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Kurzzusammenfassung
In den letzten Jahren haben sich Grafikprozessoren (GPU) von dedizierten Pipelines zu
Gruppen von datenparallelen programmierbaren Kernen entwickelt. Ihre Rechenleitung ist
nicht mehr nur für graphische Instruktionen reserviert, sondern lässt sich für universelle
Berechnungen nutzen. Eine hochparallele Architektur führt dazu, dass GPUs in manchen
Bereichen eine deutlich höhere Leistung erzielen als CPUs. Spezielle Frameworks wie
CUDA oder OpenCL haben sich als Programmierschnittstelle für diese Systeme etabliert.
Das Ziel dieser Arbeit ist es, GPUs von einer höhere Abstraktionsebene aus programmierbar
zu machen, indem wir GPGPU mit dem Actor Model vereinen. Das Actor Model schafft
eine Abstraktion über parallele Systeme und bietet Möglichkeiten verteilte, fehlertolerante
Systeme zu bauen. Im Speziellen beschäftigen wir uns mit OpenCL und der C++11 Actor
Library libcppa. Wir präsentieren den OpenCL Actor, der eine einfache Möglichkeit
bietet, Code auf einer GPU auszuführen. Er ist in die Laufzeitumgebung von libcppa
integrieret und ermöglicht transparentes Message Passing in verteilten Systemen auf het-
erogener Hardware. Actoren für die GPU werden durch die Funktion spawn_cl instanziiert,
die das Setup für OpenCL im Hintergrund durchführt. Empfangene Nachrichten werden
vom OpenCL Actor als Argumente für ein auf der GPU ausgeführtes Program genutzt.
Die Ergebnisse aus der Berechnung werden anschließend an der Actor gesandt, der die
Berechnung initiiert hat. Eine empirische Untersuchung der Mehraufwände zeigt deutlich,
dass der induzierte Mehraufwand unserer Implementierung gegenüber den nativen OpenCL
API vernachlässigbar ist.
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Abstract
In recent years, graphics processing units (GPU) developed from single-purpose pipelines
to clusters of data-parallel programmable units. Their performance is no longer reserved
for graphics calculations, but can be used for general-purpose computing. A highly parallel
architecture enables GPUs to outperform CPUs by several orders of magnitude for various
use cases. Frameworks like OpenCL or CUDA give access to their capabilities. The objec-
tive of this work is to raise the abstraction level of GPGPU programming by combining it with
the actor model. The actor model provides a high level approach to concurrency and offers
mechanisms to built fault tolerant distributed systems. Our work focuses specifically on
OpenCL and libcppa, an actor library written in C++11. We present the concept of the
OpenCL-enabled actor, which offers an easy way to deploy code to GPUs. It is integrated
into the runtime environment of libcppa and gives rise to transparent message passing
in distributed systems and on heterogeneous hardware. Actors on the GPU are instantiated
by the function spawn_cl, which handles the OpenCL setup process in the background.
Messages sent to the OpenCL actor are used as arguments to trigger a kernel execution.
Once the kernel finishes, the actor sent the results to the actor that requested the calculation.
We examined our implementation for overhead over the native OpenCL API and find that the
induced overhead is negligible.
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1 Introduction

While modern CPUs moved towards multiple cores, GPUs developed from single purpose
pipelines to clusters of data-parallel programmable units. This highly parallel hardware is no
longer reserved for graphics, but available for any general purpose calculation that can be
mapped to this architecture. Furthermore, it is available on a wide range of systems from
servers to mobile devices. Regarding performance, GPUs outperform their CPU equivalents
by an order of magnitude for several use cases. The best performance can be achieved
with algorithms that can be split into independent tasks. However, most programs require a
management for the performed tasks. Hence GPU computing is often combined with CPU
computing to benefit from the advantages of both architectures.

GPGPU programming libraries offer a low-level, hardware related approach for programmers.
A higher abstraction level transfers responsibilities from the programmer to the runtime envi-
ronment in form of a library or framework. OpenCL is a standard for cross-platform, parallel
programming developed by the Khronos Group. It enables the development of heteroge-
neous application for a wide range of platforms.

In the context of multi-core CPUs, the classic approach uses threads to parallelize the exe-
cution of a single program and locks to avoid race conditions. Since the developer is respon-
sible for avoiding race conditions and deadlocks, this programming model is inherently error
prone. A higher level of abstraction to handle multiple cores is offered by the actor system.
It describes isolated entities called actors that communicate via message passing. An im-
portant part of the actor system is an error handling model, that guarantees either collective
failure or life of all components in a distributed system. Known implementations of the actor
system include Erlang, Scala and libcppa. Although Erlang was not designed as an actor
system, it implements de-facto actors in form of processes, which are part of the language.
libcppa on the other hand, is an actor library for C++.

The objective of this work is the integration of GPGPU programming into the actor library
libcppa. We introduce OpenCL-enabled actors, which offer an easy way to deploy code
to GPUs from a high abstraction layer. We do not only want to keep the benefits provided
by libcppa, such as network-transparency, but offer new options, such as hardware trans-
parency. This allows transparent message passing between actors, independent of their
hardware platform.

This work is organized as follows. Section 2 gives an introduction to the context of the actor
model and GPU computing. This includes the actor model and its implementation in Erlang
and libcppa, as well as GPU computing in general and OpenCL specifically.
Subsequently, Section 3 discusses three different approaches for programming single in-
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struction multiple data (SIMD) architectures.
Section 4 presents the design goals for the OpenCL-enabled actor and discusses the
OpenCL API as well as the interfaces of classes surrounding the OpenCL-enabled actor.
It concludes with the discussion of open questions.
Section 5 presents the implementation of the actor_facade and the function spawn_cl.
Furthermore, this section explains our implementation of the key concepts previously dis-
cussed in Section 4.
To evaluate our implementation, we tested the OpenCL-enabled actor implementation
against the native library. Section 6 presents the results and shows that our implementa-
tions induces only a small amount of overhead.
Finally, Section 7 draws conclusions and gives an outlook for future work.
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2 Actors and GPU Computing

This section discusses the general concepts of actors and GPU computing. In the first sec-
tion, we introduce Erlang and libcppa. Later we discusses GPU architecture and OpenCL,
a framework for GPU computing.

2.1 The Actor Model

In a historic perspective, extending message passing by adding error handling capabilities
for distributed systems lead to the actor model. It was first specified by Hewitt et al. in 1973
(Hewitt et al. (1973)). 13 years later Agha continued to work out the theoretical aspects
of the actor model in his dissertation (Agha (1986)). At the same time, Armstrong took a
more practical approach by developing Erlang (Armstrong (2007). Although Erlang does not
mention the actor model, its processes are a de-facto actor implementation.

Actors are concurrent, isolated entities that interact via message passing (Agha (1986)).
They can address each other using network transparent, unique identifiers. In response to
a received message, an actor can send messages to other actors, spawn new actors, or
change its behavior by exchanging the message handler for processing the next incoming
message.

The actor model offers several benefits. Since actors can only interact via message passing,
they neither share nor can corrupt each others state. Hence, race conditions are avoided by
design. Actor creation is a lightweight operation and is used to distribute work. To handle
errors in distributed systems, actors can monitor each other. If an actors dies unexpectedly,
the runtime environment sends a message to each actor monitoring it.

2.1.1 Erlang

Erlang is a concurrent, dynamically typed programming language developed for program-
ming large-scale, fault-tolerant systems (Armstrong (2003)). Though Erlang was not build
with the actor model in mind, it satisfies its characteristics. Each process in Erlang is in fact
an actor with the characteristics described in Section 2.1. New processes are created by a
function called spawn. Their communication is based on asynchronous message passing.
Processes use pattern matching to identify incoming messages.

Processes implement error handling in form of monitors. When a monitored actor termi-
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nates, the runtime environment sends a “down” message containing the reason to all actors
monitoring it. A stronger coupling is created by a link. A link is a bidirectional monitor, that
causes the runtime to send “exit” messages instead. The default reaction to an abnormal
exit message causes the receiving actor to terminate with the same reason. This can be
overridden to receive and handle exit messages like other messages.

These characteristics originate from the goal to build fault-tolerant systems. If a process ex-
periences an error, it should not corrupt other processes in the same system. This goal is
achieved by isolating processes. Distributed systems can use redundancy to protect them-
selves against machine failure and allow other machines to continue work and correct errors.
Erlang implements non-local error handling to achieve this goal.

2.1.2 libcppa

libcppa1 is an actor library written in C++11 (Charousset and Schmidt (2013)). It ad-
dresses concurrency and distribution by providing a message-oriented programming model.
The API is designed in a style familiar to C++ developers and provides a domain-specific
language (DSL) for actor programming. To achieve good scalability on distributed systems,
the creation and destruction of actors in libcppa is a lightweight operation. Instead of
assigning a thread to each actor, which would rely on system calls and kernel resources,
libcppa schedules actors in a cooperatively managed pool.

Actors are created using the function spawn. It takes a function or class as first argument
and returns a handle to the created actor. The handle can be used to address it and pro-
vides a unique address in a distributed system. Actors can communicate via asynchronous
or synchronous message passing, using the send or sync_send functions. Network trans-
parency hides whether an actors runs on the same core, same system, or another machine
in the network.

Messages are buffered at the receiver in order of arrival before they are processed.
libcppa implements two types of actors. The default actor implementation is scheduled
cooperatively. Hence, the use of blocking functions may starve other actors. A second type
of actors, thread-mapped actors, can be used to avoid this conflict.

The behavior of an actor specifies its response to messages it receives. libcppa uses
partial functions as message handlers, which are implemented using pattern matching. Mes-
sages that cannot be matched stay in the buffer until they are discarded manually or handled
by another behavior. The behavior can be changed dynamically during message processing.

1http://libcppa.org

http://libcppa.org
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libcppa includes monitors and links (Charousset (2012)) to build fault tolerant distributed
systems with the same semantics as Erlang.

The work of Charousset et al. (2013) compared libcppa to the actor implementations in
Erlang and Scala. It measures (1) actor creation overhead, (2) sending and processing time
of message passing implementations and (3) memory consumption for several use cases.
The results show that libcppa performs best in the presented use cases.

2.2 GPU Computing

Graphic Processing Units (GPUs) are traditionally used to calculate high resolution graphic
effects in real-time (Nickolls and Dally (2010)). To achieve high frame rates, GPUs are mas-
sively parallel. A routine written to calculate one pixel can be executed concurrently to calcu-
late multiple pixels at once. Frameworks like OpenCL (Open Computing Language, Scarpino
(2011)) or CUDA (Compute Unified Device Architecture, Kirk and Hwu (2013)) offer an API
to use the available hardware for non-graphical applications that benefit from the amount
of parallelism offered by the GPU. This approach is called GPGPU (general purpose GPU)
computing.

Only algorithms that can be split into multiple independent tasks benefit from a high amount
of parallelism. To make optimal use of GPGPU computing, it is often combined with calcula-
tions done on the CPU, a concept called heterogenous computing.

