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1 Introduction

The RISC-V ISA allows for the implementation of trusted execution environ-
ments on microcontrollers with physical memory protection and user-mode.
To get towards the implementation of such a TEE, this work investigates
the feasibility of running RIOT OS in user-mode on a SiFive FE310 RISC-V
microcontroller. A minimal M-mode firmware and RIOT port are developed
and evaluated using several performance benchmarks. The results show a
wide range of performance penalties from 0% in CoreMark to 90% in some
microbenchmarks. It is concluded that TEE technology on RISC-V micro-
controllers with user-mode and PMP is in general feasible.

Keywords: IoT Security, RISC-V

1 Introduction

With the increasing number of attacks on IoT devices, the security of Internet-connected
embedded systems is becoming an area of growing concern. Trusted Execution Envi-
ronments (TEE) is a technology that adresses growing cyber-security risks in IoT de-
vices [13]. TEEs can be implemented by running the real time operating system (RTOS)
or bare-metal application at a lower privilege mode so that a secure firmare in the highest
privilege mode can restrict memory access from the application [9].

The RISC-V ISA specification [14] used to contain an extension for user-mode interrupts
to support TEEs in RISC-V microcontrollers. This so-called N-extension allowed for effi-
cient handling of interrupts on secure embedded systems that only support two privilege
modes: machine (M-mode) and user (U-mode). However, with the recent deprecation
of the N-extension, the RISC-V ISA no longer has a hardware mechanism to delegate
interrupt handling to user-mode.

This work investigates the feasibility of running an RTOS in user-mode on RISC-V M+U-
mode secure embedded systems without the N-extension. To achieve this, a prototype
of a secure firmware is developed and RIOT OS [1] is modified to run in user-mode. The
prototype is evaluated using the RIOT benchmark suite by measuring the performance
overhead of the secure firmware.
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2 Background + Related Work

2 Background + Related Work

2.1 RISC-V

RISC-V is an open instruction set architecture (ISA) originally developed and published
by Waterman et. al. at UC Berkeley [14]. The RISC-V privileged architecture [15]
defines multiple privilege modes such as machine-mode (M-mode), hypervisor-mode (HS-
mode), supervisor-mode (S-mode), and user-mode (U-mode), which enable a wide range
of implementations ranging from simple 32-bit microcontrollers to 64-bit data center
CPUs.

For embedded systems, the RISC-V privileged specification recommends only supporting
M-mode on simple embedded systems and M+U-mode on secure embedded systems. In
addition, the RISC-V instruction set manual defines a mechanism named Physical Mem-
ory Protection (PMP), which allows M-mode software to restrict access of less privileged
software to the physical address space [15].

2.2 RIOT

RIOT [1] is a real-time operating system (RTOS) designed for microcontrollers used in
IoT applications. RIOT supports 32-bit RISC-V CPUs and currently has support for
the following RISC-V microcontrollers:

• Espressif ESP32-C3 [3],

• GigaDevice GD32VF103 [4] and

• SiFive FE310 [12].

All listed microcontrollers feature M+U-mode and the FE310 also features PMP. The
RIOT RISC-V port does not take advantage of the ability to run software in U-mode,
instead running both the kernel and applications in M-mode. As an M-mode only op-
erating system, RIOT heavily uses the mstatus control and status register (CSR) for
globally disabling and re-enabling interrupts to achieve mutual exclusion – a CSR that
can only be accessed from M-mode. RIOT also requires direct access to M-mode CSRs
for interrupt handling and configuration.

2



2 Background + Related Work

2.3 RISC-V Traps in RIOT

The RISC-V privileged ISA defines two kinds of traps. The first type is exceptions, which
are triggered by memory access faults or by the execution of environment calls (ECALL),
breakpoints (EBREAK), and other illegal instructions. The second type is interrupts,
which can be software interrupts, timer interrupts or external interrupts [15].

In the case of the SiFive FE310, interrupt configuration and handling is done using
hardware external to the CPU core itself: A core-local interruptor (CLINT) [12] and a
platform-level interrupt controller (PLIC) [8], which are controlled by memory-mapped
registers.

M-mode CSRs are still required for interrupt handling on the ISA level. These CSRs
include:

• mtvec – to set the address of the trap handler.

