single OEM with

a large car population allows us to reason about potential FOTA

management, since this is managed by each OEM independently.

That said, many of the dimensions that we analyze in this paper

are independent of the OEM and really dependent on car usage

patterns. Hence the lessons from this paper are applicable to con-

nected cars in general with the caveat that these usage patterns

may change as connected car technology evolves.

Our study spans a 90-day period in 2017. We believe that this

period is long enough to be representative as a predictor, and to

account for variability in daily and hourly load as well as any trend.

There can be a vast range of connection durations at radio level

due to the normal timeout of 10 to 12 seconds after no data is left

to transmit in either direction [8]. We concatenate all connections

that are up to 30 seconds apart into aggregate sessions where ap-

propriate. Normally, the cars from this OEM can connect to the

network only when the engine is running, so connections correlate

to car usage and driving. We then derive patterns of connections

across time and space (in terms of network location, i.e. radio cell)

and analyze them against general car and network usage patterns.

Therefore, our focus is on current connectivity patterns that tell

us when and for how long cars use the network rather than the

volume of data that they generate.
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Figure 1: Large downloads start at 20:45 UTC in two cells and

last for 4 hours, consuming nearly all available resources.
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Figure 2: Number of cars that appear on the network is rela-

tively consistent over the days throughout the study.

We pre-process the logs to remove erroneous records, such as

the ones where connections appear to have lasted exactly 1 hour.

These are presumably caused by an automatic periodic reporting

feature of the network, where disconnections at the radio level

were not recorded correctly. Then, during the data analysis, we

also truncate long connections to a single cell to 600 seconds, to

mitigate some modems tendency to improperly disconnect.

4 CONNECTED CAR ANALYSIS

In LTE, radio resources are finite and measured using Physical

Resource Block (PRB) utilization,UPRB. To motivate our study and

demonstrate the impact on the network and other users, we show

that even a single device can saturate the radio cell resources with

a long, greedy download. Figure 1 shows an experiment where one

device starts downloading data continuously (indicated by ‘Test

start’). Note that many such downloads can occur concurrently,

as could happen during FOTA updates or multiple video streams

when cars are concentrated in one cell.

We start with high-level data set analysis showing the percentage

of unique cars that appear on the network and the percentage of

cells that cars connected to on each day in Figure 2. Due to some

data loss during 3 days in the second half of the study period, the

number of cars appears smaller, but this does not affect the overall

results. We clearly see a weekly pattern in both plots, with fewer

cars and cells connecting on the weekend, but with most variability

occurring on Friday and Saturday. We also show the trend lines,

which indicate a slow increase over time. We can model the average

numbers of cars and connected cells per Table 1. We see two-thirds

of the cells, out of all the cells that had cars connect to them in our

data set, have cars connecting to them on a given day.
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Figure 3: Cars’ total time on the network is very short.

4.1 Macro-level temporal behavior

We analyze the temporal behavior of cars by considering how long

and when the cars were connected to the network during the study

period. We plot two distributions, one with full connection time as

indicated by the CDRs, and another where connections are trun-

cated to 600 seconds in Figure 3. We truncate the connections

because we believe that some of the non-terminating connections

are due to noisy data. Since picking the correct value for each de-

vice requires intimate knowledge of the working of the device, we

conservatively choose 600 seconds as a threshold. The CDF shows

the fraction of cars vs. the percentage of study period they were

connected to the network.

Averages are about 8% for full and 4% for truncated connections,

respectively. This is about 173 and 86 hours total, or 1.9 and 1 hours

per day, respectively. Without truncation the 99.5th percentile of

connected time is 27% (6.5 hours per day), and with truncation it is

15% (3.6 hours per day).

Clearly, cars spend much less time connected than smartphones,

meaning that the window of opportunity to deliver large amounts of

data is very small.

4.2 Weekly and daily temporal behavior

We next analyze car usage patterns compared to known weekly

and daily network load and commute time periods. Network load

follows known diurnal patterns while peak commute time patterns

can be extracted either from CDRs or from known data [4]. Hence

we encode important periods during the week in 24×7 matrices,

where each hour of the day for 7 days is represented by a shaded

box. Figure 4 shows example periods of interest in local time.