2.2.1 The Evolution of GPUs

The first graphic cards were build around a pipeline, where each stage offered a different
fixed operation with configurable parameters (Lindholm et al. (2001)). Soon, the capabilities
supported by the pipeline were neither complex nor general enough to keep up with the
developing capabilities of shading and lighting effects. To adapt to the challenges, each
pipeline stage evolved to allow individual programability and include an enhanced instruction
set (Blythe (2006)). Although this was a major step towards the architecture in use today,
the design still lacked mechanisms for load balancing. If one stage required more time than
others, the other stages were left idle. Furthermore, the capacities of a stage were fixed
and could not be shifted depending on the algorithm. To provided an overall better workload,
the pipeline was replaced by data-parallel programable units (Owens et al. (2008)). All units
share a memory area for synchronization, while in addition each unit has a local memory area
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only accessible by its own processing elements. A single unit only supports data parallelism,
but a cluster of them can process task parallel algorithms as well.

2.2.2 A Simplified GPU Architecture

global

local
local

local
local

Processing 
Element MemoryCompute 

UnitGPU

Figure 1: Simplified GPU architecture, showing a GPU with 4 compute units with 32 processing elements each.

In this section we briefly discuss GPU architecture and examine concurrency on a hardware
level. Figure 1 shows a simplified architectural scheme for GPUs. Each GPU provides
compute units (CU), its numbers ranging from two in laptops or desktop GPUs to more than
ten in server GPUs. Each CU follows a data parallel model and consists of several processing
elements (PE) and a local memory area. The PEs inside a CU follow an single instruction
multiple data (SIMD) approach. They share one program counter and the local memory, but
also include private memory as cache. At the same time, all CUs have read and write access
to the global memory area. Other device, such as the CPU, use this area for data exchange.

It is worth noting that architecture presents the perspective of OpenCL and is a simplified
view. A real GPU is much more complex (Hennessy and Patterson (2012)). For example,
PEs are bundled into smaller groups within a CU. In addition, some components are omitted
such as a scheduler that manages the executions done on the CUs. Instead, the figure aims
at giving a basic insight into the different memory areas and the relation between processing
elements and computing units.
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2.3 OpenCL

There are two major frameworks for GPU computing. CUDA (Compute Unified Device Ar-
chitecture, Kirk and Hwu (2013)) is a vendor-specific API developed by Nvidia. It grants
access to all GPU-dependent features. OpenCL (Open Computing Language, Scarpino
(2011)) is developed by the OpenCL Working Group, a subgroup of the Khronos Group.
The Khronos Group is a non-profit organization that creates “open standards for the author-
ing and acceleration of parallel computing, graphics, dynamic media, computer vision and
sensor processing on a wide variety of platforms and devices” (khr (2013)). Among others,
it is known for the standardization of OpenGL and OpenML. OpenCL is used for parallel
general purpose computing on a broad range of hardware. Universality is the key feature of
OpenCL, but has the downside that it is not possible to exploit all hardware-dependent fea-
ture. The OpenCL framework includes an API and a cross-platform programming language
called “OpenCL C” (Munshi (2012)). Since its first release in December 2008, it reached
the stable version OpenCL 1.2. A provisional specification for version 2.0 is available as of
June 2013.

A study by Fang et al. (2011) examines the performance differences between OpenCL and
CUDA. Their benchmarks are divided into two categories. The first category consists of syn-
thetic benchmarks, which measure peak performance and show similar results for OpenCL
and CUDA. The second category includes real-world applications and shows a better overall
performance for CUDA. However, the authors examine sources of the overhead and present
an example that results in similar performance.

In this work, we chose OpenCL over CUDA, because it (1) provides the capability to program
a variety of hardware, (2) is supported by a lot of vendors, including AMD and Nvidia and (3)
is built from an open standard. The following sections will explain the programming model of
OpenCL.

2.3.1 Program Structure

Each OpenCL program consists of two parts. One part runs on the host, normally a CPU,
and is called host program. The other part is called “kernel” and runs on an OpenCL device
such as a GPU. An OpenCL device is further divided into compute units (CU) and processing
elements (PE), as shown in Figure 1. The kernel is written in OpenCL C, a subset of the
C programming language with GPU specific extensions. Kernels are compiled at runtime by
the host program.
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The host program initializes data on the device, compiles kernels, and manages their ex-
ecution. The OpenCL context is the central abstraction primitive and holds resources for
devices, kernels and memory objects. A context is associated with a platform, representing
the used device driver or platform, and the devices it is responsible for. The host program
also manages a command queue to interact with devices. The number of command queues
per context or device is not limited, though a command queue is associated with a single
device.

OpenCL offers events to organize operations in command queues. They allow the defini-
tion of dependencies between operations from the same context and the use of callback
functions. This enables an asynchronous workflow.

2.3.2 The Kernel Execution

Each kernel is executed in an N-dimensional index-space called “NDRange”. Derived from
three dimensional graphic calculations, N can be either one, two or three. Each dimension
has at least one item, even if it is not considered for a calculation. Figure 2 shows a sample
index space. Each tuple (nx, ny, nz) in the index space identifies a single kernel execution,
called work-item. These tuples are called global IDs. They allow each work-item to be
identified during the kernel execution and can be used to make them operate on different
data. The total number of kernel executions can be calculated by multiplying the maximum
range of each dimension (Nx ∗Ny ∗Nz).

zN

xN

yN

Figure 2: An index-space with sample size 4.
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Work-items can be organized in so-called work-groups. Each work-group has an ID and
each work-item has a secondary ID in its work-group, called local ID. This allows each work-
item to be identified in one of two ways: either by its global ID or its local ID combined with
the work-group ID. The number of work-items per work-group cannot exceed the number of
processing elements in a compute unit. Similar to the global index space, the local ID can
be distributed in up to three dimensions. All items in a work-group run in parallel on a single
CU. Depending on the available CUs, work-groups may run sequentially or in parallel.

A work-group with a maximum of 1024 work-items, for example, could be divided into a work-
group with 1024 work-items in the first dimension and one in both other dimensions (1024, 1,
1), for a total of 1024 (1024 * 1 * 1) work items. Alternatively, the work-items could be spread
into two dimensions, 32 in the first dimension, 32 in the second and 1 in the third (32, 32, 1).
This, again, sums up to 1024 work-items. A work-group is allowed to have fewer work-items
than the maximum.

2.3.3 The Memory Model

A GPU has four distinct areas of memory, which differ in location, speed and accessibility.
OpenCL C uses keywords called “address space modifiers” to assign an area to a variable.

Global memory is addressed by the __global keyword and usable by all work-items, but
has a slow access speed. It can also be initialized by the host program.

Constant memory is addressed by the __constant keyword and a region of the global
memory with identical properties, except that it only offers read access to the work-
items. The host program has read as well as write access.

Local memory is addressed by the __local keyword and owned by a work-group and of-
fers read and write access to all corresponding work-items. Access is about a hundred
times faster compared to the global memory (Scarpino (2011)). Additionally the host
program has no access to this memory region.

Private memory is addressed by the __private keyword and the default memory region.
It is a small memory area owned by a single work-item and does not permit read or
write access by any other entity, including the host program. Unlike the local memory it
has not to be shared with other work-items. Hence access has not to be synchronized.

Figure 1 shows the global and local memory areas in blue. The private memory belongs to
a PE. The constant memory is part of the global memory.
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2.3.4 The OpenCL Workflow

The following steps describe the workflow for a simple program. More complex programs
can be built by using callbacks or multiple command queues.

1. Find a platform (clGetPlatformIDs). OpenCL devices are bound to a platform. On
“OS X” this is Apple, while a Linux system with Nvidia hardware would show “Nvidia
CUDA”.

2. Find a device (clGetDeviceIDs). This can be done independently for each device
type, such as GPU or CPU.

3. Create a context (clCreateContext). A context is created to manage a bundle of
devices and its associated resources.

4. Create a command queue (clCreateCommandQueue). Each command queue is
linked to one device, but more than one queue can be created for a device. It is
required to interact with the device. Operations can be synchronized between multiple
queues from the same context by using events.

5. Create a program object (clCreateProgramWithSource). A program object con-
tains source code for kernels and functions in use. It is associated with a context.

6. Compile the programs (clBuildProgram). This call compiles the code for a list of
devices passed as an argument or all devices in the context of the program if called
without a list. It fails if the code contains errors. A build log can then be obtained with
the clGetProgramBuildInfo function.

7. Extract a kernel (clCreateKernel). Kernels must be encapsulated in a cl_kernel
when passed to the command_queue. The name of the kernel function is used to
select it from a program object.

8. Create memory objects (clCreateBuffer). Each memory object belongs to a con-
text. When it is created, access modifiers for the work-items can be specified. Addi-
tionally three flags are available to decide where the memory is allocated. Its size must
also be set when it is created.

9. Initialize memory objects (clEnqueueWriteBuffer). When a memory object is not
initialized when it is created, this function can be used to do so. It can be executed
asynchronously with an other command or a callback function linked to it via events.
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10. Set memory objects as arguments (clSetKernelArg). Memory objects must be
set as kernel arguments. The argument used for return values does also requires a
memory object.

11. Enqueue kernel (clEnqueueNDRangeKernel). This function is used to trigger a
kernel execution and to specify (1) the created work-items, (2) an offset for the global
IDs and (3) the work-group sizes. The offset and the work-group sizes can be set to
nullptr. While an unspecified offset defaults to zero, the work-group size will be
calculated by OpenCL. This function always works asynchronously. Either clFinish
can be used to wait for it, or a callback is set, or another command it linked to it via
events.

12. Read results (clEnqueueReadBuffer). Used to read data from memory objects into
arrays. Similar to clEnqueueWriteBuffer this can be done asynchronously.
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3 SIMD Programming Concepts

Computer organizations can be classified in four categories, examining the amount of interac-
tion between data and instruction stream (Flynn (1972)). In this context, a stream describes
a sequence of operations.

Single Instruction, Single Data (SISD) This is the most conventional class. It includes sin-
gle core machines, such as the traditional Von Neumann architecture.

Single Instruction, Multiple Data (SIMD) This category includes array processors, vector
registers and GPUs. These architectures have multiple processing elements, that exe-
cute the same instruction on different data. Some CPU architectures include hardware
extensions to perform simple SIMD instructions.

Multiple Instruction, Single Data (MISD) Different instructions are performed on the same
data. In a broad view, pipeline architectures may be included into this category.

Multiple Instruction, Multiple Data (MIMD) This architecture describes multiple indepen-
dent units consisting of instruction and processing elements. This classification does
not further specify the organization of these units. Among others, multicore processors
are included in this category.

3.1 The Connection Machine - A Historic SIMD Computer

The idea that led to the development of the Connection Machine (CM) was the desire to build
a “thinking machine”. The concept was published by William Daniel Hillis (Hillis (1985)). The
computers build at that time were single core computers with the Von Neumann architecture.
Hillis started his analysis with a picture and the inability of a machine to process and capture
its contents in the same way humans do. He argued that the problem is not the available
speed but the inefficient use of hardware. Of all available transistors only a small percentage
was busy, while the rest remained idle. To achieve a better utilization, Hillis suggested to build
the Connection Machine, that consisted of a large number of parallel processing elements.

