
Inter-MCU-Platform Hardware Analysis
Towards a Clean-slate Timer-API for RIOT-OS

Niels Gandraß
Niels.Gandrass@haw-hamburg.de

Hamburg University of Applied Sciences
Hamburg, Germany

ABSTRACT
Hardware timers are peripherals found in every embedded system.
While being required by nearly all applications running on MCUs,
current timer drivers often leave potential for efficiency optimiza-
tions, especially when used in low-power scenarios. With the goal
of developing an optimized timer-API for RIOT-OS, an open-source
embedded OS for resource constrained devices in the Internet of
Things, our contribution is twofold. First, we illustrate various ap-
proaches to hardware timer usage as well as related research in this
field. Second, we conduct a multi-manufacturer and inter-MCU-
family analysis of the available timer peripherals and present our
results in a comparative fashion. We give detailed insight into sim-
ilarities and differences of hardware timer peripherals currently
supported by RIOT-OS. Both the reviewing of related work and the
conducted hardware analysis shall provide a baseline to later derive
requirements and deduce applicable implementation techniques for
a clean-slate timer-API from.

KEYWORDS
energy efficiency, hardware analysis, Internet of Things (IoT), low-
power, operating systems, resource constrained devices, timers

1 INTRODUCTION
Hardware timer peripherals are an essential component of all em-
bedded devices [12]. Manufacturers of microcontroller units (MCUs)
today offer a large variety of timer modules ranging from general-
purpose to highly specialized and application specific peripherals.
As the Internet of Things (IoT) emerges into our daily lives embed-
ded devices adopt to the new requirements; they become smaller
and more energy efficient. To support this rapid growth especially
multipurpose embedded operating systems (OSes) are becoming in-
creasingly popular among developers. These OSes usually provide
a high-level API to timer functionalities, though, often only use
simple multiplexing of virtual software timers onto a single hard-
ware timer, which leaves potential for optimization. Furthermore,
some implementations do not make use of the advanced power
saving features provided by specialized low-power timer modules
that manufacturers nowadays include in most of their MCUs.

RIOT-OS1 is such an open-source operating system, explicitly
targeted at low-power and resource constrained embedded IoT de-
vices [3]. Its current timer subsystem, namely being xtimer, multi-
plexes all virtual software timers onto a single hardware module [2].
The long-term goal of our on-going research is to develop a new
clean-slate timer-API for RIOT-OS. It shall be both able to utilize a
wide range of the available timer hardware while also making use of

1RIOT-OS project website: https://riot-os.org/ (Accessed 01.12.2019)

the various power-saving features, including partly MCU-platform
and -family specific ones. This work shall provide a baseline from
which requirements for such a new timer driver can later be de-
rived. It furthermore shall highlight implementation techniques
and software concepts, potentially relevant for the aspired timer
subsystem.

The remainder of this report is structured as follows. First, we
list major conferences and publication sources at which on-going
research is published, further illustrating various approaches to
hardware timer usage as well as related work around this topic in
Sections 2 and 3. Second, we conduct an in-depth analysis of various
hardware timer peripherals, described in Section 4. We give detailed
insight into similarities and differences of many hardware timers
currently supported by RIOT-OS, taking nearly all maintained man-
ufacturers and a broad selection of their respective MCU-families
into account. Lastly, an outlook on future work with respect to the
aspired timer subsystem for RIOT-OS is given in Section 5 before we
finish with concluding words (see Section 6). Moreover, the entire
results of our hardware analysis, including a detailed description
of our applied criteria, are provided in the appendix Section A.

2 CONFERENCES & JOURNALS
Even though the amount of related work in this specific and narrow
field of research is not vast, as depict in Section 3, there still is a
significant body of relevant conferences and publication sources
available. However, widening the scope from only timekeeping spe-
cific topics to the entire subject of embedded systems and Internet
of Things (IoT) research is a necessity.

This section depicts some of the major conferences as well as
the primary sources for scientific publications in the broad field
of embedded systems engineering, operating systems for resource
constrained devices, and the IoT community.

2.1 Major Conferences
Plenty of recent as well as on-going research findings are presented
at technical conferences and are published in the respective confer-
ence proceedings. These conferences include, but are not limited
to, the following in no particular order:

• USENIX Annual Technical Conference2 (USENIX ATC)
• USENIX Symposium on Operating Systems Design and Im-
plementation3 (USENIX OSDI)

• ACM Symposium on Operating Systems Principles4 (SOSP)

2USENIX ATC website archive: https://www.usenix.org/conferences/byname/131 (Ac-
cessed 13.01.2020)
3USENIX OSDI website archive: https://www.usenix.org/conferences/byname/179
(Accessed 30.01.2020)
4ACM SOSP website: http://www.sosp.org/ (Accessed 30.01.2020)

1

https://riot-os.org/
https://www.usenix.org/conferences/byname/131
https://www.usenix.org/conferences/byname/179
http://www.sosp.org/


N. Gandraß

• ACM Conference on Embedded Networked Sensor Systems5
(SenSys)

• ACM/IEEE International Conference on Information Pro-
cessing in Sensor Networks6 (IPSN)

• International Conference on Embedded Wireless Systems
and Networks7 (EWSN)

While most of the above listed conferences serve a wide variety
of topics there also exist small gatherings, specialized into more
specific subjects, like the RIOT Summit8. The latter is explicitly
targeted at developers and researchers contributing to RIOT-OS
and therefore of great relevance in the context of this work.

2.2 Publication Sources
Besides presenting research at conferences, as illustrated in Sec-
tion 2.1, online publishing has emerged as the primary method of
publishing recent scientific results. The main online libraries that
are widely used in this field of research, among others, are:

• IEEE Xplore9
• ACM Digital Library10
• ArXiv11 (Caution: unreviewed pre-print only)

It is also noteworthy that, with increasing popularity of the
open-access model and online libraries, traditional journal exclu-
sive publications are becoming less popular in the recent years.
Nonetheless and without claim of completeness, the following jour-
nals and letters are common in this field of research:

• ACM Transactions on Sensor Networks12 (TOSN)
• ACM Transactions on Embedded Computing Systems13
(TECS)

• ACM SIGOPS Operating Systems Review14 (OSR)
• IEEE Internet of Things Journal15 (IEEE IoT)

Furthermore, search engines specialized in scientific publications
like Google Scholar16, Microsoft Academic17, or Semantic Scholar18
can be utilized while looking for research results.

3 RELATEDWORK
Scientific research highlighted in this section is split into two pri-
mary categories addressing: A) characteristics of timer peripherals
from a hardware point-of-view (Section 3.1), and B) design aspects,
algorithms, and implementation techniques used in timer driver
software (Section 3.2). Publications were selected according to the
relevance for this work, as estimated to the best of our knowledge.

5ACM SenSys website: https://sensys.acm.org/ (Accessed 13.01.2020)
6IPSN website: https://ipsn.acm.org/ (Accessed 13.01.2020)
7EWSN website: http://www.ewsn.org/ (Accessed 13.01.2020)
8RIOT Summit website: https://summit.riot-os.org/ (Accessed 13.01.2020)
9IEEE Xplore website: https://ieeexplore.ieee.org/ (Accessed 13.01.2020)
10ACM Digital Library website: https://dl.acm.org/ (Accessed 13.01.2020)
11ArXiv website: https://arxiv.org/ (Accessed 13.01.2020)
12TOSN in the ACM-DL: https://dl.acm.org/journal/tosn (Accessed 30.01.2020)
13TECS in the ACM-DL: https://dl.acm.org/journal/tecs (Accessed 30.01.2020)
14OSR in the ACM-DL: https://dl.acm.org/newsletter/sigops (Accessed 30.01.2020)
15IEEE IoT on IEEE Xplore: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=
6488907 (Accessed 30.01.2020)
16Google Scholar website: https://scholar.google.com/ (Accessed 27.01.2020)
17Microsoft Academic website: https://academic.microsoft.com/ (Accessed 27.01.2020)
18Semantic Scholar website: https://www.semanticscholar.org/ (Accessed 27.01.2020)

3.1 Timer Hardware
We start by taking a look at research that focuses on timer pe-
ripherals from a hardware point-of-view. We further split it into
two subcategories as follows. First, publications describing generic
concepts of timer peripherals as well as second, comparisons of dif-
ferent MCU-platforms, like we contribute and present in Section 4.

3.1.1 Description of Generic Timer Functions. Operation principles
of general-purpose timers as well as their basic set of generic fea-
tures and characteristics are described by Kamal [12, pp. 152-159].
The author elaborates on frequently available operation and count-
ing modes, different peripheral states, and various timer properties.
Possible applications as well as usage scenarios for general-purpose
timers are further depict. Moreover, other types of timing hardware,
here namely real-time-clocks (RTCs) and watchdogs (WDGs), are
shortly outlined. For our conducted hardware analysis, commonly
found timer characteristics can be inferred from this work. These
include among others: counter register width, prescaler availability,
and auto-reload capability.