We can encode car usage patterns in the same format. Figure 5

shows the 24×7 car usage frequency matrices rendered in respec-

tive local times for 3 sample cars. Darker colors represent a higher

number of car’s connections to the cellular network. A white box

means that the car has not connected to the network during that

Table 1: Usage of cells by cars and occurrence of cars per day.

% cells with cars % cars on network

Day Mean StDev Mean StDev

Monday 67.2% 1.1% 78.1% 0.8%

Tuesday 68.1% 1.6% 79.1% 1.5%

Wednesday 68.5% 1.4% 79.8% 1.2%

Thursday 68.2% 1.7% 79.3% 0.9%

Friday 67.2% 3.1% 78.0% 3.8%

Saturday 62.0% 4.3% 70.3% 7.0%

Sunday 59.3% 1.5% 67.4% 2.0%

Overall 65.8% 4.1% 76.0% 5.6%
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Figure 5: Usage patterns from 3 sample cars.

hour. Frequency of connections and their regularity during certain

hours allow us to see strong patterns in the very dark colors. By ag-

gregating data from multiple weeks onto a 24×7 matrix we can take

this hourly and daily pattern into account and find the consistent

patterns in the noise.

For these 3 cars, the weekly matrices tell us the following. Car on

the left connects to the network mostly during Monday to Friday

network busy hours (14-24 h), but rarely otherwise. Car in the

middle exhibits more heavy usage and consistent Monday to Friday

commute, stretching into the evenings and in addition has moderate

weekend usage. Usage on Tuesdays is much more frequent and

spread over multiple hours than on other days. Car on the right

shows a very strong and consistent commute, though before start

of peak commute in its time zone. Further it shows quite predictable

weekend usage during peak network hours on Saturday and on

Sunday mornings. These examples of consistency in cars’ sessions

indicate that we can look for patterns that can help predict the

times and durations of their appearance on the network.

Predictable appearance of cars during busy or non-busy network

hours allows for more intelligent management of large data demand.

4.3 Combining car and network data

From the individual car usage data and each cell load pattern, we

can extract a variety of usage patterns of cars. An example of such

pattern extraction follows. We would like to know what proportion

of cars are commonly seen or rare on the network and do they

0
10
20
30
40
50
60

0 10 20 30 40 50 60 70 80 90

Ca
r c

ou
nt

 (t
ho

us
an

ds
)

Number of days over the study period
Figure 6: Number of days cars were on the network.

Table 2: Car segmentation.

Segment Busy Non-Busy Both Total

Rare (≤ 10 days) 0.4% 0.9% 0.9% 2.2%

Common (10+ days) 1.3% 59.0% 37.5% 97.8%

Rare (≤ 30 days) 0.7% 5.0% 4.2% 9.9%

Common (30+ days) 1.0% 54.9% 34.2% 90.1%

typically appear during network busy hours or not. This kind of

car segmentation can guide various traffic management solutions.

To be able to define common and rare we need either some in-

tuitive definition, a specific use case definition, or we can derive

it from data. To derive from data, we can use the number of days

over the study period that cars were connected, as shown by the

histogram in Figure 6. It appears that 10 days is the point under

which a sharp drop off exists, and past 30 days is where increasing

trend begins. If we use simple definitions that rare means 10 days

or less in one use case and 30 in another, we can segment the car

population as in Table 2. We consider a car to typically connect in

busy (non-busy) hour if 65% or more (35% or less) of its time on the

network is in cells with average UPRB > 80% for those 15-minute

bins. Otherwise, cars’ connected time is more balanced in both busy

and non-busy hours.

To produce Table 2, we combined three types of data, (i) usage

patterns of all cars as exemplified in Figure 5, (ii) classification of

each cell as busy or non-busy for each 15-minute bin, exemplified

by average curves in Figure 1, and (iii) classification of a car as

common or rare as per Figure 6.

An example use of this type of segmentation is in the context of

FOTA updates. In some managed FOTA scenario, rare cars would

be prioritized over the limited FOTA campaign window, and com-

mon cars would be perhaps randomized or scheduled depending

on the typical time they connect. In particular, cars that typically

appear during busy hours will likely need special treatment to avoid

impacting the network and other users during large downloads.