The requirements to the CM were motivated by use cases for image processing and path-
length algorithms. Instead of processing the pixels in an image or the nodes in a graph
sequentially, the machine should distribute the problem to a large number of processing
units and run the algorithm concurrently. In addition, processing units should be able to build
connections with other units to enable a fast data exchange. Furthermore, the connections
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should not be restricted to neighbors, but enabled among non-adjacent processing units.
This would allow to represent images by connection neighbors or complex graphs with edges
across the complete network. The connectivity itself should be transparent to the user on a
software level.

The architecture of the CM consisted of a host processor and a cluster of parallel process-
ing units. The prototype (CM-1) and the second version (CM-2) were SIMD machines. This
approach was favored over a MIMD architecture because the distribution of separate instruc-
tions would be too expensive regarding memory bandwidth. Their successor, the CM-5, was
built following a MIMD architecture. An unresolved problem was to distribute the instruc-
tions as quickly as the processing units could execute them. A microcontroller was used to
translate high level instructions into a sequence of simpler ones for the processing units.

Hillis developed a language extension for Common Lisp, called Connection Machine Lisp
(CmLisp), to make use of the architecture. The most interesting extensions are:

xector The core data structure in CmLisp is called xector (pronounced zek’tor). A xector is
distributed on the processing units of the CM. Operations performed on a xector are
performed concurrently on all elements. Each element consists of an index-value pair.
In mathematical terms, a xector is a function from Lisp values to Lisp values.

Alpha Notation (α) CmLisp includes a new notation to describe “all-at-once” parallelism.
The letter α can precede any value or expression to convert it into a constant xector. A
xector of functions is evaluated by applying its function to all arguments concurrently.
Indices that do not occur in all arguments are ignored. The operator “•” excludes
values from the alpha notation.

Beta Reduction (β ) A function expecting two arguments preceded by a β can be used to
reduce a xector to a single value. This is performed in parallel and requires logarithmic
time, with respect to the length of the xector. The indices of the elements are ignored.

3.2 MMX - A SIMD Instruction Set for CPUs

MMX was designed by Intel in 1996 (Peleg et al. (1997)). It was introduced to enhance
the multimedia capabilities of CPUs by adding machine-level SIMD operations. The MMX
instruction set includes operations for arithmetic, comparison, conversion, logical, shift, and
data transfer tasks. In addition to new instructions, MMX introduces four new packed data
types. These types have 64 bits length and bundle either eight bytes, four words, two dou-
blewords or a single item. The wrapped values are interpreted as fixed point integers. MMX
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operations process all values of one packed type in parallel. Furthermore, the values have
to be located in eight special registers that are mapped to registers of the floating point
unit (FPU). Since over- or underflows are often undesired in multimedia applications, the in-
structions include a saturation arithmetic. On the occurrence of an overflow (underflow), the
largest (smallest) value in range is selected.

3.3 Programming a GPU with OpenCL

While Sections 3.1 and 3.2 presented different approaches to general SIMD program-
ming, this section is related specifically to GPU programming. Its first two parts discuss
OpenCL C, the C dialect used to program OpenCL kernels, which offers SIMD operations
to each work-item. The third part presents an program that uses the OpenCL to square a
matrix.

3.3.1 Language Extension of OpenCL C

OpenCL C is based on the C programming language. More precisely, it is a subset of C
with extensions for GPGPU programming. Among others, function pointers, variable-length
arrays and variadic functions are not available.

The primitive types (char, int, long and float) and their unsigned variants are available
as vector data types. These are defined by appending a literal n to the primitive type, where
n is restricted to 2, 3, 4, 8 or 16. Vector types can be initialized using vector literals and
passing elements of the same type equal to the size of the created vector. The following
code shows 3 example vectors:

1 float4 a = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
2 uint4 b = (uint4)(1); // creates (1, 1, 1, 1)
3 long4 c = (long4)((long2)(1L, 2L), 3L, 4L);

Elements in a vector are accessible in two ways. In all vectors with up to four elements, the
elements can be addressed via the letters x, y, z and w. The first element is addressed by
x, the second by y, and so on. This can be used to access the elements for both read and
write access. An element can only be written once per expression, but read multiple times.

1 float4 d;
2 d.y = 2.0f;
3 d.xzw = (float3)(1.0f, 3.0f, 4.0f);
4 // creates (1.0, 2.0, 3.0, 4.0)



3 SIMD PROGRAMMING CONCEPTS 15

5 float8 e = (float8)(d.xx, d.yy, d.xy, d,wz);
6 // creates (1.0, 1.0, 2.0, 2.0, 1.0, 2.0, 4.0, 3.0)

The second way to address the elements is via their indices, using s plus indices from 0 to
f (hex for 15). For an int4 i, the notation i.s0 would access the first element and i.s3

the last one. Thought the notations cannot be mixed, more than one index can be appended
to the s.

1 int4 f, g;
2 f = (int4)(1,2,3,4);
3 g.s0123 = f.wzyx;
4 // creates (4,3,2,1)

Vectors provide a syntax to access their upper or lower half, .hi and .lo. Even or odd
indices can be accessed by using .even or .odd. It is not allowed to take the address of an
vector element.

Arithmetic operands can be either two scalars, two vector types or a scalar and a vector type.
If both types are scalars, the operation will return a scalar as well. If both types are vectors,
the result will be a vector of same size and the operation is applied once per element pair.
If only one is a scalar, it will be widened to a vector of equal size before the operation is
applied. Operations with other operands work in the same way. If the arguments are not of
the same type, a conversion may be possible. OpenCL has specific rules for type casts and
offers explicit conversion functions for some cases. A complete list of conversions rules is
included in the OpenCL specification, Munshi (2012).

1 int4 h, i;
2 int k;
3
4 h = i + k;
5 // is equivalent to
6 h.x = i.x + k;
7 h.y = i.y + k;
8 h.z = i.z + k;
9 h.w = i.w + k;

Derived from graphics calculations, OpenCL supports image types. These come in 1, 2 or 3
dimensional variants. Currently, our work does not support these types as kernel arguments.

Address space qualifiers determine in which memory area a variable is placed. The memory
areas and qualifiers are discussed in Section 2.3.3. Variables are placed in private memory
if no qualifier is used.
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Two function qualifiers can be used to mark functions for the compiler. One is the __kernel
or kernel qualifier, required to execute the function on an OpenCL device. A kernel can
be called by other kernels as a normal function. A kernel function always returns void and
uses call by reference to return values. The other function qualifier is __attribute__. It
gives hints to the compiler for better optimizations, such as work-item distribution.

3.3.2 Built-in Functions of OpenCL C

Each work-item has to be identifiable at runtime to make use of the work-item distribution.
Each ID consists of a tuple with one value per dimension. The values range from 0 to the
total number of work-items in the dimension. If a dimension is not used, the global ID for
that dimension is 0 for all elements. The function get_work_dim returns the number of
dimensions in use.

OpenCL offers functions to identify work-items by their global ID. They require an argument
to select a dimension from the tuple. get_global_size returns the current maximum
number of work-items in a dimension. get_global_id return the ID itself. It must be called
once for each dimension to get the complete ID. The offset for the global IDs can be obtained
by calling get_global_offset.

The functions to manage work-groups are similar and return local and group ID. The function
get_local_size returns the maximum values for the local IDs and get_num_groups the
maximums for the group ids. The IDs are obtained by get_local_id and get_group_id,
respectively.

Furthermore, functions for math, geometrics, integer and float operations are available. Most
of them work on scalars as well as vectors.

OpenCL offers barriers to synchronize work-items. A barrier function must be passed by
all work-items in a work-group prior to continuation. It ensures a correct ordering of memory
operations, and is called memory fence. A flag specifies if the memory operations synchro-
nize for global or local memory. A memory fence can be used without the barrier to ensure
either loads (read_mem_fence), stores (write_mem_fence) or both (mem_fence) are
ordered.
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3.3.3 An OpenCL Use Case Scenario

This section shows the multiplication of quadratic matrices in OpenCL. A straightforward al-
gorithm calculates each index by multiplying and adding the corresponding line and column.
OpenCL speeds up the process by calculating many indices concurrently. For an optimal
distribution, we want to create a number of work-items equal to the number of indices in
the matrix. For an easy mapping, our index space will have two dimensions to make each
matrix element identifiable by a tuple (nx, ny) in the index space. For better readability, error
handling is omitted in the presented code.

The following code shows the implementation of the kernel. It is written in OpenCL C
and stored in the host program as a string. The kernel itself is a function marked with the
__kernel keyword. Input and output matrices are arguments placed in the global memory.
They are represented as one-dimensional arrays, because OpenCL does not allow multidi-
mensional arrays as arguments.

1 constexpr const char* kernel_source = R"__(
2 __kernel void matrix_mult(__global float* matrix1,
3 __global float* matrix2,
4 __global float* output) {
5 size_t size = get_global_size(0); // Nx == Ny
6 size_t x = get_global_id(0); // nx
7 size_t y = get_global_id(1); // ny
8 float result = 0;
9 for (size_t idx = 0; idx < size; ++idx) {

10 result += matrix1[idx + y * size]
11 * matrix2[x + idx * size];
12 }
13 output[x+y*size] = result;
14 }
15 )__";
16 constexpr size_t kernel_size = strlen(kernel_source);
17 constexpr const char* kernel_name = "matrix_mult";
18 constexpr size_t matrix_size = 1000;

In line 5, the function get_global_size returns the number of items in the first dimension.
Since we use quadratic matrices, the number of items in both dimension are equal and
correspond to the number of rows or columns. The function get_global_id is used to
get the global id of the specific work-item. This ID is a tuple (nx, ny) and used to determine
the index each work-item calculates in the matrix. The calculation is performed in a for-loop.
In addition to the kernel, we also define the length of the kernel source, the kernel function
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name and the size of the matrices. These information are required at runtime, when the
kernel is compiled and enqueued for execution. They do not have a fixed size.

The code shown below is placed in the main function of the host program. The fist step in an
OpenCL program is to find a platform and its OpenCL devices. The platform depends on the
OS and device drivers. On a MacBook, we found “Apple” as platform, while our Linux setup
returned “Nvidia CUDA”. The clGetPlatformIDs and clGetDeviceIDs follow a similar
pattern. If no container is passed to the functions, they return the number of available IDs,
which can be used to allocate a container to hold all IDs. This example always chooses the
first ID, i.e., the first device.

