
On Secure Routing in Low-Power and
Lossy Networks: The Case of RPL

Master-Thesis

Heiner Perrey

Fakultät Technik und Informatik
Studiendepartment Informatik

Faculty of Engineering and Computer Science
Department of Computer Science

Heiner Perrey

On Secure Routing in Low-Power and
Lossy Networks: The Case of RPL

Masterarbeit eingereicht im Rahmen der Masterprüfung

im Studiengang Informatik
am Department Informatik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Thomas C. Schmidt
Zweitgutachter: Prof. Dr. rer. nat. Gunter Klemke

Eingereicht am: August 20, 2013

Heiner Perrey

Thema der Masterarbeit

On Secure Routing in Low-Power and Lossy Networks: The Case of RPL

Stichworte

RPL, sicheres Routing, Sensornetzwerke, Hash-Ketten, Topologie AuthentiVzierung

Zusammenfassung

Diese Masterarbeit beschäftigt sich mit der Sicherheit des IPv6-basierten Routing Protokoll

für „low-power and lossy networks“ RPL. Die durchgeführte Sicherheitsanalyse zeigt, dass ein

Angreifer ohne Zugang zu den kryptographischen Schlüsseln weitestgehend abgewehrt wird.

Es werden Topologie-Attacken aufgezeigt, welche erst durch den Besitz eben dieser Schlüssel

möglich werden und eine ernste Bedrohung für die Sicherheit von RPL darstellen. Im Zuge

dessen werden zwei Verfahren zur AuthentiVzierung der Topologie vorgestellt: VeRA und

TRAIL. VeRA nutzt Hash-Ketten, um die Topologie zu sichern. TRAIL hingegen setzt auf das

Hin- und Zurücksenden einer Nachricht, die Knoten für Knoten die Topologie veriVziert. Mit

Hilfe der konkreten Umsetzung von TRAIL werden erste Studien zur Zeitverzögerung, die

durch dieses VeriVzierungsverfahren entsteht, durchgeführt.

Title of the Master-Thesis

On Secure Routing in Low-Power and Lossy Networks: The Case of RPL

Keywords

RPL, routing security, sensor networks, hash chaining, topology authentication

Abstract

This master-thesis engages in the security aspect of the newly introduced IPv6-based routing

protocol for low-power and lossy networks RPL. In an analysis of the security of RPL, it

is shown that RPL protects against most attacks launched by an adversary that does not

have access to the security keys. The major threat lies within an attacker who has compro-

mised these keys and who is consequently able to launch topology attacks. Two topology

authentication schemes are presented and evaluated which deal with the prevention of such

attacks: VeRA and TRAIL. The VeRA approach employs hash chains for veriVcation of the

topology of RPL. TRAIL relies on the transmission of a round-trip message that veriVes the

topology hop-by-hop. It is shown that these schemes can detect and isolate an insider attacker.

A practical evaluation of TRAIL gives a Vrst impression of the delays that result from the

veriVcation procedure.

Contents

List of Tables vi

List of Figures vii

1 Introduction 1

2 Background 3
2.1 Basic Terms of Information Security . 3

2.1.1 Security Objectives . 3
2.1.2 Cryptographic Tools . 4
2.1.3 Key Management . 7

2.2 Bloom Filters . 8
2.3 Design Concept of RPL . 10

2.3.1 Architecture of RPL . 10
2.3.2 Topology Creation and Maintenance 12
2.3.3 Communication in RPL . 20
2.3.4 Security of RPL . 22

3 Security Analysis of RPL 25
3.1 Threat and Attacker Model . 25

3.1.1 IdentiVcation of Threats . 27
3.1.2 Attacker Model . 29

3.2 Security Objectives . 30
3.3 Security Evaluation of RPL . 31

3.3.1 Key Management . 31
3.3.2 Cryptographic Defenses . 33
3.3.3 Non-Cryptographic Defenses . 36

3.4 Attacks and Countermeasures . 38
3.5 Discussion . 45

4 Topology Protection in RPL: VeRA 47
4.1 Overview of VeRA . 47
4.2 Attacks against VeRA . 50

4.2.1 Version Delay Attack . 50
4.2.2 Rank Replay Attack . 51

4.3 Defense Techniques . 52

Contents v

4.3.1 Version Delay Countermeasure . 52
4.3.2 Rank Replay Countermeasure . 54

4.4 Security Evaluation . 58
4.4.1 Attacker Model . 58
4.4.2 Reversed Encryption Chain . 59
4.4.3 Challenge-Response Scheme . 59