While not with such detail as Kamal [12] did, Susnea andMitescu
[17, pp. 67-68, pp. 87-89] also give insight into general-purpose timer
peripherals. However, the book extends the above publication by
describing functions and operation principles of timer hardware
which is capable of generating pulse-width-modulation (PWM)
output, a feature that is also part of our analysis scope.

3.1.2 Comparison of Embedded Timer Peripherals. A major focus
of this work is the comparison of different timer modules. Our
long-term goal implies utilization of advanced timer features, hence
solely superficial analyses of timer properties are insufficient for our
purpose. Unfortunately, we found only one documented hardware
analysis that elaborates on timer peripherals in-depth.

The timer hardware comparison conducted by Mitescu and Sus-
nea [15, pp. 67-91] covers the Motorola HC11, Atmel AVR, and
Intel 8051 MCU families. For each MCU platform, timer configura-
tion and usage is outlined and moreover accompanied by detailed
examples of different application scenarios. The authors empha-
size that each platform offers a distinct set of features, still they
all share many common operation principles. These include gen-
eration of precise time intervals, measurement of duration, and
counting of events. Our aspired timer subsystem must in particular
be capable of the first two. A generic timer peripheral block is fur-
ther constructed from these common operation principles. Besides
mandatory components, such as a counter register or a prescaler,
the overall availability of capture channels is hereby identified
across all platforms.

Further comparisons between MCUs from different manufactur-
ers can be found in literature, but they do not cover timer peripher-
als in the required level of detail. For example, Tsekoura et al. [22]
analyzed various MCU families sharing four manufacturers we also
target. These chip manufacturers namely are STMicroelectronics,
Atmel/Microchip, Silicon Labs, and Texas Instruments. However,
the conducted research primarily focuses on general execution time
and power consumption, while not discussing the impact of timer
hardware properties in this context.

2

https://sensys.acm.org/
https://ipsn.acm.org/
http://www.ewsn.org/
https://summit.riot-os.org/
https://ieeexplore.ieee.org/
https://dl.acm.org/
https://arxiv.org/
https://dl.acm.org/journal/tosn
https://dl.acm.org/journal/tecs
https://dl.acm.org/newsletter/sigops
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6488907
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6488907
https://scholar.google.com/
https://academic.microsoft.com/
https://www.semanticscholar.org/


Inter-MCU-Platform Hardware Analysis
Towards a Clean-slate Timer-API for RIOT-OS

3.2 Software Modules
Since our long-term goal is to develop a new timer API for RIOT-OS,
software aspects that relate to timer drivers also need to be taken
into account. Publications depict in this subsection include generic
concepts and algorithms as well as application- or OS-specific driver
implementations. Furthermore, techniques used in the context of
real-time scheduling are highlighted as they are strongly dependent
on efficient timer usage [14].

3.2.1 Generic Design Aspects. Varghese and Lauck [23] describe
several different approaches to implement a software timer mod-
ule. These range from simple list based to prioritized tree-based
implementation schemes. Each technique is discussed with respect
to its applicability to different usage scenarios. Furthermore, three
additional methods, which are based on the timing wheel mecha-
nism [19], are proposed by the authors. These deliver a constant
timer maintenance complexity through exploiting hashing and hi-
erarchical relations. We therefore suggest taking this work into
account when designing timer management software components.

The implementation proposed by Mincev and Milicev [14] also
organizes software timers in a hierarchical tree, placing longer
delays closer to the tree leaves. Here, minimizing the maintenance
overhead is achieved by distributing timer ticks according to that
structure while only propagating every n-th tick to the next layer
nodes. Therefore, less servicing for long-running timers is observed.

If an application does not require to meet hard real-time dead-
lines, Soft Timers [1] can be used. They mitigate maintenance
overhead during servicing of timer interrupts. More precisely, the
costs, introduced by saving and restoring CPU state during con-
text switches upon timer interrupts, are reduced. The key idea of
the proposed solution is to only maintain timers if invoking the
corresponding service routine is at low cost, as determined by the
current system execution state. This approach also allows supersed-
ing strict periodic timer interrupts (i.e. system ticks), as advocated
by Tsafrir et al. [21] and as in-depth analyzed in [20].

Lastly, Lindgren et al. [13] define a platform independent timer-
API including design decisions for the implementation of such.With
this approach, a set of virtual timers, each having an independent
queue of pending tasks, is multiplexed onto hardware timers. Addi-
tionally an evaluationwith respect to computational complexity and
correctness under concurrency is performed. Requirements for the
underlying timer hardware are defined and evaluated for both the
STM32 F4 and NXP LPC1789 MCUs. These identified generic char-
acteristics namely are counter width, interrupt capability, prescaler
availability, auto-reload functionality, and compare channel count.
The authors further emphasize the positive impact on timer main-
tenance performance from both a large counter width as well as a
high number of available compare channels. These properties are
therefore also part of our hardware survey, as depicted in Section 4.

3.2.2 Application-specific Timer Implementations. Since the evolu-
tion of the Linux timer subsystem is well described, many design
decisions and documented pitfalls can be taken into account when
developing a clean-slate timer driver. Key design aspects of the
hrtimer module, which uses multiplexing on one-shot hardware
timers, are outlined by Gleixner and Niehaus [5]. Bellasi [4] further
depicts it in the broader context of power management frameworks

for Linux. Here, especially power-saving optimization techniques,
such as deferrable timers [18], are addressed. Patel et al. [16] more-
over stress the timer interrupt inference problem, which arises
when processing of a high-priority timer expiry is delayed by main-
tenance ISRs of low-priority timers. TimerShield is proposed, which
introduces priority awareness to the timer subsystem and selec-
tively delays low-priority timer maintenance tasks. We contend that
in particular the proposed low-power timer handling techniques
shall be considered when specifying a timer software module.

Requirements for the timer subsystem of RIOT-OS are defined
by Baccelli et al. [2]. Furthermore, the hardware abstraction layers
(HALs) and the power-management module are described in de-
tail. For timekeeping tasks, a combination of platform-dependent
low-level timer peripheral drivers which then are unified through
a high-level timer API, is used to provide application developers
with target platform agnostic timers. At the time of writing, xtimer
implements such high-level functionalities through multiplexing
software timers onto a single statically mapped hardware timer.
Unfortunately, the current implementation suffers from problems,
especially with regard to power-saving in dynamic scenarios. It
must be noted that ztimer19, a replacement for the xtimer mod-
ule, is currently developed. While it tackles multiple problems of
the xtimer module, we argue that it lacks analysis and utilization
of many timer features, again particularly with respect to power-
saving optimizations. In order to support current efforts by provid-
ing insight into the available timer peripherals we contribute the
in Section 4 depict broad MCU timer hardware analysis.

Handziski et al. [7] propose another HAL design, separating the
hardware abstraction architecture into three layers, each allowing
a different granularity of peripheral access. Hardware-independent
APIs are available while at the same time optional access to platform-
specific features, at the cost of loosing application portability, is
preserved. The authors cover abstraction of a wide range of com-
mon MCU-peripherals including timers and moreover illustrate
power-saving techniques in the context of low-power wireless sen-
sor networks. The proposed HAL architecture was successfully
implemented for the TI MSP430 MCU-family in TinyOS20. For the
aspired timer-API, providing the ability to optionally utilize plat-
form specific features makes the development of highly optimized
and task specific applications feasible.

A comparison between periodic and one-shot timers in the Em-
bedded Parallel Operating System21 (EPOS), running on an Atmel
AVR MCU, was conducted by Gracioli et al. [6]. Results show that
through using one-shot timers, context switches and ISR executions
can be drastically reduced at the cost of an increased memory foot-
print. However, the authors outline that incorporating advanced
techniques, such as the above described Soft Timers, can reduce
some of the negative impacts introduced by one-shot timers.

In addition to the previously described generic timer-API, Lind-
gren et al. [13] also provide an implementation of the proposed
interface for the ARMCortex-MMCU-family utilizing the Real Time
For the Masses22 (RTFM) framework. The Cortex-M SysTick- and

19RIOT-OS ztimer pull-request and discussion on GitHub: https://github.com/RIOT-
OS/RIOT/pull/11874 (Accessed 03.12.2019)
20TinyOS project website: http://tinyos.net/ (Accessed 30.01.2020)
21EPOS project website: https://epos.lisha.ufsc.br/ (Accessed 30.01.2020)
22RTFM code repository: https://github.com/rtfm-rs/cortex-m-rtfm (Accessed 30.01.2020)

3

https://github.com/RIOT-OS/RIOT/pull/11874
https://github.com/RIOT-OS/RIOT/pull/11874
http://tinyos.net/
https://epos.lisha.ufsc.br/
https://github.com/rtfm-rs/cortex-m-rtfm


N. Gandraß

debug-timers are used as base timers for multiplexing and count-
ing of clock cycles. Maintenance complexity, dispatch latency, and
hardware setup time get characterized by the authors.