1 cl_uint number_of_platforms = 0;
2 clGetPlatformIDs(0, nullptr, &number_of_platforms);
3 vector<cl_platform_id> platform_ids(number_of_platforms);
4 clGetPlatformIDs(number_of_platforms, platform_ids.data(),
5 nullptr);
6
7 cl_uint number_of_gpus = 0;
8 auto device_type = CL_DEVICE_TYPE_GPU;
9 clGetDeviceIDs(platform_ids[0], device_type, 0,

10 nullptr, &number_of_gpus);
11 vector<cl_device_id> gpu_ids(number_of_gpus);
12 clGetDeviceIDs(platform_ids[0], device_type, number_of_gpus,
13 gpu_ids.data(), nullptr);
14
15 cl_device_id device = gpu_ids[0];

In the next step, we create a context to manage devices and command queues. The context
requires a list of all devices it manages, while the command queue expects a context and the
device it is responsible for.

1 cl_context context = clCreateContext(0, device.size(), &device,
2 nullptr, nullptr, nullptr);
3
4 cl_command_queue cmd_queue = clCreateCommandQueue(context,
5 device,
6 0, nullptr);

To compile the source code for the device and create a kernel, we have to call
clCreateProgramWithSource. The function creates an OpenCL program object
containing all sources. clBuildProgam then compiles the code for all devices asso-
ciated with the context. In case it returns an error, the log can be obtained by using
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clGetProgramBuildInfo. Finally, a kernel has to be chosen from the program object by
calling clCreateKernel, which takes a program object and a kernel name as arguments.

1 cl_program program = clCreateProgramWithSource(context, 1,
2 &kernel_source,
3 &kernel_size,
4 nullptr);
5 clBuildProgram(program, 0, nullptr, nullptr, nullptr, nullptr);
6
7 cl_kernel kernel = clCreateKernel(program, kernel_name, nullptr);

Arguments are passed to a kernel as memory objects. Consistent with the arguments passed
to the kernel presented above, we use a vector to represent the matrix. The iota function
provided by the C++ standard template library (STL) fills the matrix with ascending values,
starting at 0. In line 7, the size for our memory objects is calculated using the number of
indices and data type. The clCreateBuffer function requires a context, access modifiers
for the work-items, and the size of the create memory object. All created memory objects are
of equal size, but the input should be read only and the output write only. Since the output
values do not need to be initialized, only the input values are copied to the device using
the clEnqueueWriteBuffer function. Setting the third argument to CL_TRUE causes
the function to block. Alternatively, OpenCL offers a callback-based approach, that avoids
blocking.

1 vector<float> matrix1(matrix_size * matrix_size);
2 vector<float> matrix2(matrix_size * matrix_size);
3
4 iota(begin(matrix1), end(matrix1), 0);
5 iota(begin(matrix2), end(matrix2), 0);
6
7 auto data_size = matrix_size * matrix_size * sizeof(float);
8 cl_mem buf_in1 = clCreateBuffer(context, CL_MEM_READ_ONLY,
9 data_size, nullptr, nullptr);

10 cl_mem buf_in2 = clCreateBuffer(context, CL_MEM_READ_ONLY,
11 data_size, nullptr, nullptr);
12 cl_mem buf_out = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
13 data_size, nullptr, nullptr);
14
15 clEnqueueWriteBuffer(cmd_queue, buf_in1, CL_TRUE,
16 0, data_size, matrix1.data(),
17 0, nullptr, nullptr);
18 clEnqueueWriteBuffer(cmd_queue, buf_in2, CL_TRUE,
19 0, data_size, matrix2.data(),
20 0, nullptr, nullptr);
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The last step before enqueuing the kernel for execution is setting the memory objects as
arguments. This is done by using the clSetKernelArg function and providing kernel,
argument index, and buffer as arguments. The function clEnqueueNDRangeKernel is
used to enqueue the kernel and specify the number of work-items created for its execution.
The first argument is a command queue and identifies the device in use. It is followed by the
kernel we want to execute. The next arguments indicate the number of work-items and their
partitioning into work-groups. The third argument indicates the number of dimensions. The
fourth argument is the offset of the global IDs, which we do not need in this example. The
sixth argument are the work-items in each dimension. It is followed by the size of the work-
groups, which can be set to nullptr to make OpenCL determine the size itself. The last
three arguments can be used for event handling. In this example, we wait for all commands
in the queue to finish with the clFinish function.

1 clSetKernelArg(kernel, 0, sizeof(cl_mem), (void*) &buf_in1);
2 clSetKernelArg(kernel, 1, sizeof(cl_mem), (void*) &buf_in2);
3 clSetKernelArg(kernel, 2, sizeof(cl_mem), (void*) &buf_out);
4
5 vector<size_t> index_space{matrix_size, matrix_size};
6 clEnqueueNDRangeKernel(cmd_queue, kernel,
7 index_space.size(), // work dimensions
8 nullptr, // global offset
9 index_space.data(), // global work size

10 nullptr, // local work size
11 0, nullptr, nullptr);// event handling
12 clFinish(cmd_queue);

The final step is to read the calculated matrix back from the GPU. This is done by
clEnqueueReadBuffer, which behaves similar to clEnqueueWriteBuffer used be-
fore.

1 vector<float> output_data(matrix_size * matrix_size);
2 clEnqueueReadBuffer(cmd_queue, buf_out, CL_TRUE, 0,
3 data_size, output_data.data(),
4 0, nullptr, nullptr);
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4 The Design of OpenCL-enabled Actors

Before taking a closer look at the newly introduced OpenCL actors, we want to summarize
the general design goals and review a few problems that emerged during the integration of
OpenCL into C++ and specifically libcppa.

4.1 Design Goals

This work adds OpenCL-enabled actors to libcppa. We aim at offering a high level of
abstraction when using actors combined with OpenCL. This extension should be integrated
into the existing runtime environment and shall benefit from the features provided by libcppa.

High-level Abstraction The OpenCL API is a low-level API, whereas libcppa offers a
high level of abstraction. To ease the combination, this work aims to embed GPU
programming concepts into an actor system and help the programmer remain at a
high abstraction level.

The setup required to run a program in OpenCL includes several steps. Although the
integration into C++ has been improved by an official wrapper, many of the required
steps have to be repeated in every program. This can be improved by transferring
the setup process to the background and only leave the relevant decisions to the user
such as the distribution of the kernel.

Seamless Integration into libcppa The OpenCL actors should integrate into the runtime
environment of libcppa and benefit from existing properties, such as integration into
the message passing system and network transparency. However, we want to keep a
clean separation to the core library. The features presented here have to be enabled
by a flag at compile-time. Furthermore, OpenCL-specific code is kept in a separate
namespace, called cppa::opencl.

Access Transparency We want to examine this goal from three perspectives: (1) message
passing, (2) actor creation and (3) error handling.

An OpenCL-enabled actor should be addressable transparently in a distributed system
as well as on heterogeneous hardware. Network transparency is a feature provided
by libcppa. It makes remote actors addressable in the same way as local actors
and works for OpenCL-enabled actors as well. The abstraction over heterogeneous
hardware allows transparent message passing to actors, regardless whether they are
running on the CPU or GPU.
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Actors are created by a spawn function. A transparent spawn function allows the
creation of OpenCL-enabled actors with the same syntax used to create other actors.

libcppa implements error handling in form of monitors and links. We aim to integrate
OpenCL-enabled actors into the error handling model and thus enable the transparent
creation of links and monitors.

Location Transparency Creating an OpenCL actor should work in the same way regardless
of the available hardware. A created actor should run on the CPU if no GPU is available
or even be created on a remote systems that provides suitable hardware.

4.2 Working with the OpenCL API

The OpenCL API provided by the Khronos Group is written in C. In this work, we use the C
API directly. A C++ wrapper is available, but shows inconsistencies, as some API calls throw
exceptions, while others still return error codes.

4.2.1 Datatypes from OpenCL

The OpenCL API uses self-defined types. This includes a number of type aliases that rename
primitive types from the stdint.h header such as cl_uint or cl_long.

New data types introduced by OpenCL include cl_command_queue and cl_kernel.
These types are created by API calls and require memory management. All OpenCL types
use a reference count, which has to be updated manually. To avoid memory leaks, we
manage these types using Resource Acquisition Is Initialization (RAII) containers called
smart_ptr.

Our smart pointer class requires three template arguments: (1) the type it handles, (2) one
function to increment the reference count, and (3) one to decrement it. Typedefs allow to use
this class for all reference counted types OpenCL offers.

1 template<typename T, cl_int (*ref)(T), cl_int (*deref)(T)>
2 class smart_ptr { ... };
3
4 typedef smart_ptr<cl_kernel,
5 clRetainKernel,
6 clReleaseKernel> kernel_ptr;
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4.2.2 Error Handling

libcppa uses logging functions of several levels to enable debug output on demand. Errors
are thrown as exceptions with meaningful messages to help users debugging. On the other
hand, the OpenCL API uses C style error values, which have to be checked manually after
each function. In addition, OpenCL does not offer a function to convert an error value to
an expressive string representation. For better compliance, all error handling in this work
uses the existing logging functions and exceptions from libcppa. For a better workflow,
we created a function to convert error values to strings.

4.2.3 The OpenCL Setup

Most steps in the OpenCL setup are repeated in a similar way in every program. This includes
all steps from platform setup to the creation of command queues, as shown in Section 2.3.4.
We use a singleton, called opencl_metainfo, to perform the discovery of platforms and
devices and command queue creation. Furthermore, it obtains basic information about each
device such as the maximum work-group size. Other operations access these information
through this class.

4.3 Combining Actors with OpenCL

We introduce OpenCL-enabled actors to incorporate GPU computing into libcppa. An
OpenCL actor can only interact via message passing. The class actor_facade is derived
from actor and implements a message-passing facade that encapsulates an OpenCL ker-
nel. It checks each received message against the signature of the kernel and, if compliant,
executes a kernel using the message data as arguments. Afterwards, it sends the result
back to the actor that sent the request. By inheriting from actor, the actor_facade is in-
tegrated into the libcppa runtime and benefits from features such as network transparency
and error handling via monitors and links. Due to the limitations of OpenCL it is not possible
to change the behavior of an actor that runs on an OpenCL device. Likewise it is not possible
to spawn new actors from a kernel.

Figure 3 shows the components involved in a kernel execution. When an OpenCL-enabled
actor receives a message delivered by the runtime environment, it extracts the data from the
message and uses it to create memory objects for the arguments and a buffer of the results. It
has access to the command queue of an associated device through the opencl_metainfo.
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Figure 3: (a) Ownership of OpenCL resources in libcppa. The actor stores the kernel and memory and the
metainfo stores context, devices and command queues. (b) Each work-item on the OpenCL device runs an
own instance of the kernel.

Via the command queue, the kernel is sent to the GPU and the execution is triggered. The
kernel is executed concurrently on the OpenCL device. Once the calculation is done, the
data is transferred back to the device through the command queue. The actor proceeds to
send the results back to the actor that request the calculation.

OpenCL allows to use GPUs as well as CPUs for computation. This suggests to run OpenCL
actors on the CPU, if no GPU is available. Conceptually this is possible, but not all device
drivers support OpenCL, and even if drivers for both device types are available, both libraries
would have to be linked to the program. To manage multiple OpenCL implementations, the
Khronos group offers a loader, called Installable Client Driver (ICD). At the current state
of work, we did not take a closer look at this feature. Another problem to consider is the
workload caused by an OpenCL actor running on the CPU. It is not scheduled with other
actors, but uses the same resources.