4.5 Discussion . 60

5 Topology Protection in RPL: TRAIL 62
5.1 Concept of TRAIL . 62

5.1.1 Rank SpooVng Protection . 63
5.1.2 Rank Replay Protection . 67

5.2 Evaluation of TRAIL . 68
5.2.1 Security Evaluation . 68
5.2.2 Scalability Evaluation . 72

5.3 Discussion . 76

6 Practical Evaluation of TRAIL 78
6.1 Implementation Prerequisites . 78

6.1.1 Software Choices . 78
6.1.2 Hardware Choices . 79

6.2 Design of the Prototype . 80
6.2.1 Integration in µkleos . 80
6.2.2 Functional Overview . 80

6.3 Measurements and Results . 81
6.3.1 Preliminary Outline . 81
6.3.2 Experiment 1: Single Hop . 83
6.3.3 Experiment 2: Two Hops . 85

6.4 Discussion . 87

7 Conclusions & Outlook 88

Bibliography 90

List of Tables

2.1 RPL Mode of Operation Encoding . 14
2.2 RPL Control Information in Datagrams . 17

3.1 Summary of Threats . 28
3.2 Cryptographic Defense Techniques in RPL . 33
3.3 Non-Cryptographic Defense Techniques in RPL 37
3.4 Summary of Attacks against RPL . 38

4.1 Glossary of Notations . 48
4.2 Creation of the Version Number and Rank Hash Chains in VeRA 49
4.3 Creation of the Rank Encryption Chain . 52

5.1 Properties Rank Validation Techniques in TRAIL 69
5.2 TRAIL Average and Maximum Message Sizes 75

6.1 Technical Details of MSB-A2 Sensor Board . 79

List of Figures

2.1 Creation of a CBC-MAC in CCM . 5
2.2 Architecture of an RPL Routing Domain . 10
2.3 Creation of Upward Routes in RPL . 13
2.4 Creation of Downward Routes in RPL . 15
2.5 Formation of Routing Loops in RPL . 19
2.6 Synchronization of CCM Counter . 24

3.1 Architecture and Components of an RPL Routing Domain 26
3.2 AMIKEY Key Assignment . 32
3.3 Rank SpooVng and Replay Attacks . 43

4.1 VeriVcation of the Rank Encryption Chain . 53
4.2 Rank Replay Defense by Challenge-Response 55
4.3 Attacker Isolation for Rank Replay Defense . 58

5.1 Principle of TRAIL Rank Validation . 63
5.2 Merging of Nonces inside a Node . 65
5.3 Principle of Nonce Aggregation in TRAIL . 66
5.4 Rank Replay Protection in TRAIL . 68
5.5 Nonce Duplicate and Removal Detection . 71
5.6 TRAIL Compressed Array Sizes for DiUerent Error Rates 73

6.1 Processing of Attestation Message in TRAIL Prototype 82
6.2 TRAIL Round-trip Time over One Hop . 84
6.3 TRAIL Round-trip Time over Two Hops . 86

1 Introduction

It’s a small world. This is particularly true when looking at the progress in the world of

sensor networks. Devices, ever-decreasing in size, price and capabilities, can form large-scale

networks that sense and collect environmental information and are increasingly able to make

this information available world-wide. For this purpose, researchers have been focusing on

attaching these devices to existing networks that use the widely deployed Internet Protocol

(IP). This interconnection enables devices to easily communicate using the existing and well-

established infrastructure from virtually anywhere in the world. The introduction of IPv6 [1]

and its giant address space makes it possible to supply billions of small devices with an unique

identiVer and thus allows these devices to function in an Internet of Things.

However, this world is also dangerous. Especially when constrained devices communicate

publicly and wireless, security becomes an important and challenging task. Various deploy-

ment scenarios bear the risk of adversaries intruding from within or outside the network and

damaging the network operability, driven by proVt, political aUection or simply just for fun.

Countering these threats involves the research of lightweight security schemes, as not only the

complexity of applications, protocol stacks and communication patterns have to be adapted

to the upcoming constraints, but also the security models. Well-known and widely accepted

cryptographic protocols may exceed the limits of most low-power devices. At the same time

security becomes more important than ever when these devices monitor or control critical

systems such as in smart grids or for medical purposes.