3.2.3 Real-time Scheduling Based Approaches. Even though RIOT-
OS only offers soft real-time capabilities [2] and scheduling algo-
rithms are not within our primary focus, there still are lessons that
can be learned from the following real-time-scheduling solutions.

Jupyung Lee and Kyu-Ho Park [11] utilize interrupt prediction
while also distinguishing between urgent an non-urgent timer in-
terrupts. When no interrupt from an urgent timer is expected, the
system tick period is reduced, hence less wakeups occur. This dy-
namic adjustment of wakeups allows to meet real-time require-
ments, unlike the previously depict Soft Timers [1]. Particularly
dividing available timers into multiple classes, each suited for spe-
cific application states, can prove highly beneficial when developing
a timer subsystem.

A different approach to real-time task scheduling optimizations
is SLOTH [8], including its derivatives SLEEPY SLOTH [10] and
SLOTH ON TIME [9]. Whereas the first two target event-driven
real-time systems, the last is designed for time-triggered OSes. All
of the SLOTH -based approaches feature techniques which can also
partly be applied to generic timer drivers. The key idea behind
the event-driven solutions is to move scheduling completely into
the interrupt service routine (ISR) context, thereby reducing task
latencies. The time-driven concept instead targets timer peripheral
management. Multiplexing software timers onto a single hardware
timer (e.g. periodic system tick timer) is enhanced by utilizing
multiple hardware timers, reducing bothmaintenance overhead and
scheduling latency. We expect that especially the latter technique
will prove important for the aspired timer-API.

3.3 Summary
Most of the above presented research is not directly related to the
hardware analysis we contribute with this work. However, the
outlined techniques, key aspects, and common pitfalls, e.g. the
usage of a single periodic timer tick [2, 5, 6], are of great value and
will later be taken into account when designing the aspired timer
subsystem. Still, commonly addressed peripheral characteristics
can be derived from the above publications. They yield a multitude
of criteria we therefore incorporated into the scope of our broad
MCU-platform analysis. These include basic properties of timer
peripherals [12, 17] such as timer type, counter register width,
and prescaler availability. Further features, seen as mandatory by
e.g. Lindgren et al. [13], like interrupt capability and auto-reload
functionality were also incorporated into the scope of our analysis.

In addition, many software modules utilize the concept of multi-
plexing. Here, multiple software timers are mapped onto a small
set of hardware timers and their respective compare channels. It
allows to maintain more virtual timers than compare channels are
available as well as the separation of short and long delays [14].
This yields further analysis criteria such as the number of available
compare channels or maximum resolution. Showcased timer sub-
systems that are designed with respect to power-saving [1, 4, 7]
moreover demand the analysis of features like low-power clock
support or the concepts of how interrupts are handled by the MCU.

4 HARDWARE-PLATFORM ANALYSIS
A major contribution of our work is the analysis of different timer
peripherals, which are found in MCUs that are currently supported
by RIOT-OS. In this section, we start by characterizing our selected
scope as well as the methodology we apply during our analysis.
Then, results, both specific to device families and also across all
analyzed platforms, are presented and discussed with an outlook
on the aspired timer subsystem. Furthermore, outstanding tasks
and possible improvements are identified.

4.1 Scope
The following analysis covers almost all of the chip manufacturers
that offer at least one microcontroller that is supported by RIOT-OS
at the time of writing. For each of those, a set of MCU families with
RIOT-OS support was selected and examined. A detailed descrip-
tion of the analyzed criteria and properties as well as the applied
methodology can be found in Section 4.2.

The following MCU families were analyzed by us:

• STMicroelectronics (ST)
– STM32F0 / F1 / F2 / F3 / F4 / F7
– STM32L0 / L1 / L2

• Microchip / Atmel
– ATmega AVR
– PIC32MX / PIC32MZ
– SAMD21

• Espressif
– ESP8266
– ESP32

• Silicon Labs
– EFM32 / EFR32
– EZR32

• Texas Instruments (TI)
– LM4F120
– MSP430x1xx / MSP430x2xx

• NXP Semiconductors
– LPC176x / LPC175x

• Nordic Semiconductor
– nRF51x / nRF52x

• SiFive
– FE310-Gx

Since exhaustively analyzing all of the currently supportedMCUs
was not feasible for us, only the above described subset was picked.
One criterion for platform selection was to achieve a broad manu-
facturer coverage. Since most manufacturers use similar peripheral
blocks throughout their MCU families covering as many manufac-
turers as possible enables us to get a comprehensive overview of the
different available types of timer hardware. For each of the selected
chip manufacturers those devices were chosen which: A) appear
to be popular, and B) offer different timer peripherals compared to
already selected MCU families.

4.2 Methodology
Each step of our hardware analysis is conceptually depict in this
section. They appear in the order they were executed.

4



Inter-MCU-Platform Hardware Analysis
Towards a Clean-slate Timer-API for RIOT-OS

4.2.1 Platform Selection and Information Acquisition. As a starting
point we looked at all CPUs that are currently supported by RIOT-
OS, as listed in /cpu23. The analyzed chip manufacturers and their
respective MCU families were then prioritized and picked according
to the criteria defined in Section 4.1. For each of those, documen-
tation in form of datasheets, reference manuals, application notes,
and others were obtained from the respective manufacturers.

4.2.2 Definition of Analysis Criteria. After obtaining an initial
overview, a set of criteria and properties, to at least be extracted
from the gathered documents, was defined. Selected characteristics
derive from our review of related work, as summarized in Sec-
tion 3.3, and were further extended according to their significance,
as expected by us. They include basic properties of timer peripher-
als such as counter register width, prescaler configuration, compare
match capabilities and auto-reload functionality. Furthermore, ad-
vanced aspects such as interrupt generation, timer chaining and
low-power features were examined. A full list and the detailed
definition of each criterion can be found in Section A.1.

4.2.3 Extraction of Timer Peripheral Details. All timer peripher-
als, including real-time-clocks/-counters and watchdogs, of each
platform were analyzed and information found in the acquired doc-
umentation was transformed into a mind-map structure. Properties
and implications that are beyond our defined criteria were recorded
nonetheless in order to be used in future work (see Section 5). If
the MCU documentation was unclear at some point, additional
information sources were used. These include peripheral register
descriptions as well as SDKs provided by the respective manufac-
turers. However, if a concrete property could not be determined
with confidence, it was marked as currently unknown.

4.2.4 Consolidation of Results. Since our data acquisition was not
limited to the defined criteria, it yielded more information than the
properties defined before. Therefore, we once adopted and extended
our set of analysis criteria before consolidating final results. For
each MCU platform a Timer Comparison Matrix (TCM) was created.
A TCM lists all of the available types of timer peripherals including
their respective properties. It allows to quickly determine various
characteristics and features of each of the available timers and
enables the comparison of peripherals across differentMCU families
and manufacturers. All created TCMs can be found in Section A.

4.2.5 Inter-MCU-platform Findings. To obtain inter-platform in-
sight we evaluated various properties across all platforms and timer
types, either available directly in the TCMs or being derivable from
them. If one timer type is available in multiple versions (e.g. 16-bit
and 32-bit general-purpose timers) each of them was evaluated and
counted separately. Platforms were counted as matching, if any of
their available timer types matched the respective property and cri-
terion. Unresolved or unclear timer properties were excluded from
the respective results. Furthermore, exclusion of specific peripherals
(e.g. watchdog timers) is possible.

Each analyzed property features an identifier for referencing,
a short title, and a description asserting the respective property.
Moreover, a criterion can be specified, allowing to split the property
into multiple cases (e.g. separating counters by available bit-width).

23See: https://github.com/RIOT-OS/RIOT/tree/master/cpu (Accessed 01.12.2019)

All evaluated inter-platform properties are depicted in Table 1 and
discussed in Section 4.3.

4.3 Analysis Results
Cross-platform findings from our conducted MCU timer hardware
analysis are listed in Table 1 and get discussed in the following.
It should be noted that the total number of platforms and timer
types can vary between properties due to the respectively applied
selection criterion. To cope with this we give the exact matched
amounts as well as percentages for each depict result. Moreover, a
detailed description of our applied data collection and evaluation
methodology can be found in the Sections 4.2.4 and 4.2.5.

4.3.1 Counter Range. A common property of timer peripherals
is the width of their internal counter register. It dictates the max-
imum number of cycles a timer is able to count before an over-
/underflow happens. The less frequent such events happen, the less
timer maintenance and wakeups are required. Therefore, a large
counter width is desirable. R-01 shows that the minimum register
size among all platforms is 16 bit. A total of 85 % even provide 32-bit
timers while only 34 % offer timers featuring a width of at least 64
bit. Especially beneficial to small 16-bit timers is the possibility of
extending their counter range through the use of timer chaining
if available. R-04 shows that on 67 % of all platforms which offer
one or more 16-bit timers, these small timers can be extended to
a range of at least 32 bit. Though it is noteworthy, that the usage
of timer chaining comes at the expense of sacrificing an additional
timer module. We nonetheless conclude that timer chaining shall
be utilized, especially when working with small range timers only.