4.4 Creating OpenCL-enabled Actors

The spawn_cl function creates OpenCL-enabled actors. The first two arguments are the
code and function name of the kernel, both represented as strings. The following three
arguments specify the distribution of the work-items. The third argument is the size of the
global dimensions. Followed by the offset for the global IDs, which can be omitted and
defaults to zero. The last argument is the size for the local dimensions. It will be calculated
by OpenCL, if it is omitted. To match incoming messages to the arguments, the actor requires
the signature of the kernel as a temple argument. By convention, the last kernel argument
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is an output argument, because a kernel function always has the return type void and thus
cannot return its result.

1 template<typename Signature, typename... Ts>
2 inline actor_ptr spawn_cl(const char* source,
3 const char* fname,
4 const opencl::dim_vec& dims,
5 const opencl::dim_vec& offset = {},
6 const opencl::dim_vec& local_dims = {});

Kernels used to create OpenCL-enabled actors expect their arguments to be arrays placed
in the global memory. Hence, messages send to OpenCL actors have to use data types such
as std::vector that grant access to the underlying memory region. To allow user-defined
types, we offer a second spawn_cl with two additional arguments: a function to map a
custom message type to the arguments passed to the kernel and a second function to map
the result type from the kernel back to a custom type sent back in the result message. If
this spawn_cl variant is used, no template argument needs to be provided, since the kernel
signature can be deduced from the function signatures.

1 template<typename MapArgs, typename MapResult>
2 inline actor_ptr spawn_cl(const char* source,
3 const char* fname,
4 MapArgs map_args,
5 MapResult map_result,
6 const opencl::dim_vec& dims,
7 const opencl::dim_vec& offset = {},
8 const opencl::dim_vec& local_dims = {});

4.4.1 A Wrapper For OpenCL Programs

The kernel source code can contain multiple kernels. Kernels in the same source code
can share functions and data. Furthermore, they are compiled together. We offer the class
program to wrap multiple kernels. Both spawn_cl functions are overloaded to accept a
program instead of a string representation of the kernel. A program can be passed to
multiple actors but compiles the code only once.

1 template<typename Signature, typename... Ts>
2 inline actor_ptr spawn_cl(const opencl::program& prog,
3 const char* fname,
4 const opencl::dim_vec& dims,
5 const opencl::dim_vec& offset = {},
6 const opencl::dim_vec& local_dims = {});
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4.5 A Use Case with an OpenCL-enabled Actor

Based on the OpenCL example in Section 3.3.3, we shows the multiplication of two quadratic
matrices using an OpenCL-enabled actor. All code snippets use the std and cppa names-
pace. The kernel code is did not change.

1 void multiplier() {
2 vector<float> m1(matrix_size * matrix_size);
3 vector<float> m2(matrix_size * matrix_size);
4 iota(m1.begin(), m1.end(), 0);
5 iota(m2.begin(), m2.end(), 0);
6
7 auto worker =
8 spawn_cl<float*(float*,float*)>(kernel_source,
9 kernel_name,

10 {matrix_size,
11 matrix_size});
12
13 send(worker, move(m1), move(m2));
14 become(
15 on_arg_match >> [=](const vector<float>& result) {
16 cout << "done" << endl;
17 print_as_matrix(result);
18 self->quit();
19 }
20 );
21 }

The code above shows the function multiplier that is spawned as an actor in the main
function. It creates two input matrices, starts an OpenCL-enabled actor, triggers the calcu-
lation and prints the result. The first four lines initialize two matrices with ascending values
starting with zero. Lines 7 to 10 spawn the actor. The template argument represents the
kernels signature: it requires two float* arguments and returns float* as a result. This
example passes the kernel source directly to the spawn_cl and does not provide mapping
functions. The arguments for the spawn_cl function are the kernel source, its name and
the global dimension sizes. To trigger the kernel execution the matrices are send to the actor
using the send function. Afterwards, the actor changes its behavior to await and print the
result matrix.

1 int main() {
2 announce<vector<float>>();
3 spawn(multiplier);
4 await_all_others_done();
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5 shutdown();
6 }

The following code spawns an actor with the multiplier function and waits for it to finish.
The announce call in line 2 is required by libcppa to enable serialization of vectors
containing float values.

4.6 Discussion about our Design

The design goals list access and location transparency. However, we did not implement
all their aspects. We divide access transparency into three parts. Transparent message
passing and error handling were achieved in our implementation. The OpenCL-enabled
actor implements the interface actor provided by libcppa and thus is integrated into the
runtime environment of libcppa. It can be addressed by the send function in the same
way as other actors and can be linked and monitored by other actors.
The third part of access transparency concerns actor creation and we did not achieve it.
The OpenCL-enabled actors requires OpenCL specific parameters to be created, such as a
kernel written in OpenCL C and information how to distribute the kernel on a device. Hence,
we named the function to create OpenCL-enabled actors spawn_cl.
Actor creation includes the aspect of location transparency. OpenCL is available for GPUs
as well as CPUs. Hence, on a local machine it is be possible to create OpenCL-enabled
actors for both architectures. However, OpenCL depends on vendor specific libraries. Most
often CPU and GPU do not share a vendor. Thus, they are addressed by different libraries.
The Khronos Group provides an extension called Installable Client Driver (ICD) that allows
the coexistence of multiple OpenCL libraries. Though the evaluation of ICD is left for future
work, is suggests that location transparency on local machines can be achieved for actor
creation.
Location transparency also includes actor creation on remote hosts. Since the OpenCL
kernel is available as a sting it is possible to send it to a remote system and use it to create
an OpenCL-enabled actor. However, the integration into libcppa is left for future work.

The context change to an OpenCL device comes with limitations. A key feature of actors is
the ability to spawn new actors. A kernel can neither spawn new actors nor trigger new kernel
executions. It can only call other kernels as a function. Furthermore, it is not possible to send
a message from within a kernel or trigger message passing in the runtime environment of
libcppa. The communication between the context of OpenCL and libcppa is limited to
the interface provided by OpenCL.
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5 Implementation

This section presents our implementation of the OpenCL-enabled actor. The first Sections
briefly discuss concepts and patterns we have used throughout this work. This includes
error handling (5.1), factories (5.2), smart pointers (5.3) and singletons (5.4). Section 5.5
then presents the classes we have use to manage the initialization and data required to run
OpenCL. Finally, Section 5.6 discusses the implementation of the class actor_facade and
the function spawn_cl.

5.1 Logging & Exceptions

libcppa offers logging machanisms through the logging.hpp header. There are five
different levels: error, warning, info, debug and trace. The level is chosen at compile time.
Using the logging functions from libcppa ensures, that all messages are kept in one place
and not spread over multiple logs.

Besides logging, an exception is thrown whenever an error occurs. We use excep-
tions from the Standard Template Library (STL). When an essential process fails, a
std::logic_error is thrown. This includes the platform discovery. For non-essential
errors, we use the std::runtime_error.

5.2 The Factory Pattern

Some of our classes include an error-prone initialization. We uses a factory function to check
invariants before the invocation of the constructor. To prevent the use of the constructor, it
is declared private. Instead, a static create function is available. It takes the arguments
required to call the constructor and invokes it only if the passed arguments fulfill the require-
ments for a successful object creation. If the input is not valid, an exception is thrown and
the object is never created. Otherwise, the constructor can be called safely.
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5.3 Smart Pointers with Reference Count

This section presents two smart pointer implementations, both depending on internal refer-
ence counting. The first part discusses the intrusive_ptr implemented in libcppa.
The second part introduces the class smart_ptr, used to manage OpenCL data types.

5.3.1 The intrusive_ptr from libcppa

In libcppa garbage-collected types inherit ref_counted, which provides in-
ternal reference counting. The counter is thread safe and implemented as an
std::atomic<size_t>. Besides functions to increment (ref) and decrement (deref)
the reference count, the class provides functions to acquire the number of reference and to
test whether the object has exactly one reference.

In addition to the base class, libcppa implements the class intrusive_ptr. It provides
RAII containers for classes derived from ref_counted.

5.3.2 A General Apporach: smart_ptr

OpenCL types are reference counted. However, the process is not automated and has to
be managed manually. Furthermore, they do neither meet the requirements to be managed
by the intrusive_ptr of libcppa, nor can we modify the implementation of OpenCL.
Hence, we implemented a new smart pointer class to automate management of the reference
counted OpenCL types, in the same way the intrusive_ptr provides garbage-collection
in libcppa.

The class smart_ptr can be used for all types that include an internal reference count
and provide functions to manage it. The class expects three template arguments. The first
argument defines the type. The second argument is a function to increment the reference
count. The last argument is a function to decrement it.

1 template<typename T, cl_int (*ref)(T), cl_int (*deref)(T)>
2 class smart_ptr { /* implementation */ };

In addition to a default, copy and move constructor, we implements an adopt function. The
function adopt transfers ownership, but does not increment the reference count. OpenCL
objects are created with a reference count of one, which should not be incremented a second
time, when the pointer is passed to a smart_ptr.
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1 inline void adopt(pointer ptr) {
2 reset(); // discards previous pointer
3 m_ptr = ptr;
4 }

To improve readability and usability of the smart_ptr, we provide typedefs for all OpenCL
data types. The following code shows an example with the cl_kernel type. The function
clRetainKernel increments the reference count, while clReleaseKernel decrements
it.

1 typedef smart_ptr<cl_kernel,
2 clRetainKernel,
3 clReleaseKernel> kernel_ptr;

5.4 The Singleton Interface of libcppa

-create_singleton():singleton
-initialize()
-destroy()
-dispose()

singleton

Figure 4: This diagram shows the singleton interface of libcppa.

A singleton is a class that will be instantiated only once. libcppa provides a class called
singleton_manager, that aggregates access to all singletons in libcppa and handles
their creation. To be manageable, a singleton has to implement the interface shown in Fig-
ure 4.

create_singleton This static function creates a new object of the class and calls the
constructor. It should be a lightweight operation, since it may be called multiple time,
explained below.

initialize It is called after create_singleton. If another thread created a valid
singleton by now, initialize is not called again. It may be executed multiple times.

dispose Is used to delete uninitialized instances.

destroy Is used to delete initialized instances.
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Whenever a singleton is accessed through the singleton_manager, the function
lazy_get is called. It ensures that each concurrent call returns the same instance. If the
singleton was not created previously, it is created and initialized implicitly. Although multiple
temporary instances of the singleton may be created when lazy_get is called concurrently,
only one is kept and all others are destroyed. This can only happen the first time the sin-
gleton is accessed. Once the pointer is set, access to singleton is a lightweight operation.
The pointer stored in the manager is checked twice to reduce the initialize calls to a
minimum.

5.5 Handling OpenCL metadata

We handle to OpenCL setup in the background and store information and resources in a sin-
gleton. It is used by all actors to access OpenCL resources, such as command queues. The
first part of this section discusses the singleton class opencl_metainfo and the second
part presents the class device_info that is used to store device specific information.