The infrastructure that is required for connecting arbitrary devices with one another needs

a routing protocol to eXciently send the data to their destination. Hereby a standardized

solution allows a reliable interoperability of these devices in diUerent routing domains. The

Routing over Low-Power and Lossy Networks (ROLL) working group of the IETF1 concerned itself

with the requirements for such a routing protocol [2]. Their survey concluded that the routing

protocols they examined, such as AODV [3] or OLSR [4] do not satisfy the requirements

they deVned as suitable for LLNs. One of the major milestones of their work led to the

standardization of the IPv6 Routing Protocol for Low-power and Lossy Networks or RPL [5]. RPL

1IETF: Internet Engineering Task Force

1 Introduction 2

has primarily been designed for constrained devices and for data collection at a dedicated sink.

The IPv6 compliance allows devices to attach to existing networks and makes RPL a candidate

for the standard routing protocol for networks of smallest devices or the very things.

This thesis is concerned with the important aspect of security in RPL. RPL prepares for

various threats and provides a security model to defend against potential attacks. Although

security mechanisms may be implemented at the link layer, RPL is not tied to an underlying

protocol and thus the security model is deVned in case of absence of link layer security. So

far the security of RPL has not been analyzed thoroughly in the literature. Hence, the main

contribution of this work is threefold. First, a comprehensive security analysis evaluates the

security model of RPL. The goal is to show strengths and weaknesses of this model and to

highlight speciVc attacks. Hereby the main focus lies on topology attacks that greatly inWuence

the routing operations. Secondly, two approaches are presented that mitigate such topology

attacks and account for the constraint environment in which RPL typically functions. The

existing approach VeRA [6, 7] uses hash chains to protect against topology attacks. VeRA

shows vulnerabilities for which countermeasures are proposed [8]. The newly introduced

TRAIL [9] follows the same goal and requires a certain communication overhead. Both

approaches are then analyzed and compared in the course of this work. Thirdly, the feasibility

of TRAIL is practically evaluated in a proof-of-concept implementation.

For a thorough evaluation of the RPL security and for a basic understanding of the topology

authentication schemes, a fundamental background is required. Therefore, the remainder of

this work is structured as follows. The necessary background to which this work refers to is

described Chapter 2. A security analysis of the existing security model of RPL as well as attacks

and countermeasures is given in Chapter 3. The VeRA approach as well as attacks on VeRA

and novel countermeasures are presented in Chapter 4. The new topology authentication

scheme TRAIL is detailed and analyzed in Chapter 5 in combination with a practical evaluation

in Chapter 6.

2 Background

This chapter provides the required background for a basic understanding of the applied

concepts and gives an introduction of the examined routing protocol RPL.

2.1 Basic Terms of Information Security

Information security comprehends the protection of information according to speciVc security

objectives. The implementation of these objectives is achieved, for instance, by cryptographic

protocols.

2.1.1 Security Objectives

Security objectives deVne elements or properties of a system that deserve protection. Typically,

security objectives are classiVed by the property that they protect. Common objectives include

authenticity, integrity, conVdentiality, availability and non-repudiation which are introduced

in the following.

• Authenticity: Authenticity denotes the trustworthiness and genuineness of the origin

of a message [10, 11]. Hence, authenticity establishes trust between routing peers and

allows the receiver to verify if a sender is actually which it claims to be. Typically,

authenticity is achieved by message authentication schemes using a secret key. Hereby,

the secret knowledge of a key creates a trust relationship, because only an owner of the

secret key is able to create an authenticated message.

• Integrity: Message integrity means that a message arrives at its destination without

exhibiting any deliberate changes during transfer [10, 11]. Integrity checks are applied to

detect such changes. Generally, message authentication schemes also involve integrity

checks, so that both security objectives are provided by an authentication scheme.

• ConVdentiality: ConVdentiality denotes the concealment of sensitive information which

is only meant for authorized access [10, 11]. Encryption schemes are used to prevent

sensitive information from being revealed to an outsider without permission.

2 Background 4

• Availability: The availability of services is important for a system to perform its op-

erations when required [10]. Hence, the access to information or resources must be

provided within a deVned time period. Redundancy is a common method of providing

availability of a given service.

• Non-Repudiation: Non-repudiation ensures that the creator of a message cannot deny

being the message originator at later time [10, 11]. Digital signatures may provide non-

repudiation where the signer owns the secret key and the corresponding veriVcation is

publicly known.

2.1.2 Cryptographic Tools

Security objectives can be implemented by applying cryptographic tools such as encryption or

message authentication schemes. This section gives an overview of the cryptographic tools

that are used in the work.

One-way hash functions A one-way hash function maps a (large) input set of elements

with variable length into a (small) co-domain of elements with Vxed length [11]. The one-

way property allows to eXciently compute the hash value of an element, while the reverse

calculation from a hash value to the original element is computationally hard. Hash functions

play an important role in cryptography like for authentication schemes and integrity checks.