• mcause – to get the type of trap.

• mepc – to read/set the program counter when entering/exiting the trap handler.

• mstatus – to read/set the privilege mode when entering/exiting the trap handler.

• mie – to mask interrupts [15].

When an interrupt is triggered, a RISC-V CPU will perform the following steps:

1. Interrupts are disabled globally, and the previous interrupt enable state is saved in
mstatus.

2. Privilege mode is set to M-mode, and the previous privilege mode is saved in
mstatus.

3. mcause is set to the interrupt cause.

4. mepc is set to the current value of the program counter.

5. The program counter is set to the address of the trap handler specified in mtvec [12].
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At this point, the control flow has been transferred to the trap handler of RIOT, which
then pushes the general-purpose registers onto the stack of the interrupted process and
switches to the interrupt-stack. Depending on the value of the mcause-CSR, the trap
handler then dispatches the interrupt request to the responsible interrupt handler.

When the interrupt handler processed the request, it returns to the trap handler. If a
context switch has been requested, the scheduler is invoked. Then, mepc is set to the
address of the next process and the general-purpose registers of that process are restored.
The trap handler terminates by executing an mret instruction, which causes the CPU
to:

6. Restore the privilege mode to the previous privilege saved in mstatus.

7. Re-enable interrupts globally depending on the previous interrupt enable state
saved in mstatus.

8. Jump to the address specified in mepc [12].

Interrupts can be enabled and disabled globally using the global interrupt enable bit in
the mstatus-CSR or using individual interrupt enable bits in the mie-CSR. There is no
mechanism to disable exceptions [15].

2.4 Related Work

In [6], Pinto et al. describe the method for handling interrupts in user-mode, which
they implemented in MultiZone TEE. Similar to this work, MultiZone also supports
M+U-mode RISC-V microcontrollers. The authors emphasize the importance of the
N-extension, but also mention the possibility of using trap-and-emulate to implement it
in software. However, in their work, they do not provide any data to show what the
performance impact of emulating the N-extension is.

Henrik Karlsson developed a secure monitor in his masters thesis [5] that is API-
compatible with MultiZone, targeting the SiFive FE310 microcontroller. He evaluated
the implementation by measuring the performance overhead of the secure monitor switch-
ing between secure partitions. The results show a performance overhead of only a few
hundred to a thousand clock cycles when the secure monitor is cached in the instruction
cache. However, in his work, Karlsson does not measure the performance overhead of an
application running in user-mode.
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3 Problem Statement

Implementing a TEE on RISC-V M+U-mode secure embedded systems with only two
privilege modes can only be achieved with the secure monitor running in M-mode and
the RTOS running in U-mode. Because RIOT relies on access to M-mode CSRs for
interrupt enable/disable and interrupt processing, access to CSRs has to be emulated by
the firmware. This raises the question of how much performance overhead is caused by
the emulation. The data can be used for future work to determine whether it is feasible
to implement a secure monitor for M+U-mode RISC-V microcontrollers, or if M+S-mode
systems and co-processors should be targeted instead.

4 Implementation

To measure the performance overhead, the RIOT target for the SiFive FE310 is modified
to run in U-mode and a minimal M-mode firmware is developed. The M-mode firmware
handles system startup, access to privileged instructions, and dispatching of interrupt
requests to U-mode. Each of these functions is described in the following sections.

4.1 System Reset

The startup procedure of RIOT is modified to start the RTOS in U-mode. When the CPU
is reset, the program counter jumps to a platform-defined address in M-mode. From there
the initialization of the M-mode firmware begins. The firmware initializes the RAM by
loading the data section from its load address (LMA) region to its virtual address (VMA)
region and clearing the section for uninitialized data (BSS). The machine-level CSRs are
initialized by configuring the interrupt handlers in the mtvec-CSR.