5.5.1 The opencl_metainfo Singleton

The class opencl_metainfo is responsible for the OpenCL setup. It is a singleton and
available via get_opencl_metainfo through the singleton manager of libcppa, dis-
cussed in section 5.4. If libcppa is complied without OpenCL support, accessing the
singleton throws an exception.

1 opencl::opencl_metainfo* singleton_manager::get_opencl_metainfo() {
2 # ifdef CPPA_OPENCL // defined if libcppa is compiled with OpenCL
3 return lazy_get(s_opencl_metainfo);
4 # else
5 CPPA_LOGF_ERROR("libcppa was compiled"
6 "without OpenCL support");
7 throw std::logic_error("libcppa was compiled"
8 "without OpenCL support");
9 # endif

10 }

The initialize function, required by the singleton_manager, performs the setup for
the OpenCL platform and devices. An OpenCL platform is a vendor specific OpenCL driver.
Since we have not examined the use of OpenCL with multiple platforms, per default the
first detected platform is selected. Because this work aims at GPU computing, the setup
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prefers GPU over CPU devices. The code below shows the device discovery. Line 3 sets the
device type to GPUs. The following function clGetDeviceIDs is used to get the number of
available devices for the chosen type. If no devices are found, the flag is changed to CPUs
in line 13. If no CPUs are found either, an exception is thrown in line 23. Once the number
of available device is known, clGetDeviceIDs can be used to acquire their IDs, line 28.

1 vector<cl_platform_id> ids = ... // available platforms ids
2 int pid{0}; // index of the selected platform
3 cl_uint num_devices{0}; // number of available devices
4 cl_device_type dev_type{CL_DEVICE_TYPE_GPU};
5
6 // get number of available GPUs
7 auto err = clGetDeviceIDs(ids[pid], dev_type,
8 0, nullptr, &num_devices);
9

10 // if no devices are found, look for CPUs
11 if (err == CL_DEVICE_NOT_FOUND) {
12 CPPA_LOG_TRACE("No GPU devices found."
13 "Looking for CPU devices.");
14 dev_type = CL_DEVICE_TYPE_CPU;
15 err = clGetDeviceIDs(ids[pid], dev_type,
16 0, nullptr, &num_devices);
17 }
18
19 // if no devices are found, throw exception
20 if (err != CL_SUCCESS) {
21 ostringstream oss;
22 oss << "clGetDeviceIDs: " << get_opencl_error(err);
23 CPPA_LOG_ERROR(oss.str());
24 throw runtime_error(oss.str());
25 }
26
27 // get device ids
28 vector<cl_device_id> devices(num_devices);
29 err = clGetDeviceIDs(ids[pid], dev_type, num_devices,
30 devices.data(), nullptr);

A single context is created to manage all devices. This enables the synchronization of
operations over command queues. Once the context is created, a loop initializes a com-
mand queue for each device and stores it in a device_info. OpenCL offers the function
clGetDeviceInfo to get device information, which we use acquire additional information
for the device_info, explained in Section 5.5.2.
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5.5.2 A Container for OpenCL Devices

The class device_info stores information about an OpenCL device. The class is used
by opencl_metainfo to manage available devices on a platform. A list with all devices
is available to the user. Currently, the class device_info stores information about the
maximum work-group size, the maximum number of dimensions and the maximum work-item
size. Furthermore, device ID and a command queue managing the corresponding device are
stored.

All members are declared private, because the OpenCL device id and command queue
should no be publicly available. Getters offer access to the information dedicated to users,
such as the work-group size.

5.6 OpenCL-enabled Actors

This Section describes the implementation of OpenCL-enabled actors. The first part presents
the actor interface. It is the base class for all actor implementations in libcppa. Subse-
quently, we discuss a wrapper for OpenCL kernels, the class program. It can be passed to
the function spawn_cl to create OpenCL-enabled actors. Furthermore, we will present our
approach by highlighting important implementation details.

5.6.1 The actor Interface from libcppa

+enqueue(hdr: message_header, msg: any_tuple)
+link_to(other: actor_ptr)
+id():actor_id
~cleanup(reason: uint32_t)

actor

Figure 5: The actor interface of libcppa.

Figure 5 shows the interface of the class actor. It is the base class for all actor implemen-
tations in libcppa.

The member function enqueue is used to deliver a message to an actor. It has no default
implementation and has to be implemented for each actor type individually. The first argu-
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ment for enqueue is a message_header, which stores sender and receiver as well as a
priority and a unique message ID. The second argument is the message data, i.e., a tuple.

The function link_to links the calling actor to the callee. When a linked actor exits, it sends
a message with the exit reason to each linked actor. It has a default implementation for local,
i.e., non-proxy, actors.

Each actor has a process-unique ID. It can be obtained by the function id. In combination
with the process ID and node ID, it is a unique identifier in a distributed system.

Before an actor object gets destroyed, the member function cleanup is called. The default
implementations sets an exit reason. It can be overridden to include additional clean up
code.

5.6.2 A Wrapper for OpenCL Kernels

The OpenCL program object stores kernel code and is used to compile it for specified
OpenCL devices. All kernels in a program are compile collectively and may share func-
tions and data. Furthermore, a program object is required to create kernel objects, which
can be passed to a command queue for execution.

We implemented the class program to wrap kernel source code and an OpenCL program
object. A program instance can be passed to the function spawn_cl instead of a plain string
representation of the code. The code in a program is compiled for a specified device. Multiple
OpenCL actors can be created with the same program, but may use different kernels stored
in it.

The constructor of the class program expects a context, a command queue and an OpenCL
program object. The kernel is compiled at runtime when the program is created. The static
member function create constructs new instances, it expects a kernel and a device ID as
arguments. This is not identical to the device_id used by OpenCL, but a consecutive
numbering of all available devices. The ID defaults to zero if it is not specified.

1 static program create(const char* kernel_source,
2 uint32_t device_id = 0);

The function create accesses the list of the available devices from the opencl_metainfo
singleton and checks whether a matching device exists. In the next step, it creates an
OpenCL program object and compiles the code for the selected device. The build log is
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printed to std::cerr in case of an error. After collecting the mandatory information, the
constructor of program is invoked.

5.6.3 Creating OpenCL-enabled Actors

The function spawn_cl creates an actor_facade and returns a reference to it. The func-
tion has five arguments, including two optional ones. The required arguments are the source
code of a kernel, the name of a kernel function in the code and a vector specifying the dis-
tribution among work-items. The optional arguments specify an offset for global IDs and the
work-group size. The type dim_vec restricts the number of dimensions to the maximum
allowed by OpenCL.

In addition to the arguments, this function expects the signature of the kernel as a template
parameter. The actor_facade uses the signature to identify invalid messages and to map
message elements to kernel arguments.

1 template<typename Signature, typename... Ts>
2 inline actor_ptr spawn_cl(const char* source,
3 const char* fname,
4 const opencl::dim_vec& dims,
5 const opencl::dim_vec& offset = {},
6 const opencl::dim_vec& local_dims = {});

The arguments to the kernel are passed in containers of the type std::vector. OpenCL
expects the arguments as C arrays, which can be obtained from the vector. The function
spawn_cl is overloaded to allow user-defined types rather than vectors. It is shown in the
following code and expects the two additional arguments map_args and map_result. The
first functor converts an incoming message to types that match the signature of the kernel.
The second functor converts the result from the kernel execution to a user-defined type. This
overload deduces the template parameters from the signatures of the functors.

1 template<typename MapArgs, typename MapResult>
2 inline actor_ptr spawn_cl(const char* source,
3 const char* fname,
4 MapArgs map_args,
5 MapResult map_result,
6 const opencl::dim_vec& dims,
7 const opencl::dim_vec& offset = {},
8 const opencl::dim_vec& local_dims = {});
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Two additional overloads accept a kernel wrapped in a program instead of a string as first
argument. The class program is explained in Section 5.6.2.

All spawn_cl functions pass their arguments to the cl_spawn_helper. It is a metapro-
gramming utility that assembles the template parameters for the actor_facade and cre-
ates default mapping functions. The following code shows the utility class carr_to_vec

and the cl_spawn_helper with two specializations.

1 template<typename T>
2 struct carr_to_vec { typedef T type; };
3
4 template<typename T>
5 struct carr_to_vec<T*> { typedef std::vector<T> type; };
6
7 template<typename Signature, typename SecondSignature = void>
8 struct cl_spawn_helper;
9

10 template<typename R, typename... Ts>
11 struct cl_spawn_helper<R (Ts...), void> {
12
13 using result_type = typename carr_to_vec<R>::type;
14
15 using impl = opencl::actor_facade<
16 result_type(typename carr_to_vec<
17 typename carr_to_vec<
18 Ts
19 >::type
20 >::type...)
21 >;
22 using map_arg_fun = typename impl::arg_mapping;
23 using map_res_fun = typename impl::result_mapping;
24
25 template<typename... Us>
26 actor_ptr operator()(map_arg_fun f0,
27 map_res_fun f1,
28 const opencl::program& p,
29 const char* fname,
30 Us&&... args) const {
31 using std::move;
32 using std::forward;
33 return impl::create(p, fname,
34 move(f0), move(f1),
35 forward<Us>(args)...);
36 }
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37
38 template<typename... Us>
39 actor_ptr operator()(const opencl::program& p,
40 const char* fname,
41 Us&&... args) const {
42 using std::move;
43 using std::forward;
44 map_arg_fun f0 = [] (any_tuple msg) {
45 return tuple_cast<
46 typename util::rm_const_and_ref<
47 typename carr_to_vec<Ts>::type
48 >::type...
49 >(msg);
50 };
51 map_res_fun f1 = [] (result_type& result) {
52 return make_any_tuple(move(result));
53 };
54 return impl::create(p, fname,
55 move(f0), move(f1),
56 forward<Us>(args)...);
57 }
58
59 };
60
61 template<typename R, typename... Ts>
62 struct cl_spawn_helper<
63 std::function<optional<cow_tuple<Ts...>> (any_tuple)>,
64 std::function<any_tuple (R&)>
65 >
66 : cl_spawn_helper<R (Ts...)> { };

The struct carr_to_vec is used to convert C style arrays in the signature of kernels to
C++ vectors. Unless a pointer is passed as a template parameter, type is defined as the
parameter T. If a pointer is passed, the template specialization converts the pointer to a
vector, assuming that the pointer is in fact a C array.

The first specialization of the cl_spawn_helper has the template parameter R and a vari-
adic template parameter pack Ts. R represents the return type of a function and Ts the
types of the arguments. This specialization expects only a function signature R (Ts...)

and no second parameter. The information about result and parameter type are used to
specify the template parameters for the actor_facade type. All pointer arguments are re-
moved from the “new” kernel signature and replaced with vector types. The second template
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specialization allows to use custom mapping functions which retrieve the necessary type
information from the signature of the mapping functor, as shown in Section 5.6.4. The func-
tion spawn_cl uses the apply operator of the cl_spawn_helper to pass all arguments
required to create the actor_facade. The arguments are similar to the arguments from
the spawn_cl function. When called without mapping functions, the cl_spawn_helper

creates default versions and uses them instead.