Hash functions can also be applied recursively to their output to create a hash chain. A

random number x is used as seed for a hash function h(·). The output of h(x) is hashed again,

so that the second output is denoted by h(h(x)) or h2(x). If this is done i-times, the end of

the hash chain results in hi(x). If any element of the chain is known, it is possible to compute

any further element up to the end of the chain by performing the required number of hash

operations. However, it is infeasible to create any prior element due to the one-way property

of the hash function. Such a hash chain is useful to prove the ownership of secret information

without revealing the secret.

An example application for password authentication is given by Lamport [12]: A client

and a server communicate over an insecure channel. The client creates a hash chain using

its password as seed hi(password) and securely provides the server with the end of the hash

chain. Each time the client wishes to authenticate itself to the server, it sends the i − 1th

hash chain element to the server. The server hashes the element one more time and checks if

h(hi−1(password)) = hi(password). If both hash chain elements match, the server accepts

the authentication. Next time the client sends an authentication, it sends the i− 2nd element,

2 Background 5

Figure 2.1: Creation of a CBC-MAC in CCM – The Vrst block B0 is encrypted by a block
cipher function E using secret keyK . The resulting X1 is XORed with the second
block, B1. The resulting output O1 in turn is encrypted, and so on. The last
(truncated) block denotes the MAC.

so that the server performs two more hash operations and so on. An adversary that replays a

recorded hash element is detected since the element has already been used.

Message authentication codes Hash functions are also applied within other cryptographic

constructs such as the creation of a message authentication code (MAC). A MAC is used to

authenticate the originator of a message and to check its integrity. MACs are based on a

shared secret key and are thus created by symmetric protocols. The sender uses the secret

key to create a MAC of a message and transmits both messages and MAC to the receiver. The

receiver also creates the MAC of the message and compares its own computation to the MAC

it received. If both match, the receiver has veriVed that the message has been created by a key

holder and that it has not been modiVed.

The CBC-MAC (cipher block chaining MAC) [13] and HMAC (keyed-hash MAC) [14] are

examples to create such MACs. HMAC appends a shared secret to the message and hashes

the concatenation with a cryptographic hash function. Hence, only a secret holder creates

a valid MAC. To create a CBC-MAC as shown in Figure 2.1, the message is encrypted in the

cipher block chaining mode of operation. The message is split into n blocks of equal size. An

initial block contains control Wags, a nonce and the length of the message to support variable

size messages. This block is encrypted by a block cipher, like AES, applying a secret key. The

2 Background 6

resulting cipher is XORed with the second block which denotes the Vrst block of the actual

message. The XOR conjunction is encrypted and then XORed with the next block, and so on.

The last block denotes the MAC which may be truncated to the desired length.

Symmetric authenticated encryption The CBC-MAC is applied within the CCM mode of

operation [13] which denotes a symmetric authenticated encryption scheme and is further

considered in this work. CCM stands for Counter with CBC-MAC which uses a block cipher

both for encryption in counter mode and the creation of a CBC-MAC. The CBC-MAC provides

authenticity and integrity, while the encryption ensures the conVdentiality of the message

content.

For encryption the plaintext is divided into blocks of equal size. To each plaintext block

a unique key stream is applied by creating the XOR conjunction. To create such distinct

key streams, a CCM nonce consisting of a random part and a counter is encrypted using a

secret key. For each plaintext the counter can simply be incremented to provide a unique key

stream. Authentication is achieved by the creation of a CBC-MAC of the plaintext message

using the same secret key. To protect against collision attacks, the MAC is encrypted together

with the plaintext message. Furthermore, CCM provides additional authenticated data for

the authentication of unencrypted information such as routing headers. For this purpose, an

additional MAC of this unencrypted information is created but not encrypted.

CCM requires each nonce to be used only once with a given encryption key, so that key

streams are not reused [13]. If used twice or more, an attacker simply reveals the XOR-

conjunction of two plain texts P1 and P2 by combining two cipher texts that were created

with the same key streamKi:

(Ki ⊕ P1)⊕ (Ki ⊕ P2) = (P1 ⊕ P2)

He may be able to extract both P1 and P2 and thus receives the applied key stream:

(Ki ⊕ P1)⊕ P1 = Ki = encKs(ηi)

where Ki is the secret key stream, Ks is the secret key and ηi is the applied nonce. Each

further message using this nonce-key pair is easily decrypted.