While general temporal pattern of cars’ connections offers im-

portant insights, we further seek to assess the potential impact by

considering the typical network conditions that cars encounter on

their journeys. In particular, understanding how much cars typi-

cally connect to busy cells could further refine the management

decisions. For example, allowing a large FOTA download in an

already loaded cell (e.g.UPRB > 80%) might be considered pouring

oil onto the fire.

To assess this type of impact, we plot the deciles of time that

each car spends connected to the busy radio cells in Figure 7. It

turns out that cars do not spend most of their connected time in

highly loaded cells. However, a small number of cars, about 2.4%,
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Figure 7: Network conditions that cars encounter.
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spend more than 50% of their connected time on busy radios, with

about 1% or 10,000 cars spending all their time on busy radios.

Combining car behavior with network data directs us towards types

of policies to use for different segments of cars, depending whether

they need FOTA update, regular user traffic, or infotainment services.

4.4 Temporal behavior at micro level

We now shift from the macro level of looking at the whole network

to the micro level, where we can study the connected car behavior

per radio cell and per car.

Since cars are expected to drive distances spanning multiple

cells and base stations, we are interested in the duration of each

connection to a cell. This will provide insights into the length of

impact per cell. As an example, Figure 8 visualizes unique cars’

radio-level connections. There were 377 cars connected to this cell

over 24 hours and their individual connections are shown as hori-

zontal lines, one per car. We can see several typical car behaviors:

(i) connections are short, (ii) connections are rare overnight, (iii)

concurrency is high regardless of each connection being short. The

15-minute time bin with the most concurrent cars, 16, is marked.

Across the network and connections, Figure 9 shows that cell

sessions are generally short, with the median of 105 seconds and

73rd percentile at 600 seconds. The mean connection duration is

625 seconds for the full, and 238 seconds for the truncated sessions,

respectively. However, a significant number of sessions are very

short. Even with relatively short time spent in each cell, it is still

possible to encounter high concentration of cars in the same cell

(Figure 8). Intuitively, this would occur in highway traffic during

commute times, at shopping malls, or event parking lots.
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Short connections suggest a potentially small amount of data that

can be transferred through each cell prior to handover and point to

judicious use of policies, e.g. on seamless vs. lossless handover, to

mitigate data loss [11].

We show two examples of concurrent cars over one week in

Figure 10. We declare cars concurrent if their connections straddle

a 15-minute time bin of the day. We select time bins longer than

typical connections because we expect that the highest impact

will come from large downloads that may both extend the cars’

own connection time and other users’ connections, simply due to

bandwidth sharing.

In these examples, the number of concurrent cars has the same

diurnal pattern as the cell load, which is represented by the average

UPRB for each 15-minute time bin. In the top plot, we see a mod-

erately loaded cell (solid line) that becomes more busy over the

weekend, but consistently sees between 10 and 25 connected cars

(impulses) during its busy hours. The bottom plot shows a different

combination, a cell that is busy for the most of the day, but sees a

few connected cars. It is important to take into account that both

scenarios can lead to undesirable consequences.

We applied an exploratory clustering process to understand such

behavior at network scale. We picked all cells such that the average

PRB utilization during one week (96 15-min timebins) is larger

than or equal to 70%. Such cells are very busy cells where FOTA

downloads could have high impact. For each of these radios, we

create a 96-sized vector that contains the number of cars whose

aggregated sessions (ğ3) straddle a 15-minute time bin of the day.

Within these vectors, we applied the classic k-means algorithm

which returned two clusters as seen in Figure 11.

In general, the number of concurrent cars follows the same

diurnal pattern of the cell load, which is represented by the average

UPRB for each 15-minute time bin. Both clusters are very similar in
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Figure 11: Concurrent cars on all busy radios.

shape, but the number of concurrent cars on Cluster 2 is five times

larger than in Cluster 1. Although Cluster 1 is four times larger than

Cluster 2, the impact of those cars has undesirable consequences.

For example, any number of large downloads added to the loaded cell

may deteriorate experience for everyone, same as having 20 or more

cars attempt overlapping downloads.