Prescalers allow to dynamically reduce the clock frequency
fed into the timer, thereby counting only every n-th pulse of the
base clock. But, increasing the maximum timeout period using a
prescaler comes at the cost of a reduced timer resolution. Nonethe-
less, this feature is useful, in particular when dealing with small
counter widths (≤ 16 bit) and long timeout periods. However, this
trade-off dictates that the separation of short high-precision delays
and long lasting timeouts is a necessity for a timer driver. Prescalers
are available on all platforms in general as well as on 75 % of all
analyzed peripherals, as indicated by R-03. The only platform that
has non-prescalable general-purpose timers is the SiFive FE310-Gx
(see Table 14), which instead features a 64-bit counter register and
thereby eliminates the need for an additional prescaler.

4.3.2 Auto-reload. Timers often need to produce either periodic
events or timeouts that are longer than the maximum time before
a counter over-/underflow happens. Hence, restarting the timer
is required. To prevent the missing of clock pulses and to reduce
maintenance overhead, reloading is handled directly be the timer
hardware via the auto-reload feature. Hereby the counter register
is set to either a fixed or configurable value once a designated
event happens. All applicable timers support a form of auto-reload,
as indicated by R-08. It was further found that 17 % of all timer
modules only allow auto-reloading at over-/underflow while others
allow to specify an arbitrary value at which the counter reloads. The
latter is either done by sacrificing one compare channel (32 %) but
preferably achieved through the usage of a designated auto-reload

5

https://github.com/RIOT-OS/RIOT/tree/master/cpu


N. Gandraß

ID Title Description Criterion Pla
tfo
rm
s [
#]

Tim
er
Ty
pes

[#]

Pla
tfo
rm
s [
%]

Tim
er
Ty
pes

[%
]

R-01 Counter width Usable size of the counter register in bits
(Excluding watchdog timers)

≥ 16 13 49 100 % 85 %
≥ 32 11 21 85 % 36 %
≥ 64 3 3 34 % 5 %

R-02 Compare channels Number of available compare channels
(Excluding timers w/o compare channels)

≥ 1 13 50 100 % 100 %
≥ 2 9 32 69 % 64 %
≥ 4 7 11 54 % 22 %

R-03 Prescaler Support for prescaling the timer clock yes 13 53 100 % 75 %

R-04 Timer chaining Support for timer module combination
(Excluding watchdogs and RTCs)

R-01 ≤ 16† 6 9 67 % 38 %
R-01 > 16‡ 3 5 23 % 24 %

R-05 Compare interrupts Unique INTs for each compare channel yes 6 17 46 % 30 %

R-06 Overflow interrupts Unique INTs for counter over-/underflow
(Excluding watchdogs)

yes 4 8 31 % 20 %

R-07 Event flags Availability of status bits for timer events yes 10∗ 60 100 % 100 %

R-08 Auto-reload

Auto-reload at over/-underflow (OVF),
at compare-channel match (CCM),
or via auto-reload register (ARR)

(Excluding watchdogs and RTCs)

OVF 3 9 23 % 17 %
CCM 4 17 31 % 32 %
ARR 6 27 46 % 51 %
any 13 53 100 % 100 %

R-09 Low-power clock Low-power oscillator can be used by timer yes 13 51 100 % 70 %
R-10 Deep-sleep active Timer operational in lowest MCU power states yes 13 45 100 % 62 %

R-11 GP-timers Number of available general-purpose timers = 1 1 - 8 % -
≥ 1 12 - 92 % -

R-12 WDT interrupts Watchdog generates interrupt prior to reset yes 9 10 69 % 67 %
R-13 Unknown items Timer has unresolved/unknown properties yes 7 14 54 % 19 %

Table 1: Selected overall results across all 13 analyzed MCU platforms

register (51 %). Having a separate register benefits a timer subsystem
by leaving all compare channels usable (see Section 4.3.3).

4.3.3 Compare Channels. Triggering an event at a specific counter
value of the timer is possible through compare channels. Each com-
pare channel provides a register which is loaded with an arbitrary
value that gets constantly compared to the current counter value by
the timer hardware. A match event is generated once the counter
value equals the configured threshold. Compare channels are used
by timer subsystems to signal expiring timeouts. The more compare
channels a hardware timer offers, the wider different pending time-
outs can be split across channels (e.g. separating short from long
running timers). This flexibility in the mapping of virtual timers
to hardware peripherals can be utilized to reduce the overall timer
maintenance overhead. At a bare minimum, a single hardware timer
is required to provide at least one compare channel in order to be
∗Three platforms excluded due to unknown properties. See Section 4.3.4 for details.
†i.e.: Only counting timers that are chainable and have a maximum width of 16 bit.
See Section 4.3.1 for details.
‡i.e.: Only counting timers that are chainable and have a width greater than 16 bit. See
Section 4.3.1 for details.

usable by a timing-API. Otherwise active polling of the current
counter value would be required. As R-02 shows, all timer modules
provide at least one compare channel, while most offer at least
either two (64 %) or even four (22 %) channels.

4.3.4 Interrupt Handling and Event Flags. Timer events such as
over-/underflow and compare matches can produce interrupts upon
occurrence. Corresponding ISRs are used by timer drivers to de-
tect expired timeouts and to execute maintenance tasks. Interrupt
handling is strongly dependent on the actual MCU-platform, tough
often uniform among chip families from the same manufacturer.
For a timer subsystem it is important, whether an exclusive inter-
rupt exists for every event or if multiple events share one common
interrupt vector. As both R-05 and R-06 indicate, out of all timers
only 20 % provide fully independent overflow and only 30 % offer
fully independent compare match interrupts.

If an interrupt vector is mapped to multiple events, additional
peripheral status register reads are required to determine the exact
cause of the fired interrupt. This introduces an additional layer
of indirection, therefore increasing timer latency. Event flags are

6



Inter-MCU-Platform Hardware Analysis
Towards a Clean-slate Timer-API for RIOT-OS

available throughout all platforms, as shown by R-07. Though, it
is noteworthy that three platforms, namely Espressif ESP8266 (see
Table 6), Espressif ESP32 (see Table 7), and Nordic Semiconductor
nRF51x/52x (see Table 13), remain unclear about event status bits in
their documentation (see Section 4.4) and were therefore excluded
from the total platform count of R-07. Nonetheless, we highly doubt
that there is no way to extract such information but were not able
to reliably confirm it either.

4.3.5 Low-power Operation and Energy Saving. As with resource
constrained devices power-saving operation is crucial, the ability
to operate timers of an low-power oscillator is highly important.
As R-09 shows, 70 % of all analyzed timer types are able to run on a
low-power clock. This enables timer drivers to make use of the avail-
able MCU power-saving modes, for example powering down the
CPU and main peripheral clock while keeping the required timers
operational. Properly utilizing this feature is of utmost importance
when designing a timer subsystem for OSes like RIOT.

While we found that all platforms provide at least one timer
type which can run of a low-power clock, we further were able to
confirm that all platforms offer at least one timer, which is capable
of running in even the lowest possible power states and waking the
CPU upon event occurrences (see R-10). Among these always-on pe-
ripherals, real-time-counters and -clocks are most commonly found.
Three platforms also provide designated ultra low-power timer
peripherals (see Tables 3, 4, and 8), as for example the Cryotimer
on the Silicon Labs EFM32/EFR32 platform (see Table 8). Especially
when dealing with long timeouts and sleep periods, these timer
types allow amassive energy-consumption optimization and should
therefore be utilized by a properly designed timer subsystem.

4.3.6 Suitability of Timer Types. Even though we included all types
of timer peripherals into our analysis, we are convinced that not
every type is applicable for the use in a generic timing system. We
would like to stress that in our opinion especially watchdog timers
fall into this category. Watchdogs are primarily designed to re-
cover a system from a malfunction or error state. They achieve this
through performing a full system reset if not periodically serviced
by the application. Even though 67 % of the analyzed watchdogs
offer the ability to generate an interrupt before or even instead
of performing a reset, as shown by R-12, we still suggest to not
repurpose them for the usage in a timer subsystem.

4.3.7 Peripheral Availability. Having a range of timer peripherals
to chose from opens up a wide spectrum of optimization possi-
bilities and potential features. Even tough operation principles of
general-purpose timers are mostly uniform across all platforms, the
provided special purpose timers differ greatly in function. Taking
a look at the first, there is only a single platform that guarantees
solely one general-purpose timer, namely the SiFive FE310-Gx (see
Table 14), while every other platform offers more than one, as indi-
cated by R-11. However, the availability of other timer types varies
greatly between manufacturers and even MCU families. Therefore,
we conclude that allowing the usage of multiple timer modules
as well as the incorporation of platform specific peripherals is a
necessity for a well designed generic timer subsystem.