5.6.4 The actor_facade

The class actor_facade encapsulates an OpenCL kernel and is created by the function
spawn_cl described in section 5.6.3. It matches incoming messages against the signature
of the kernel, pushes the kernel arguments to OpenCL, and reads and forwards the results
from the GPU. The class is derived from the class actor.

1 template<typename Signature>
2 class actor_facade;
3
4 template<typename Ret, typename... Args>
5 class actor_facade<Ret(Args...)> : public actor {
6
7 using args_tuple =
8 cow_tuple<typename util::rm_const_and_ref<Args>::type...>;
9 using arg_mapping = function<optional<args_tuple>(any_tuple)>;

10 using result_mapping = function<any_tuple(Ret&)>;
11
12 /* implementation */
13 }

The code above shows the template parameters of the class actor_facade. They rep-
resent the signature of the encapsulated kernel. It has a return type Ret and expects a
variadic number of arguments. The template parameters are used to create the function
types of the mapping functions. A function of the type arg_mapping reads the arguments
from an any_tuple and has an optional return type. Once the kernel execution is done, a
function of the type result_mapping takes an argument of the type Ret and returns an
any_tuple, that will be used as a response.

1 actor_facade::actor_facade(const program& prog,
2 kernel_ptr kernel,
3 const dim_vec& global_dimensions,
4 const dim_vec& global_offsets,
5 const dim_vec& local_dimensions,
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6 arg_mapping map_args,
7 result_mapping map_result);

The constructor of actor_facade requires seven arguments. The first arguments is a
program, which holds information about the device and command queue used for the ker-
nel. The second argument is the kernel. The next three arguments are vectors containing
information about the kernel distribution among work-items and work-groups. The last two
arguments are mapping functions with the types arg_mapping and result_mapping. Ei-
ther they are user-defined and passed via spawn_cl, or the cl_spawn_helper creates
default implementations that match the signature of the kernel.

1 static intrusive_ptr<actor_facade> actor_facade::create(
2 const program& prog,
3 const char* kernel_name,
4 arg_mapping map_args,
5 result_mapping map_result,
6 const dim_vec& global_dims,
7 const dim_vec& offsets,
8 const dim_vec& local_dims
9 );

To avoid errors in the constructor, all input values are checked before an instance of the
actor_facade is created. Hence, it offers a factory function as explained in Section 5.2
for its creation and declares the constructor private. The arguments expected by the factory
differ minimally from the constructor. Instead of a kernel, it expects a kernel name, which is
used to extract a kernel from a program (Section 5.6.2). Furthermore, it checks if the vectors
containing the parameters for the kernel distribution are consistent and contain meaningful
data.

1 void actor_facade::enqueue(const message_header& hdr,
2 any_tuple msg) override {
3 typename
4 util::il_indices<util::type_list<Args...>>::type indices;
5 enqueue_impl(hdr.sender, std::move(msg), hdr.id, indices);
6 }

A message is delivered to an actor through the function enqueue. Line 3 and 4 in the code
above create a type from the Args template parameter pack of the class, which contains
the indices for all elements in the msg tuple. This information is required to extract all ele-
ments from the input type in the next function. Along with the received msg and the variable
of the newly created type, the sender of the message and a message ID are passed to
enqueue_impl.
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1 template<long... Is>
2 void actor_facade::enqueue_impl(const actor_ptr& sender,
3 message_id id,
4 any_tuple msg,
5 util::int_list<Is...>) {
6 auto opt = m_map_args(move(msg));
7 if (opt) {
8 response_handle handle{this, sender,
9 id.response_id()};

10 size_t ret_size = accumulate(m_global_dimensions.begin(),
11 m_global_dimensions.end(),
12 1, multiplies<size_t>{});
13 vector<mem_ptr> arguments;
14 add_arguments_to_kernel<Ret>(arguments,
15 ret_size,
16 get_ref<Is>(*opt)...);
17 auto cmd = make_counted<
18 command<actor_facade, Ret>
19 >(handle, this, move(arguments));
20 cmd->enqueue();
21 }
22 else {
23 CPPA_LOGMF(CPPA_ERROR, this,
24 "actor_facade::enqueue() tuple_cast failed.");
25 }
26 }

The code above shows the implementation of enqueue_impl. The arguments sender and
id are used to create a response handle in line 8. After the calculation is done, the handle
identifies the original request unambigiously and is used to send a response message. The
third argument contains the arguments for the kernel execution. The type of the fourth argu-
ment contains indices for all elements in the msg tuple. These indices are used to access
individual tuple elements.

In line 6, the argument mapping function converts the message data to the arguments ex-
pected by the kernel. If the conversion fails, we log an error and the kernel is not executed.
ret_size determines the size to the result buffer for the kernel execution. We assume, that
the result size is equal to the number of work-items. This allows every work-item to calcu-
late one result. In future releases, the result size will be configureable. To calculate the size,
we multiply the work-items for each dimension. The function add_arguments_to_kernel
creates and initializes memory object for each argument. It is discussed in Section 5.6.5. The
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kernel execution is wrapped in the class command. It runs asynchronously and is triggered
via cmd->enqueue(). Section 5.6.6 explains its implementation.

5.6.5 Using Variadic Templates to Create Memory Objects from Message Data

The function add_arguments_to_kernel creates a memory object (see Section 2.3.4)
for each message element and the result buffer. Furthermore, it sets the memory objects as
arguments for the kernel execution. Recursion is used to iterate over the template parame-
ters, which specify the types of the elements.

1 template<typename R, typename... Ts>
2 void add_arguments_to_kernel(args_vec& arguments,
3 size_t ret_size,
4 Ts&&... args);

The function itself expects a buffer for the memory objects, the size of the result buffer and
a variadic number of message elements. The template parameters state the type of values
stored in the result buffer and a variadic number of types‚ which specify the type of each
message element. This function creates the result buffer and starts the recursion.

1 template<typename T0, typename... Ts>
2 void add_arguments_to_kernel_rec(args_vec& arguments,
3 T0& arg0, Ts&... args);
4 void add_arguments_to_kernel_rec(args_vec& arguments);

The recursion is implemented using the overload function add_arguments_to_kernel_rec.
Both implementations expect a vector for the created memory objects as first argument.
The first function expects the head of the elements arg0 and the tail args. It is called until
all elements are processed and creates a memory object for each element, which is then
placed in the arguments vector. The second function ends the recursion and thus has no
template arguments. It iterates over the vector and sets the objects as kernel arguments.

5.6.6 Wrapping the Kernel Execution

The class command wraps a kernel execution and provides a callback function to OpenCL.
Its template parameters specify the type T of the actor_facade instance that created the
command and the result type R of the kernel. The command is derived from ref_counted,
which enables memory management via reference count, as explained in section 5.3.1.
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1 template<typename T, typename R>
2 class command : public ref_counted {
3
4 public:
5 command(response_handle handle,
6 intrusive_ptr<T> actor_facade,
7 std::vector<mem_ptr> arguments);
8
9 /* more code */

10 };

The constructor of the class command requires three arguments. The first argument is a
response_handle, which specifies the recipient of the results. The second argument is
the actor_facade instance that created the command. It is required to access the kernel
and related information. The last argument is a vector containing the kernel arguments.
Once the command is created, the actor_facade calls its enqueue function.

1 void command::enqueue () {
2 this->ref();
3 auto event = m_kernel_event.get();
4 auto data_or_nullptr = [](const dim_vec& vec) {
5 return vec.empty() ? nullptr : vec.data();
6 };
7 clEnqueueNDRangeKernel(
8 m_queue.get(),
9 m_actor_facade->m_kernel.get(),

10 m_actor_facade->m_global_dimensions.size(),
11 data_or_nullptr(m_actor_facade->m_global_offsets),
12 data_or_nullptr(m_actor_facade->m_global_dimensions),
13 data_or_nullptr(m_actor_facade->m_local_dimensions),
14 0,
15 nullptr,
16 event
17 );
18 clSetEventCallback(
19 event,
20 CL_COMPLETE,
21 [](cl_event, cl_int, void* data) {
22 auto cmd =
23 reinterpret_cast<command*>(data);
24 cmd->handle_results();
25 cmd->deref();
26 },
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27 this
28 );
29 clFlush(m_queue.get());
30 }

Since the command_queue needs the command for its callback, it increments its own refer-
ence count in line 2. This represents the reference held by OpenCL and prevents the deletion
of the command. Afterwards, it acquires an event, which is required to link a callback to the
kernel execution.

The function clEnqueueNDRangeKernel is an OpenCL API call to enqueue a kernel to a
command queue. It is explained in Section 4.5. In addition, the function data_or_nullptr
returns either a pointer to an array inside a vector or a nullptr, if the vector is empty. It is
used to pass a nullptr to OpenCL if the user did not specify a value for the dimensions or
offset. Furthermore, the last argument is the event mentioned earlier.

In the next step, a callback is set with the function clSetEventCallback. The first pa-
rameter is the event we have passed to the function clEnqueueNDRangeKernel. This
links the callback to the kernel execution. The next parameter specifies a trigger for the call-
back invocation. A callback can only be registered with the CL_COMPLETE flag that causes
OpenCL to invoke the callback. The third argument is the callback function. It has to match
the signature void (...) (cl_event, cl_int, void *). The void pointer allows
users to pass arbitrary data to clSetEventCallback. We pass a pointer to the command
itself. Once the callback is set, clFlush sends all operations in a command queue to the
device.

Once the kernel finished execution, the callback dereferences the pointer to the command

and calls its member function handle_results. Finally, the reference count is decre-
mented.

1 void command::handle_results () {
2 R result(m_number_of_values);
3 clEnqueueReadBuffer(m_queue.get(),
4 m_arguments[0].get(),
5 CL_TRUE,
6 0,
7 sizeof(typename R::value_type)
8 * m_number_of_values,
9 result.data(),

10 0,
11 nullptr,
12 nullptr);
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13 reply_tuple_to(m_handle, m_actor_facade->m_map_result(result));
14 }

The function handle_result sends the results to the client. The result type R is a
template parameter of the class command. The function clEnqueueReadBuffer is ex-
plained in Section 3.3.3. Before the results are sent, they are converted using the function
m_map_result from the actor_facade. The client is identified via the response handle
m_handle.
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6 Evaluation

In this section, we compare our work to established implementations, specifically the native
OpenCL API and event-based actors from libcppa actors. The first benchmark compares
the runtime of our implementation to the native API of OpenCL and measure the overhead
we induced. The second test compares the creation time of OpenCL-enabled actors with
original event-based actors. The third benchmark is published in Charousset et al. (2013) and
examines the scaling behavior in a distributed, heterogeneous system. Finally we compare
the performance of several GPUs.

Our first two benchmarks are run on a Tesla C2075 workstation GPU on a 12 core server
running Ubuntu 13.04 with the proprietary driver provided by Nvidia. The setup for the third
benchmark uses a distributed setup that consists of eight nodes. The last benchmark makes
use of different GPUs available in our lab, the details of which are presented as part of the
experimental setting.