The PMP regions are configured to prevent U-mode software from accessing code and
data of the M-mode firmware using the configuration shown in table 1. The settings
grant read, write, and execute permissions for most of the address space to the U-mode
software. However all access permissions are revoked for the RAM and ROM sections
that belong to the M-mode firmware.
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4 Implementation

Table 1: PMP Region configuration

PMP PMP Privilege M-Mode
Region Type Mode Description Sections R W X
0 TOR M+U 1 1 1
1 TOR M M-Mode .init 0 0 0

ROM .text
.rodata
.srodata

2 TOR M+U 1 1 1
3 TOR M M-Mode .data 0 0 0

RAM (LMA) .sdata
4 TOR M+U 1 1 1
5 TOR M M-Mode .data 0 0 0

RAM (VMA) .sdata
.bss
.sbss

6 TOR M+U 1 1 1

The linker script is modified to group all code and data of the M-mode firmware together,
and export the start and end addresses of all PMP regions.

4.2 Privileged Instructions

The main obstacle for RIOT to run in U-mode is that the OS loses the ability to execute
privileged instructions. RIOT requires access to privileged instruction in the interrupt
handler. RIOT also frequently accesses privileged CSRs to disable interrupts for mutual
exclusion.

One way to overcome this is to use trap-and-emulate. This means the U-mode software
remains unchanged such that privileged instructions cause illegal instruction exceptions,
that are transparently handled by the M-mode firmware. The disadvantage of this ap-
proach is its complexity as CSR instructions have multiple instruction formats.

6



4 Implementation

A much simpler approach is to use a supervisor binary interface (SBI), similar to [5, 6].
With this approach, the unprivileged U-mode software is modified to interface directly
with the privileged M-mode firmware using environment calls (ECALLs).

The ECALL interface, that is used, directly maps to the RIOT API functions: irq_disable,
irq_restore, and irq_is_enabled. It also contains a function to trigger software inter-
rupts for the RIOT thread_yield_higher function. Other privileged instructions such as
the optional WFI (wait for interrupt) remain unimplemented and are removed from the
RIOT port.

4.3 Trap Handling

The M-mode firmware implements a simple strategy for trap handling, where all ex-
ceptions are handled by the firmware in M-mode and all interrupts are handled by the
RTOS in U-mode. There are two challenges to overcome: First, the U-mode interrupt
handler of the RTOS does not have access to the machine-level CSRs necessary for in-
terrupt processing. This is overcome by mapping the required CSRs into memory and
updating their values at interrupt entry and exit. As a result the U-mode environment
is not transparent to the RTOS. However, this is expected to show much lower overhead
compared to using trap-and-emulate for CSR instructions. The RIOT interrupt handler
requires access to the following CSRs:

1. mcause (ro): To determine the interrupt cause.

2. mie (rw): To mask a pending interrupt cause.

3. mhartid (ro): To claim a pending external interrupt.

4. mepc (rw): To set the return address of the interrupt handler.

The second challenge is entering and exiting interrupts in U-mode. In the RISC-V ISA,
a trap causes the CPU to switch to M-mode. Also, the mret instruction, used to return
from traps, is a privileged instruction that can only be executed in M-mode. To overcome
this, the M-mode firmware must dispatch interrupt requests to the U-mode RTOS and
provide a method for the RTOS to return from its interrupt handler. This is accomplished
with the sequence shown in Figure 1.
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Figure 1: Interrupt dispatching and handling in U-mode

When an interrupt is triggered, the M-mode interrupt entry handler is called. This
M-mode handler stores the CSRs for interrupt processing into shared memory and calls
the U-mode interrupt handler of the RTOS. The RTOS then processes the interrupt,
which may include modifying the mepc and mie CSR values in memory. When the
U-mode handler returns, it executes an uret-instruciton which triggers an illegal instruc-
tion exception. This causes the exception handler of the M-mode firmware to run. The
exception handler then calls the interrupt exit function which restores the CSR values
from memory and executes the mret.

5 Evaluation

To evaluate the performance penalty caused by the M-mode firmware, a set of compar-
ative benchmarks were performed. All measurements were carried out using a SiFive
FE310 microcontroller on a SparkFun RED-V Thing Plus development board. The
benchmarks used are CoreMark [2] and the benchmark suite provided by RIOT [7]. All
benchmarks were run with both the default M-mode RISC-V target and the modified U-
mode target. The benchmark results are compared to show the performance loss/gain.

Since the modified RIOT U-mode port does not support the WFI instruction, the default
M-mode target has been modified to also not use WFI for fairness.