We also found that MCUs exist, that only leave the possibility
of multiplexing all virtual software timers onto one single general-
purpose hardware timer (see R-11 and R-02). Among the analyzed
platforms these are namely the SiFive FE310-Gx (see Table 14),
only offering a single general-purpose timer, and the Espressif
ESP8266 (see Table 6), only providing one compare channel while
leaving the alarm functionality of the RTC unclear. In addition to
the above concluded requirement for simultaneous utilization of
multiple timer peripherals, we further reason that a timer subsystem
therefore also must be flexible enough to cope with situations in
which only a single hardware timer is available.

4.3.8 Further Considerations. As already addressed in the above
sections, not all properties of each analyzed timer type could be
determined with sufficient confidence, based on the available docu-
mentation or alternative information sources, as described in Sec-
tion 4.2.1. As shown by R-13, a total of seven platforms still suffer
unresolved properties. Five of these platforms can more precisely
be grouped into the two Espressif MCUs (see Table 6 and 7) and
three of the Cortex-M based platforms, namely the Microchip /
Atmel SAMD21 (see Table 5) and the Silicon Labs MCUs (see Ta-
ble 8 and 9). Espressif devices, especially the ESP8266, leave a lot
of open questions in regards to our analysis criteria of which only
some could be resolved by inspecting the manufacturer provided
SDKs. In contrast, the mentioned Cortex-M based MCUs solely
leave the SysTick timer, commonly found across Cortex-M devices,
mostly or completely undocumented. However, we suspect them
to be very similar to what can be found in other Cortex-M based
devices but are unable to confirm it at the time of writing.

4.4 Outstanding Tasks & Issues
Even though our conducted timer hardware analysis already yielded
insight into a broad range of properties and features, various out-
standing tasks as well as some issues remain. These are, to the best
of our awareness and knowledge, highlighted in this section.

4.4.1 Remaining MCU-platforms and OpenQuestions. While we
already evaluated most of the MCUs that are supported by RIOT-OS
at the time of writing, remaining platforms need to be included
into our analysis. Since we carefully picked the analyzed MCUs we
do not expect fundamentally different results from the remaining
platforms. However, we still want to prevent ignoring any abnor-
malities or missing out important insights these platforms might
bring. Furthermore, currently still unknown properties, as described
in the previous section, shall be resolved.

4.4.2 Clock Properties and Implications. Despite being an impor-
tant information for a timer subsystem, determining both the max-
imum resolution (i.e. shortest possible timeout) and the longest
possible timeout is not feasible for a whole class of timers due to
the strong dependence on the MCU’s oscillator frequencies. As
the system clocks depend both on the used microcontroller and its
configuration, their actual operation frequencies can vary largely,
therefore preventing the calculation of a single appropriate value
that can be used for comparisons across platforms.

Another aspect that has not yet been analyzed to the required
extent are the different clocks each timer peripheral is able to run of.
As each MCU-platform provides different oscillators and methods

7



N. Gandraß

of routing the generated clock signals to peripherals, a unified and
comparable way of analyzing these has to be defined. We expect
promising results from a more detailed analysis of the clock trees,
especially with respect to power-saving optimizations.

4.4.3 Peripheral Interconnect and Event Systems. Some MCUs offer
the ability to route internal signals directly between components
via a peripheral interconnect bus or automatically trigger specific
actions based on events generated by other peripherals, hereby
eliminating the need to execute a designated ISR on the CPU. Such
systems might prove as valuable for some applications (e.g. timer
chaining). Furthermore, a reduction of maintenance tasks could
be possible by exploiting event systems in order to execute simple
maintenance tasks directly inside the respective peripherals.

4.4.4 Configuration and Maintenance Costs. Currently not part of
our analysis scope, but not being less important, are the costs a read,
update, or reconfiguration of a timer peripheral implies. To give
an example: it might be required to enable a high-power clock in
order to read or write registers of a timer which is running of a low-
power clock. Hereby, frequent maintenance tasks might drastically
increase power-consumption since the high-power oscillator has to
be started during every maintenance period. Having information
on such costs could benefit the timer peripheral selection.

5 FUTUREWORK
Completing outstanding tasks and resolving current issues, as de-
scribed in Section 4.4, are next on our agenda. Nonetheless, further
work has to be done in order to develop a new clean-slate timer-API
for RIOT-OS, that we can carefully design based on the findings of
our work. A coarse overview of our next steps towards this goal is
described in this section.

5.0.1 Abstract Timer Classes. As a result of our analysis, we found
that, apart from general-purpose modules, timer peripherals vary
greatly in function and availability between manufacturers. To cope
with this diversity we propose to define abstract timer classes, each
describing a distinctive set of features a hardware timer must of-
fer to fall into the respective category. Well-considered definition
of appropriate categories has to be done. However, conceivable
types may include the following: general-purpose, low-power, high-
resolution, and long-running timers. Introducing such would ben-
efit a high-level timer module by allowing platform-agnostic and
dynamic management of available timer resources, selecting the
most appropriate ones for the current application.

5.0.2 Availability Analysis. Strongly coupled to the definition of
abstract timer classes is the evaluation of their availability across
all hardware platforms. This step cannot only aid developers during
selection of application-appropriate MCUs, it moreover allows us
to estimate the number of platforms that would potentially benefit
from different design decisions of the timer-API.

5.0.3 Deriving Requirements. Incorporating all of the above de-
scribed information, deriving requirements for the aspired timer
subsystem is a next step. Here, considering proposed methods and
avoiding documented pitfalls from related work, as showcased in
Section 3.2, is desired. Requirements for the high-level timer module
shall be defined with respect to various application scenarios and

different characteristics. The latter includes among others: mainte-
nance complexity, power-saving and energy-efficiency, platform
abstraction, API design, and maintainability. Based on the derived
requirements a prototypical timer subsystem can then be imple-
mented and tested with a subset of the available platforms.

6 CONCLUSION
With this work our contribution was twofold. We first reviewed
related work, depicting both timer hardware and software design
considerations. Among these, valuable implementation techniques
and common pitfalls that are to be avoided were highlighted. Sec-
ond, we conducted a large-scale timer hardware analysis covering
many of the MCU-platforms that are currently supported by RIOT-
OS. We hereby provided detailed information about every timer
peripheral type that is available on the targeted platforms and fur-
ther derived inter-MCU-platform findings from it. Analysis results
were then discussed with respect to the development of a new
clean-slate timer subsystem for RIOT-OS. Furthermore, currently
still outstanding tasks as well as open issues of the conducted hard-
ware platform analysis were outlined and future steps towards the
aspired timer-API were defined.

ACKNOWLEDGMENTS
We would like to thank Michel Rottleuthner (Hamburg University
of Applied Sciences) for his help during the collection of the data
that was used in the hardware platform analysis as well as for
sharing his expertise in this field of research in general.

REFERENCES
[1] Mohit Aron and Peter Druschel. 2000. Soft Timers: EfficientMicrosecond Software

Timer Support for Network Processing. ACM Transactions on Computer Systems
(TOCS) 18, 3 (Aug. 2000), pages 197–228. https://doi.org/10.1145/354871.354872

[2] Emmanuel Baccelli, Cenk Gündogan, Oliver Hahm, Peter Kietzmann, Martine
Lenders, Hauke Petersen, Kaspar Schleiser, Thomas C. Schmidt, and Matthias
Wählisch. 2018. RIOT: an Open Source Operating System for Low-end Embedded
Devices in the IoT. IEEE Internet of Things Journal 5 (Dec. 2018), pages 4428–4440.
https://doi.org/10.1109/JIOT.2018.2815038

[3] Emmanuel Baccelli, Oliver Hahm, Mesut Günes, Matthias Wählisch, and
Thomas C. Schmidt. 2013. RIOT OS: Towards an OS for the Internet of Things. In
Proceedings of the 2013 IEEE Conference on Computer Communications Work-
shops (INFOCOM WKSHPS). IEEE Press, Piscataway, NJ, USA, pages 79–80.
https://doi.org/10.1109/INFCOMW.2013.6970748

[4] Patrick Bellasi. 2009. Linux Power Management Architecture: A review on Linux PM
frameworks. Technical Report. Politecnico di Milano, Dipartimenti di Elettronica
e Informazione.

[5] Thomas Gleixner and Douglas Niehaus. 2006. Hrtimers and Beyond: Trans-
forming the Linux Time Subsystems. In Proceedings of the 2006 Ottawa Linux
Symposium (Volume One). pages 333–346.

[6] Giovani Gracioli, Danillo Santos, Roberto Matos, Lucas Wanner, and Antônio
Fröhlich. 2008. One-shot time management analysis in EPOS. In Proceedings of
the International Conference of the Chilean Computer Science Society. pages 92–99.
https://doi.org/10.1109/SCCC.2008.13

[7] Vlado Handziski, Joseph Polastre, J.-H Hauer, Cory Sharp, Adam Wolisz, and
David Culler. 2005. Flexible Hardware Abstraction for wireless sensor networks.
In Proceeedings of the Second European Workshop on Wireless Sensor Networks.
pages 145–157. https://doi.org/10.1109/EWSN.2005.1462006

[8] Wanja Hofer. 2014. Sloth: The Virtue and Vice of Latency Hiding in Hardware-
Centric Operating Systems. Doctoral Thesis. Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU).