6.1 Runtime Overhead of Actors Over Native OpenCL Programming

Our first benchmark program measures the overhead induced by our actor approach com-
pared to the native API of OpenCL. Though the OpenCL-enabled actor uses the OpenCL
API internally, it performs additional steps such as the setup of the runtime environment and
the actor creation. This benchmark quantifies the overhead. We have implemented one
program with the native API and one with libcppa. Since both programs use the same
kernel, the runtime should be independent of the pure numerical calculations on the GPU
and differences should only depend on the different processing overheads. The kernel cal-
culates the product of two matrices and is similar to the kernel we used in Sections 3.3.3.
Both programs use the same configuration for the kernel execution and work asynchronously
using a callback.

1 void matrix_mult_native(iterations) {
2 init_opencl();
3 for (0 to iterations) {
4 enqueue_kernel(...);
5 set_callback();
6 wait_for_callback();
7 }
8 }
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The pseudo code above shows the native benchmark variant. The function init_opencl

represents the setup process for OpenCL and the creation of matrices for the kernel execu-
tion. Each iteration of the loop enqueues the kernel, sets a callback and waits for the callback
to finish.

1 void matrix_mult_cppa(iterations) {
2 actor = spawn_cl( ... );
3 for (0 to iterations) {
4 send(actor, matrix1, matrix2);
5 await_result_message();
6 }
7 }

The benchmark variant with libcppa creates an OpenCL-enabled actor, which performs
the calculation on the GPU. In each iteration, a message with the matrices is sent to the
actor and the result are awaited. We measured the wall-clock time required to perform an
increasing number of matrix multiplications.

Figure 6 displays the wall-clock time required by the programs as a function of the number
of iterations. We performed a high number of iterations to enlarge the runtime difference be-
tween both programs. Adding complexity to the calculations on the GPU would only increase
the runtime of both programs, but not their difference. We have plotted the average from
50 measurements as well as a 95% confidence interval. Both implementations exhibit linear
growth with a similar slope. Since we use the OpenCL API inside libcppa it is not possible
to achieve a better performance than OpenCL itself, which would result in a smaller slope.
However, a larger slope for our implementation would indicate that we produce an overhead.
Overhead could ,e.g., originate in unnecessary copy operations. Since both implementations
show a similar slope, the induced overhead seems to be negligible.

The difference between the two curves is plotted in Figure 7. For some values the confidence
interval is too large to observe a detailed behavior. However, the values for 1000, 6000 and
8000 have a small confidence interval and a line of best fit would exhibit a linear growth of
very low slope. This is expected. Since the overhead does not depend on the calculation
time it is smaller in relation to the absolute wall-time, if the calculation takes longer.

6.2 Spawn time

Our second benchmark focuses on the time to instantiate OpenCL-enabled actors. It
compares the creation time of OpenCL-enabled actors to that of Event-based actors from
libcppa. We expect the creation time for OpenCL actors to be longer, but want to show
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Figure 6: Comparison of the wall-clock time required for a matrix multiplication implemented in OpenCL, native
vs. libcppa.

that its creation is a lightweight operation and can be used for short calculations as well as
for longer ones.

1 void spawn_event_based() {
2 for (0 to iterations) {
3 spawn( ... );
4 }
5 wait_for_all_actors();
6 }

1 void spawn_opencl_enabled() {
2 prog = create_program();
3 for (0 to iterations) {
4 spawn_cl(prog, ... )
5 }
6 wait_for_all_actors();
7 }
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Figure 7: Absolute runtime difference between the implementations, native vs. libcppa.

Both benchmarks consist of a loop that spawns one actor per iteration. Afterwards we ensure
that all actors are active by sending a message to the last created actor and waiting for its
answer. We measure the wall-time required to spawn an increasing number of actors.

Figure 8 visualizes wall-clock runtime as a function of spawned actors. Both implementations
show a linear growth. Event-based actors take less time then OpenCL-enabled actors and
exhibit a smaller slope.

Compared to the time required for a simple calculation, such as the matrix multiplication in the
first benchmark, the creation time is reasonably small. It is worth mentioning that OpenCL-
enabled actors are parallelized internally by OpenCL. They are not created as frequently as
event-based actors. Hence, creation time is less import for the OpenCL-enabled actor.
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Figure 8: Comparison of the wall-clock time required to spawn OpenCL-enabled and event-based actors.

6.3 Scaling Behavior in a Heterogeneous Setup

The work of Charousset et al. (2013) presents several benchmarks regarding libcppa,
including a heterogenous setup that examines a distributed system with eight worker nodes.
The system calculates a fixed number of images of the Mandelbrot set.

Figure 9 shows the wall-clock runtime as a function of the deployed processing units. In the
initial setup, each node uses one CPU for the calculation. Each node is then strengthened
by either an additional CPU or an additional GPU.
Adding an additional CPUs scales linearly and reduces the runtime by a factor of ≈0.9. How-
ever, adding only one GPU reduces the runtime to a third. Doubling the number of GPUs
thereafter reduces the runtime by a factor of ≈0.6. For the eight additional nodes, the het-
erogenous setup exhibits one eighth of the runtime the homogeneous system exhibits.
The benchmark provides an example of the performance gain available through heteroge-
neous systems.
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Figure 9: Sending and processing time in a distributed computation using heterogeneous hardware
ressources, from Charousset et al. (2013).

6.4 Comparing Graphics Cards

Our final benchmark examines different GPUs with regard to their memory access capa-
bilities. Aside from its internal hardware characteristics, such as the number of cores or
memory size, their performance is characterized by the surrounding hardware, especially
the available memory bandwidth. The kernel we use for the benchmark does not include
complex calculations, but copies data from an input to an output array. Hence, the main
runtime will be consumed by copy operations between GPU and CPU. The program creates
an OpenCL-enabled actor before sending a message to the actor and waiting for the results
in a loop.

1 __kernel void copy(input, output) {
2 output[myID] = input[myID];
3 }
4
5 void comapre_gpus(iterations) {
6 actor = spawn_cl(copy, ... );
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7 for (0 to iterations) {
8 send(actor, ... );
9 await_result_message();

10 }
11 }

Figure 10 shows the characteristics of the GPUs we have used to conduct our bench-
marks. The columns show (from left to right): (1) the number of compute cores,
(2) the clock frequency in MHz, (3) the maximum number of work-items in a work-
group executing a kernel using the data parallel execution model, (4) the maximum
memory bandwidth in GB/s, (5) global memory size and (6) the support of the flag
CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE that allows a command queue to op-
timize kernel execution. The Tesla is a dedicated GPGPU co-processor and provides a large
amount of memory and cores. The Quadro is also a workstation GPU, but has fewer cores,
fewer memory and is built for power-efficiency. The other two GPUs are mobile versions,
as indicated by the “M” in their names. The GeForce is build into a Thinkpad SL500 and
Radeon GPU is build into an iMac. All PCs but the iMac run Ubuntu and use drivers provided
by Nvidia. The iMac runs OS X and uses the driver shipped with the OS.

Figure 11 shows the runtime as a function of the performed iterations. We plotted the average
of 50 measurements and a 95% confidence interval. All graphic cards exhibit linear growth.
The Radeon outperforms the others, while the Quadro shows the worst performance.

Compared to the memory bandwidth from Figure 11, it is expected that the Radeon performs
best, but the difference to the Tesla should not be as big. Furthermore, the Quadro has better
specifications than the GeForce, but performs worse.

Overall, the benchmark seems to favor both mobile GPUs. However, further investigation is
necessary to explain the deviation from the characteristics and draw reasoned conclusion.

Name Cores Clock Parallel Bandwidth Memory Out of Order
[MHz] Work-Items [GBs/s] [MB] Execution

Tesla C2075 14 1147 1024 144 5636 Yes
Quadro 600 2 1280 1024 25 1073 Yes
GeForce 9300M GS 1 1450 512 7 267 No
Radeon HD 6970M 12 680 1024 176 1073 No

Figure 10: Specifications of the used GPUs.
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Figure 11: Comparison of the wall-clock time required to run the benchmark on different GPUs.
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7 Conclusion & Outlook

In this work, we have extended the C++ actor library libcppa with capabilities for GPU
computing. We introduced the new actor class actor_facade, which is created by the
function spawn_cl. It is integrated into the runtime environment of libcppa and profits
from access transparency for message passing and error handling. However, we did neither
achieve access transparency nor location transparency for actor creation. To provide an easy
user interface, we automated repetitive task of the OpenCL setup process, such as platform
and device discovery.

Our benchmark results indicate that the OpenCL-enabled actor does not induce noticeable
overhead compared to the native OpenCL API. Since our implementation does not affect the
runtime performance of the GPU, the relative overhead gets smaller the longer the calculation
on the GPU takes. Furthermore, we measured the creation time for OpenCL actors. It takes
longer to create an OpenCL actor than to create an event-based actor, but the creation time
is small compared to the the absolute runtime.

While writing this thesis, it became clear, that some use cases require more control over
OpenCL specific parameters. For example, the research of Fang et al. (2011) shows spe-
cific compiler options are important for performance tuning. In our future work we would like
address this and offer an interface to configure our actors accordingly. This can be achieved
by extending our kernel wrapper, which currently links a kernel to an OpenCL device. Alter-
natively, a new class could package configuration parameters and be passed to the function
spawn_cl as an additional argument.

In the context of location transparency we mentioned the creation of remote OpenCL actors.
The implementation is left for future work, but the information necessary to create an OpenCL
actor are available at runtime. A future implementation could allow the runtime environment
on the remote note to create an OpenCL actor with the data.
A completely transparent approach could switch to remote actor if its own platform does not
provide the appropriate hardware. However, OpenCL kernels can be tuned to exploit hard-
ware dependent features, which are possibly not available on a remote system. Additionally,
the explicit creation of remote OpenCL actors could be enabled.

The performance could be further improved by allowing direct messages between OpenCL-
enabled actors that remain on the device. This would prevent copy operations between GPU
and CPU and thus improve performance. Although each OpenCL-enabled actor already
holds a reference to memory buffers on the GPU, it reads the values back from the GPU
before sending them to another actor. Instead, OpenCL actors would pass the reference
directly rather than copying the values while communicating with another OpenCL-enabled
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actor.
The copy operations between GPU and CPU can be executed using different flags and func-
tions. We did not compare the different approaches yet, but determining which method suits
best for which use-case could on the overall lead to an improved performance. In addition,
we want to give users the possibility to configure the flags according to their use case.

A further direction for future work is load balancing. Currently, the programmer is responsible
for ensuring that kernels are distributed among devices and to manage the device memory.
Ideally, this task should be transferred to the runtime environment, since it has information
about ongoing processes and can ensure that access from multiple sources is handled ap-
propriately. OpenCL does not offer load balancing for multiple GPUs and it remains an open
question whether enough runtime information are available to implement proper load balanc-
ing.
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