4.5 Spatial behavior

We next consider mobility of cars across the network. While cars’

connections are expected to hand over across base stations, it turns

out that the radio-level logs do not support such precise analysis.

Since connected cars do not constantly send or receive, their con-

nections timeout often. Therefore, cars often do not connect to

every cell they traverse, unless there is an immediate request to

transfer data. To assess a lower bound on number of cells and han-

dovers, we account for handovers within sessions on the network

during which the longest connection gap is 10 minutes.

We find that the most common handover is across base stations,

which is the expected behavior. The median number of handovers

is 2, 70th percentile is 4 and 90th percentile is 9. This suggests

that for most large downloads by a connected car, the impact will

span between 3 and 10 base stations. Other types of handovers are

observed in negligible numbers, namely between radio technologies

(3G/4G), between carriers of the same sector and between sectors

of the same base station. This behavior might change once massive

FOTA campaigns start. Similar implications apply as discussed for

short connections per cell.

4.6 Frequency band usage

As cellular networks evolve, it is important to understand the ca-

pabilities of legacy devices. Connected cars stay łon the roads,ž

meaning continue to be used, far longer than typical smartphones,

often decades vs. years, respectively. As cellular technology evolves,

some connected cars will not be able to catch up due to their legacy

hardware. We study the current capabilities by breaking down cars’

network usage per frequency band or carrier. Higher frequency

bands allow for wider bandwidth in carriers, which translates to

higher data throughput.

The cars under study connect to the network using 5 observed

carriers, which we name Ci , where i = 1, 2, . . . 5. We first consider

Table 3: Carrier use of connected cars

Carrier C1 C2 C3 C4 C5

Cars (%) 98.7% 89.2% 98.7% 80.8% 0.006%

Time(%) 18.6% 7.4% 51.9% 22.1% 0.000%

how many cars in total connected at least once to each carrier

(Table 3). While this breakdown can be affected by availability

of each carrier at particular base station that cars connect to, we

actually confirm the expected behavior. Connected car modems of

this OEM predominantly have the capability to use carriers C1-C4,

and only a few C5 connections are registered.

We next assess the current use of carriers as it indicates the

maximum achievable performance of the connected car population

as a whole. Table 3 also shows the breakdown of total connection

time spent on each carrier. The key finding is that carriers C3 and

C4 are used nearly 75% of the time, with almost no usage of C5.

While cars can connect to and use most available carriers today,

this may change as new carriers are added in the future, which cars

may not support. We see some evidence of that already.

4.7 Discussion

After analyzing spatial, temporal, and carrier usage of connected

cars, we find that connected cars are a very complex type of device

that is becoming mainstream in cellular networks. Specifically, we

observe that cars actually have three sets of characteristics.

Similarities to smartphones includeweekly and diurnal patterns of

connecting to the network, high concurrency of connections across

multiple cars, and predictability in behavior. These are in addition

to known ability to generate traffic similar to smartphones using

WiFi hotspots. These findings suggest that treating cars same as

smartphones would work for some data services, but that different

management approaches may be needed for FOTA updates.

Similarities to IoT devices include limited carrier use capability,

connecting to a subset of the network cells (most IoT devices are not

mobile and connect to the same cell or base station), short time on

the network overall and per session. These imply the need for legacy

support, that the overall impact of car population may not extend

to the whole network on a day-to-day basis, and that handover

policies are important for overall efficient use of resources.

Connected car-specific traits include connecting to different cells

on different days, having commute-time pattern or no pattern,

and inherent mobility. These characteristics call for possible per-

car prediction models for efficient content delivery, and mobility

management that will ensure efficiency and correct routing, while

providing quality of experience in the face of frequent handovers

and high speed.

5 CONCLUSION

We conduct a measurement study of a large population of connected

cars in a production cellular network. Using radio-level connection

data we derive usage and mobility behavior of cars and obtain in-

sights that enable modeling and analysis of their impact in cellular

networks. We find that cars share characteristics of both smart-

phones and IoT devices, but also exhibit some specific traits. Most

importantly, we find that it is possible to classify cars by how often

they appear on the network and whether their network presence

would occur during busy or non-busy hours.
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