[9] Wanja Hofer, Daniel Danner, Rainer Muller, Fabian Scheler, Wolfgang Schröder-
Preikschat, and Daniel Lohmann. 2012. Sloth on Time: Efficient Hardware-Based
Scheduling for Time-Triggered RTOS. In Procceedingss of the 33rd IEEE Real-Time
Systems Symposium. pages 237–247. https://doi.org/10.1109/RTSS.2012.75

[10] Wanja Hofer, Daniel Lohmann, and Wolfgang Schröder-Preikschat. 2011. Sleepy
Sloth: Threads as Interrupts as Threads. In Proceedings of the 32nd IEEE Real-Time
Systems Symposium. pages 67–77. https://doi.org/10.1109/RTSS.2011.14

8

https://doi.org/10.1145/354871.354872
https://doi.org/10.1109/JIOT.2018.2815038
https://doi.org/10.1109/INFCOMW.2013.6970748
https://doi.org/10.1109/SCCC.2008.13
https://doi.org/10.1109/EWSN.2005.1462006
https://doi.org/10.1109/RTSS.2012.75
https://doi.org/10.1109/RTSS.2011.14


Inter-MCU-Platform Hardware Analysis
Towards a Clean-slate Timer-API for RIOT-OS

[11] Jupyung Lee and Kyu-Ho Park. 2005. Delayed locking technique for improving
real-time performance of embedded Linux by prediction of timer interrupt. In
Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications
Symposium. pages 487– 496. https://doi.org/10.1109/RTAS.2005.16

[12] Raj Kamal. 2011. Embedded Systems: Architecture, Programming and Design
(second ed.). Tata McGraw Hill Education.

[13] Per Lindgren, Emil Fresk, Marcus Lindner, Andreas Lindner, David Pereira, and
Luís Miguel Pinho. 2016. Abstract Timers and Their Implementation onto the
ARM Cortex-M Family of MCUs. ACM SIGBED Review 13 (Mar. 2016), pages
48–53. https://doi.org/10.1145/2907972.2907979

[14] Vesna Mincev and Dragan Milicev. 1998. A Tree-Driven Multiple-Rate Model of
Time Measuring in Object-Oriented Real-Time Systems. In Proceedings of the Con-
ference on Parallel and Distributed Processing (IPPS). Springer Berlin Heidelberg,
pages 1037–1046. https://doi.org/10.1007/3-540-64359-1_769

[15] Marian Mitescu and Ioan Susnea. 2005. Using the MCU Timers. Springer Berlin
Heidelberg, Berlin, Heidelberg, pages 67–91. https://doi.org/10.1007/3-540-
28308-0_6

[16] Pratyush Patel, Manohar Vanga, and Bjorn Brandenburg. 2017. TimerShield: Pro-
tecting High-Priority Tasks from Low-Priority Timer Interference. In Proceedings
of the 2017 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS). pages 3–12. https://doi.org/10.1109/RTAS.2017.40

[17] Ioan Susnea and Marian Mitescu. 2005. Microcontrollers in Practice (Springer
Series in Advanced Microelectronics) (first ed.). Springer-Verlag, Berlin, Heidelberg.
https://doi.org/10.1007/3-540-28308-0

[18] corbet (Pseudonym). 2007. Deferrable timers. News Article. Released in Linux
Weekly News (LWN). (Mar. 2007). https://lwn.net/Articles/228143/

[19] Edward W. Thompson and Stephen A. Szygenda. 1975. Three levels of accuracy
for the simulation of different fault types in digital systems. In Proceedings of the
12th Design Automation Conference (DAC). IEEE Press, pages 105–113.

[20] Dan Tsafrir. 2007. The Context-Switch Overhead Inflicted by Hardware Interrupts
(and the Enigma of Do-Nothing Loops). In Proceedings of the 2007 Workshop on Ex-
perimental Computer Science (ExpCS ’07). Association for Computing Machinery,
New York, NY, USA, pages 4–es. https://doi.org/10.1145/1281700.1281704

[21] Dan Tsafrir, Yoav Etsion, and Dror Feitelson. 2005. General purpose timing:
the failure of periodic timers. Technical Report. School of Computer Science &
Engineering, The Hebrew University.

[22] Ioanna Tsekoura, Gregor Rebel, Mladen Berekovic, and Peter Glösekötter. 2014.
An evaluation of energy efficient microcontrollers. In Proceedings of the 9th
International Symposium on Reconfigurable and Communication-Centric Systems-
on-Chip (ReCoSoC). https://doi.org/10.1109/ReCoSoC.2014.6861368

[23] George Varghese and Anthony Lauck. 1997. Hashed and Hierarchical Timing
Wheels: Efficient Data Structures for Implementing a Timer Facility. IEEE/ACM
Transactions on Networking 5, 6 (Dec. 1997), pages 824–834. https://doi.org/10.
1109/90.650142

9

https://doi.org/10.1109/RTAS.2005.16
https://doi.org/10.1145/2907972.2907979
https://doi.org/10.1007/3-540-64359-1_769
https://doi.org/10.1007/3-540-28308-0_6
https://doi.org/10.1007/3-540-28308-0_6
https://doi.org/10.1109/RTAS.2017.40
https://doi.org/10.1007/3-540-28308-0
https://lwn.net/Articles/228143/
https://doi.org/10.1145/1281700.1281704
https://doi.org/10.1109/ReCoSoC.2014.6861368
https://doi.org/10.1109/90.650142
https://doi.org/10.1109/90.650142


N. Gandraß

A HARDWARE ANALYSIS RESULTS
Detailed results from the conducted timer hardware analysis are found in the following tables. Each table contains the analyzed timer module
types and their respective properties for a set of MCUs as indicated by the table captions.

A.1 Column Key / Explanation of Criteria
A.1.1 Timer Type. Name of the respective timer type. Generic timer modules across various platforms are united under the type name
"General-purpose" in order to be easily identifiable throughout the results. Names of special purpose timers are adopted from naming
conventions in the corresponding datasheets.

A.1.2 Counter Width. Width of the internal counter register in bits. If multiple counter widths are available for a single timer type, these
are listed below each other inside a single cell. Can be omitted if timer does not contain plain counter register (e.g. real-time-clocks).

A.1.3 Compare Channels. Number of compare channels available in a single timer module of the given type. Can be a single number, a
range or multiple fixed values.

A.1.4 Prescaler Type. Availability of a prescaler that divides the timer clock. Can be one of the following:
× No prescaler is available.
E Prescaler can be continuously selected as exponentials of 2 (e.g. 1, 2, 4, 8, . . . , 2n ).
F Prescaler can be selected from fixed values with varying intervals (e.g. 1, 16, 64, 512).
R Prescaler can be continuously selected as discrete integer values (e.g. 1, 2, 3, 4, . . . , 65536).

A.1.5 Max Prescaler. Maximum value that can be selected as a prescaler (i.e. greatest clock divider resulting in longest time to over-
/underflow) with respect to Prescaler Type. Can be omitted when Prescaler Type is ×.

A.1.6 Chaining Support. Indicates if chaining timers of the given type is possible. This feature can be used to combine small counters into a
larger one (e.g. combining two 16-bit timers into a 32-bit timer). Can be one of the following:

× No support for timer chaining available. Chaining by routing signals through additional peripherals is counted as not available.
✓ Combination of multiple timer modules is possible (e.g. configured in timer control registers).

A.1.7 Compare INT. Type of interrupts generated on a compare channel match event. Can be omitted if Compare Channels is 0. Can be one
of the following:

× Non-existing. Compare matches cannot generate any kind of interrupt.
◦ Available but shared with other timer events. Applies if only a single interrupt per timer module is available.
□ Available but shared with other compare channels. Applies if a single timer module has one interrupt that exclusively services all its

compare matches.
✓ Available and offering unique interrupts for each compare channel (i.e. no status bit / event flag read is necessary to identify the

compare channel that produced the match event).

A.1.8 Overflow INT. Type of the interrupt generated on a counter register over-/underflow. Can be one of the following:
× Non-existing. A counter over-/underflow cannot generate any kind of interrupt.
◦ Available but shared with other timer events. Applies if only a single interrupt per timer module is available.
✓ Available and offering a unique interrupt (i.e. no status bit / event flag read is necessary to distinguish from compare matches).

A.1.9 Event Flags. Determines the availability of status bits that indicate if an event (e.g. compare match or over-/underflow) was observed by
the timer hardware. These flags need to be updated independently of the generated interrupts and must be available even if the corresponding
interrupt is currently masked. Can be one of the following:

× No event status bits / flags available.
✓ Event status bits / flags are available and updated even if the corresponding interrupt is masked.