5.1 CoreMark

First, CoreMark is used to verify that the microcontroller used performs as expected and
to show that the privilege mode has no impact on the raw computational performance
of the CPU. The experiment consists of a total of 10 runs with RIOT and CoreMark
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running with the default version of the RIOT hifive1b target in M-mode as well as the
modified target of RIOT running in U-mode. The tests are run with both a performance
optimized binary (-O3), recommended by the vendor [10], and a size optimized binary
(-Os), which is the default for RIOT.

Figure 2: CoreMark Benchmark: Both the performance and size optimized compiler pro-
files show no significant difference in the CoreMark score.

As can be seen in Figure 2, the benchmark score when compiled with performance opti-
mizations is within 10% of the 2.73 CoreMark/MHz performance claimed by SiFive [11],
validating the correct operation of the experiment setup. The results also show that for
both optimization profiles the performance is the same between M-mode and U-mode.
This confirms that the raw compute performance is not impacted by the privilege mode
the benchmark runs in. There is no significant impact caused by the M-mode firmware.

5.2 Microbenchmarks

Next, the performance overhead of the SBI is measured using API microbenchmarks that
require access to privileged instructions. These functions include irq_disable,
irq_restore, and irq_is_enabled, as well as some core API functions that use those func-
tions. The measurement is done using a modified version of the RIOT runtime_coreapis
benchmark, which measures the time to execute each functions 1 million times. The
number of iterations has been adjusted to ensure that all benchmarks are run for at least
one second. All measurements were repeated 10 times. The results showed a variance
of about 0,1%. The expectation is for the througput of the functions to be reduced to
a fraction of the initial performance. This is because the runtime of the irq_* functions
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increases from a single CSR instruction to an ECALL of more than 20 instructions, as
well as additional pipeline flushes.

Figure 3: Microbenchmarks: Some API functions of RIOT show a significant performance
loss between 92% and 65%.

Figure 3 shows the difference in runtime of going through the SBI compared to executing
privileged instructions directly. The results show a performance loss between 91% and
65% depending on the function used. The interrupt processing API is affected the most,
while IPC mechanisms such as thread flags, mutex, and messages are less affected.

5.3 Context-Switch Benchmarks

Finally, the performance overhead of context switches is measured, which is caused by
the modified trap handling. This includes the overhead of yielding to another process,
as well as interrupt entry, interrupt handling, and interrupt exit. To achieve this, the
RIOT thread_yield_pingpong and msg_pingpong benchmarks are used.

The thread_yield_pingpong benchmark starts two threads that continuously yield to
the other process. It measures the number of context switches that are completed in
one second. The msg_pingpong benchmark is functionally similar, but uses the RIOT
messaging IPC mechanism instead.

10
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Figure 4: Context-switch benchmark: Performing a context switch, as a result of yielding
or blocking IPC mechanisms, is slowed down by up to 42%

Figure 4 shows the difference in the benchmark score with and without the additional
overhead of the M-mode firmware. The thread_yield_pingpong result shows a reduction
of 42.4%, meaning that the throughput of context switches per second has decreased by
42.4%. The throughput of messages that can be sent per second has decreased by 36%.

6 Conclusion + Outlook

The deprecation of the N-extension from the RISC-V specification has raised the question
of whether or not it is feasible to implement trusted execution environments on RISC-V
secure embedded systems without user-mode interrupts. To answer this question, a
minimal M-mode firmware was developed, enabling RIOT to run in U-mode.

A series of comparative benchmarks were performed to evaluate the performance penalty
of RIOT running in U-mode. The results show that there is no performance loss in terms
of raw computational performance and a performance loss of 36% - 91% for context
switches, IPC-mechanisms, and other API functions that depend on the ability to globally
disable interrupts.

Given these results, it is reasonable to expect that the performance loss of a real-world
application will be a low double digit percentage. This is assuming the application is
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a mix of compute heavy operations, represented by CoreMark, which showed no per-
formance penalty, and IO operations represented by the IPC mechanisms and context
switch benchmarks. However, the feasibility still depends on the exact software used.

In future work, the development of a TEE targeting RISC-V microcontrollers with
U-mode and PMP can be pursued. Further research questions that should be answered
is the energy consumption and memory footprint of such a TEE. In addition, a thorough
security analysis of the firmware should be performed.
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