A.1.10 Auto-reload. Availability and type of the auto-reload function. Can be one of the following:
× Not available (i.e. one-shot mode).
◦ Timer auto-reloads / warps only at counter over-/underflow (i.e. full width free-running mode).
□ Auto-reload at arbitrary value is available but sacrifices one compare channel (i.e. limited width free-running mode).
✓ Auto-reload at arbitrary value is available. No compare channel is required, exclusive auto-reload match register available (i.e. limited

width free-running mode).

A.1.11 PWM Generation. Indicates if a timer module can directly generate and output pulse-width-modulation (PWM) waveforms. Can be
one of the following:

× Not available. PWM generation through additional peripherals (e.g. exclusive PWM peripheral) counts as not available.
✓ PWM generation available.

10



Inter-MCU-Platform Hardware Analysis
Towards a Clean-slate Timer-API for RIOT-OS

A.1.12 External CLK. Possibility of clocking the timer module with an external oscillator. External clock sources that need to be routed
through additional timer peripherals (e.g. external CLK usage through periodic RTC pulses) count as not available. Can be one of the
following:

× Timer cannot be clocked by external oscillator.
✓ External clock source can be used for the timer.

A.1.13 Low-power CLK. Indicates if the timer module can be operated with a low-power clock source (internal or external). A low-power
clock is defined as one that allows the CPU and high-frequency peripheral base clock to be turned off while the low-power clock is still
operational (i.e. the timer can be operated in lower power-states). Can be one of the following:

× No low-power clock source available.
✓ Timer can be operated using a low-power clock source. Timer is operational in lower power states.

A.1.14 Deep-sleep Active. Indicates whether the timer is operational in the lowest power states of the MCU, as typically found with
real-time-clocks. Very low power modes are characterized by the power-down of the CPU, nearly all peripherals, and oscillators. Modules of
this category are often among the only wakeup-sources that can wake the device from deep sleep states. Can be one of the following:

× Timer is never active in the lowest power states.
✓ Timer can be operated in the lowest power states.

A.1.15 Unresolved or Not-applicable Items. In some cases one of the above described attributes does not apply to the timer module (e.g.
counter width for some real-time-clocks), it is currently unknown or it is unclear and needs confirmation. In such cases one of the following
values can be used for any of the above properties:

- Not applicable
? Unknown / Documentation unclear / Needs confirmation

Timer Type Co
un
ter
Wi
dth

Co
mp
are

Ch
an
ne
ls

Pre
sca
ler
Ty
pe

Ma
x. P

res
cal
er

Ch
ain
ing

Su
pp
ort

Co
mp
are

IN
T

Ov
erfl
ow

IN
T

Ev
en
t F
lag
s

Au
to-
rel
oad

PW
M
Ge
ne
rat
ion

Ex
ter
na
l C
LK

Lo
w-
po
we
r C
LK

De
ep-
sle
ep
Ac
tiv
e

General-purpose 16 bit 1-4 R 216 ✓ ◦ ◦ ✓ ✓ ✓ ✓ × ×32 bit

Advanced-control 16 bit 4, 6 R 216 ✓ ◦ ◦ ✓ ✓ ✓ ✓ × ×

Basic 16 bit 0 R 216 ✓ × ◦ ✓ ✓ × × × ×

Low-power 16 bit 1 E 27 × ◦ × ✓ ✓ ✓ ✓ ✓ ×

SysTick 24 bit 0 F 23 × × ✓b ✓ ✓ × × × ×

Real-time-clock - 1-2c Re 27+15 × ◦ ◦d ✓ - × × ✓ ✓

Independent WDG 12 bit 0 E 28 × × × - × × × ✓e ✓

System window WDG 7 bit 0 E 212+3 × × × - × × × × ×

Table 2: Timer Comparison Matrix: STMicroelectronics STM32

aWhen enabled
bSystem Tick Interrupt
cRTC Alarm(s)
dFrom periodic wakeup timer
eIndependent oscillator
fFor internal calibration only
gRequires two hardware timer modules
hIncremented on every RTC count pulse
iAdditional 8-bit repeat register
jReference manual does not provide details
kPossible via events and another TCC utilized as event counter
lClocked by SysClk which may use any available oscillator
mOnly available in RTC-mode with external clock
nSupports masking of individual bits

11



N. Gandraß

Timer Type Co
un
ter
Wi
dth

Co
mp
are

Ch
an
ne
ls

Pre
sca
ler
Ty
pe

Ma
x. P

res
cal
er

Ch
ain
ing

Su
pp
ort

Co
mp
are

IN
T

Ov
erfl
ow

IN
T

Ev
en
t F
lag
s

Au
to-
rel
oad

PW
M
Ge
ne
rat
ion

Ex
ter
na
l C
LK

Lo
w-
po
we
r C
LK

De
ep-
sle
ep
Ac
tiv
e

General-purpose 8 bit 2 F 210 × ✓ ✓ ✓a □ ✓ ✓ ✓ ×16 bit 2-3

Asynchronous 8 bit 2 F 210 × ✓ ✓ ✓a □ ✓ ✓ ✓ ✓

High-speed 10 bit 3 E 214 × ✓ ✓ ✓a □ ✓ × × ×

Watchdog - 0 E 210 × × ✓ ✓ × × × ✓e ✓

Table 3: Timer Comparison Matrix: Microchip / Atmel megaAVR

Timer Type Co
un
ter
Wi
dth

Co
mp
are

Ch
an
ne
ls

Pre
sca
ler
Ty
pe

Ma
x. P

res
cal
er

Ch
ain
ing

Su
pp
ort

Co
mp
are

IN
T

Ov
erfl
ow

IN
T

Ev
en
t F
lag
s

Au
to-
rel
oad

PW
M
Ge
ne
rat
ion

Ex
ter
na
l C
LK

Lo
w-
po
we
r C
LK

De
ep-
sle
ep
Ac
tiv
e

General-purpose 16 bit 1 F 28 ✓ ✓ × ✓ ✓ × ✓ × ×32 bitg

Asynchronous 16 bit 1 F 28 × ✓ × ✓ ✓ × ✓ ✓ ✓

Real-time-clock - 1 × - × ✓ × ✓ - × ✓ ✓ ✓

Watchdog 25 bit 0 E 220 × × ✓ ✓ × × × ✓ ✓

Table 4: Timer Comparison Matrix: Microchip PIC32MX/MZ

Timer Type Co
un
ter
Wi
dth

Co
mp
are

Ch
an
ne
ls

Pre
sca
ler
Ty
pe

Ma
x. P

res
cal
er

Ch
ain
ing

Su
pp
ort

Co
mp
are

IN
T

Ov
erfl
ow

IN
T

Ev
en
t F
lag
s

Au
to-
rel
oad

PW
M
Ge
ne
rat
ion

Ex
ter
na
l C
LK

Lo
w-
po
we
r C
LK

De
ep-
sle
ep
Ac
tiv
e

General-purpose
08 bit

2 F 210 ✓ ◦ ◦ ✓ ✓ ✓ ✓ ✓ ✓16 bit
32 bitg

General-purpose for Control 16 bit 4 F 210 ×k ◦ ◦ ✓ ✓ ✓ ✓ ✓ ✓24 bit

SysTickj 24 bit 0 ? ? × × ✓b ? ✓ × ? ? ?

Real-time-counter 32 bit 1 E 210 × ◦ ◦ ✓ ✓ × ✓ ✓ ✓

Watchdog - 2 - - - ◦ - ✓ - × ✓ ✓ ✓

Table 5: Timer Comparison Matrix: Microchip / Atmel SAMD21

12



Inter-MCU-Platform Hardware Analysis
Towards a Clean-slate Timer-API for RIOT-OS

Timer Type Co
un
ter
Wi
dth

Co
mp
are

Ch
an
ne
ls

Pre
sca
ler
Ty
pe

Ma
x. P

res
cal
er

Ch
ain
ing

Su
pp
ort

Co
mp
are

IN
T

Ov
erfl
ow

IN
T

Ev
en
t F
lag
s

Au
to-
rel
oad

PW
M
Ge
ne
rat
ion

Ex
ter
na
l C
LK

Lo
w-
po
we
r C
LK

De
ep-
sle
ep
Ac
tiv
e

General-purpose (FRC1) 23 bit 0 F 28 × × ✓ ? ◦ ✓ × × ×

General-purpose (FRC2) 32 bit 1 F 28 × ✓ × ? ◦ × × × ×

Real-time-clock 32 bit ? × - × ? ? ? - × × ✓ ✓

Watchdog - 0 × - × × × - × × × ? ?
Table 6: Timer Comparison Matrix: Espressif ESP8266

Timer Type Co
un
ter
Wi
dth

Co
mp
are

Ch
an
ne
ls

Pre
sca
ler
Ty
pe

Ma
x. P

res
cal
er

Ch
ain
ing

Su
pp
ort

Co
mp
are

IN
T

Ov
erfl
ow

IN
T

Ev
en
t F
lag
s

Au
to-
rel
oad

PW
M
Ge
ne
rat
ion

Ex
ter
na
l C
LK

Lo
w-
po
we
r C
LK

De
ep-
sle
ep
Ac
tiv
e

General-purpose 64 bit 1 R 216 × ✓ × ? □ × × × ×

Real-time-clock 48 bit 1 × - × ✓ × ? - × ✓ ✓ ✓

Watchdog 32 bit 0 × - × × ✓ ? × × × ✓ ✓

Table 7: Timer Comparison Matrix: Espressif ESP32

Timer Type Co
un
ter
Wi
dth

Co
mp
are

Ch
an
ne
ls

Pre
sca
ler
Ty
pe

Ma
x. P

res
cal
er

Ch
ain
ing

Su
pp
ort

Co
mp
are

IN
T

Ov
erfl
ow

IN
T

Ev
en
t F
lag
s

Au
to-
rel
oad

PW
M
Ge
ne
rat
ion

Ex
ter
na
l C
LK

Lo
w-
po
we
r C
LK

De
ep-
sle
ep
Ac
tiv
e

General-purpose 16 bit 3-4 E 210 ✓ ◦ ◦ ✓ ✓ ✓ ✓ × ×32 bit

Pulse counter 8 bit 0 × - × × ◦ ✓ ✓ × ✓ ✓ ✓16 bit

Low-energy 16 bit 2 E 215 × ◦ ◦ ✓ □ ✓ × ✓ ✓

Cryotimer 32 bit 1 E 27 × ✓ × ✓ ◦ × × ✓ ✓

SysTickj 24 bit ? ? ? ? ? ? ? ? ? ? ? ?

Real-time-counter 24 bit 2 E 215 × ◦ ◦ ✓ □ × × ✓ ✓32 bit

Real-time-clock 32 bit 3 E 215 × ◦ ◦ ✓ - × × ✓ ✓

Watchdog - 1 E 217 × ◦ ◦ ✓ × × ✓ ✓ ✓

Table 8: Timer Comparison Matrix: Silicon Labs EFM32/EFR32

13



N. Gandraß

Timer Type Co
un
ter
Wi
dth

Co
mp
are

Ch
an
ne
ls

Pre
sca
ler
Ty
pe

Ma
x. P

res
cal
er

Ch
ain
ing

Su
pp
ort

Co
mp
are

IN
T

Ov
erfl
ow

IN
T

Ev
en
t F
lag
s

Au
to-
rel
oad

PW
M
Ge
ne
rat
ion

Ex
ter
na
l C
LK

Lo
w-
po
we
r C
LK

De
ep-
sle
ep
Ac
tiv
e

General-purpose 16 bit 3 E 210 ✓ ◦ ◦ ✓ ✓ ✓ ✓ × ×

Low-energy 16 biti 2 E 215 × ◦ ◦ ✓ □ ✓ ✓ ✓ ×

SysTickj 24 bit ? ? ? ? ? ? ? ? ? ? ? ?

Real-time-counter 24 bit 2 E 215 × ◦ ◦ ✓ □ × ✓ ✓ ×

Backup Real-time-counter 32 bit 1 E 27 × ◦ × ✓ ✓ × ✓ ✓ ✓

Watchdog - 0 F 218 × ◦ × ✓ ✓ × ✓ ✓ ×

Table 9: Timer Comparison Matrix: Silicon Labs EZR32

Timer Type Co
un
ter
Wi
dth

Co
mp
are

Ch
an
ne
ls

Pre
sca
ler
Ty
pe

Ma
x. P

res
cal
er

Ch
ain
ing

Su
pp
ort

Co
mp
are

IN
T

Ov
erfl
ow

IN
T

Ev
en
t F
lag
s

Au
to-
rel
oad

PW
M
Ge
ne
rat
ion

Ex
ter
na
l C
LK

Lo
w-
po
we
r C
LK

De
ep-
sle
ep
Ac
tiv
e

General-purpose / RTC 16 bit 12 R 28
✓ ◦ ◦ ✓ ✓ ✓ ✓ ✓ ✓m

32 bit × -

General-purpose / RTC 32 bit 12 R 216
✓ ◦ ◦ ✓ ✓ ✓ ✓ ✓ ✓m

64 bit × -

SysTick 24 bit 0 × - × × ✓b ✓ ✓ × ✓ ✓l ×

Watchdog (SysClk) 32 bit 0 × - × × ✓ ✓ × ×
✓ ✓

✓Watchdog (PIOSC) × ×

Table 10: Timer Comparison Matrix: Texas Instruments LM4F120

Timer Type Co
un
ter
Wi
dth

Co
mp
are

Ch
an
ne
ls

Pre
sca
ler
Ty
pe

Ma
x. P

res
cal
er

Ch
ain
ing

Su
pp
ort

Co
mp
are

IN
T

Ov
erfl
ow

IN
T

Ev
en
t F
lag
s

Au
to-
rel
oad

PW
M
Ge
ne
rat
ion

Ex
ter
na
l C
LK

Lo
w-
po
we
r C
LK

De
ep-
sle
ep
Ac
tiv
e

General-purpose (Timer A) 16 bit 2-3 E 23 × ◦ ◦ ✓ □ ✓ ✓ ✓ ✓

General-purpose (Timer B)

8 bit

3, 7 E 23 × ◦ ◦ ✓ □ ✓ ✓ ✓ ✓
10 bit
12 bit
16 bit

Watchdog 16 bit 0 × - × × ✓ ✓ × × ✓ ✓ ✓

Table 11: Timer Comparison Matrix: Texas Instruments MSP430x1xx / MSP430x2xx

14



Inter-MCU-Platform Hardware Analysis
Towards a Clean-slate Timer-API for RIOT-OS

Timer Type Co
un
ter
Wi
dth

Co
mp
are

Ch
an
ne
ls

Pre
sca
ler
Ty
pe

Ma
x. P

res
cal
er

Ch
ain
ing

Su
pp
ort

Co
mp
are

IN
T

Ov
erfl
ow

IN
T

Ev
en
t F
lag
s

Au
to-
rel
oad

PW
M
Ge
ne
rat
ion

Ex
ter
na
l C
LK

Lo
w-
po
we
r C
LK

De
ep-
sle
ep
Ac
tiv
e

General-purpose 32 bit 4 R 216 × □ × ✓ □ × × × ×

Repetitive Interrupt 32 bit 1n × - × ✓ × ✓ □ × × × ×

SysTick 24 bit 1 × - × ✓ × ✓ □ × ✓ ? ?

Real-time-clock - 2 × - × □ × ✓ - × ✓ ✓ ✓

Watchdog 32 bit 0 F 22 × - × - - × × ✓ ✓

Table 12: Timer Comparison Matrix: NXP Semiconductors LPC176x/5x

Timer Type Co
un
ter
Wi
dth

Co
mp
are

Ch
an
ne
ls

Pre
sca
ler
Ty
pe

Ma
x. P

res
cal
er

Ch
ain
ing

Su
pp
ort

Co
mp
are

IN
T

Ov
erfl
ow

IN
T

Ev
en
t F
lag
s

Au
to-
rel
oad

PW
M
Ge
ne
rat
ion

Ex
ter
na
l C
LK

Lo
w-
po
we
r C
LK

De
ep-
sle
ep
Ac
tiv
e

General-purpose

8 bit

4 E 29 × ◦ × ? ◦ × × × ×
16 bit
24 bit
32 bit

Real-time-counter 24 bit 4 R 212 × ◦ ◦ ? ◦ × ✓ ✓ ✓

Watchdog 32 bit 0 × - × × × ? ✓ × × ✓ ✓

Table 13: Timer Comparison Matrix: Nordic Semiconductor nRF51x/52x

Timer Type Co
un
ter
Wi
dth

Co
mp
are

Ch
an
ne
ls

Pre
sca
ler
Ty
pe

Ma
x. P

res
cal
er

Ch
ain
ing

Su
pp
ort

Co
mp
are

IN
T

Ov
erfl
ow

IN
T

Ev
en
t F
lag
s

Au
to-
rel
oad

PW
M
Ge
ne
rat
ion

Ex
ter
na
l C
LK

Lo
w-
po
we
r C
LK

De
ep-
sle
ep
Ac
tiv
e

Machine timer 64 bit 1 ×h - × ✓ × ✓ ◦ × × ✓ ✓

Real-time-counter ≥48 bit 1 E 215 × ✓ × ✓ - × ✓ ✓ ✓

Watchdog 31 bit 1 E 215 × ✓ × ✓ □ × × ✓ ✓

Table 14: Timer Comparison Matrix: SiFive FE310-Gx

15


	Abstract
	1 Introduction
	2 Conferences & Journals
	2.1 Major Conferences
	2.2 Publication Sources

	3 Related Work
	3.1 Timer Hardware
	3.2 Software Modules
	3.3 Summary

	4 Hardware-Platform Analysis
	4.1 Scope
	4.2 Methodology
	4.3 Analysis Results
	4.4 Outstanding Tasks & Issues

	5 Future Work
	6 Conclusion
	Acknowledgments
	References
	A Hardware Analysis Results
	A.1 Column Key / Explanation of Criteria