Public-key cryptography In contrast to symmetric approaches in which each party holds

the same key, a public-key scheme is based on asymmetric keys. Hereby, diUerent keys for en-

and decryption are used rather than a single secret key [11]. The receiver therefore creates a

2 Background 7

key pair. One key is private and kept secret by the owner. The other is made publicly available

and thus called public key. The public key is used for encryption and the private key for

decryption, so that anyone can encrypt a message, but only the holder of the private key is

able to decrypt the message.

The asymmetric scheme relevant for this work is RSA [15] which can be used for encryption

and for the creation of digital signatures for authentication. To create a digital signature

using RSA, each sender signs its messages before transmission. Signing with RSA is done by

computing the hash value of the entire message and signing it by encryption with the private

key. Hence, the cipher denotes the signature which is appended to the message. A node that

receives a signed message Vrst veriVes the signature. This is done by computing the hash

value of the entire message and decrypting the signature using the public key of the sender

thus revealing the hash value. If both hash values match, the message has not been altered but

was created by the owner of the private key.

2.1.3 Key Management

Cryptographic tools are used to implement the security objectives. Besides hash functions,

all of the presented tools require security keys. To provide and refresh key materials either a

manual or automated key management is deployed [16]. Manual key management requires

re-keying by hand upon expiration of security keys. The introduction of an automated key

management scheme allows dynamic key exchange and re-keying which is required by a

large-scale network that employs cryptography [16]. According to Trappe and Washington

[17], the following key management approaches are distinguished:

• pre-shared key

• key agreement

• key distribution

A pre-shared key is known to all participants prior to communication. Each member of the

network is conVgured out-of-band with a key. In the simplest case, the entire network shares

the same symmetric key. Such a group-wise shared key has the drawback of a compromised

key breaching the security for the entire group. To mitigate this impact, pair-wise keys may

be applied. Each member thus shares a unique key with any other member that it wishes to

securely communicate with. The advantage of a pair-wise key management scheme is that a

single comprised key does not aUect the security of remaining members of the network.

2 Background 8

In contrast to a pre-shared key, a key agreement protocol like the DiXe-Hellman protocol

[18] establishes a symmetric key between two communicating partners. DiXe-Hellman does

not require any information to be shared amongst both participants prior to the key agreement.

The secret key is produced as result of their communication and only known to the participants

[17]. However, such an approach is not suited for group communication, as a key is established

only between two members.

In a key distribution scheme the security keys are distributed by a key server. This key

distribution server is equipped with all secret keys which are distributed to clients when

required. To secure the communication a pre-shared key or asymmetric cryptography can be

used.

2.2 Bloom Filters

A Bloom Vlter [19] is a probabilistic data structure for memory-eXcient storage of elements.

Bloom Vlters only store a representation and not the element itself, thus allowing a quick

execution of membership queries. A query either returns a deVnite no or a maybe. Hence,

falsely receiving a negative reply is not possible. Each query, however, bears the risk of a false

positive which is considered when parameterizing the Vlter.

A Bloom Vlter is deVned as a bit-vector v of sizem with all bits initialized to zero. By using

k independent hash functions h1(·) . . . hk(·) with a range of {0 . . .m}, each element of a set

A = {a1 . . . an} is mapped to k bits in v. To add an element ai to the Vlter, the element is

hashed by each function, so that xj = hj(ai), with 1 ≤ j ≤ k. Each xj denotes one of k

hash values of ai and is mapped to an index in v which is set to 1. Each bit is set only once.

Removing an element by setting its bits to zero is not permitted as it possibly removes other

elements as well. The size of each of the input element is reduced to a maximum of k bits. Due

to the overlapping of bits of diUerent elements, a query may return a false positive result. An

element ai that is not contained in v may be represented as member if all k bits of ai coincide

with bits of other elements.

To test whether an element ai is a member of the Vlter, the element is hashed in the same

manner as done for the insertion into the Vlter. This results in the hash values x1 . . . xk , where

each value represents an index of v. If any index is still set to zero, the element is deVnitely

not contained in the Vlter. Else, if all bits have been set to one the element may be in the Vlter.

By calculating k according to the formula k = m
n ∗ ln(2), f is minimized with respect to a

givenm and n, where n is the number of elements andm the size of the Vlter.

2 Background 9

The union and intersection operation is supported by Bloom Vlters as well [20]. Two Bloom

Vlters that have the same size and use the same number of hash functions can be united by

using the bitwise OR operation. Hereby each set bit of either Vlter results in a set bit in the

united Vlter. Alternatively, the intersection of both sets is created by performing bitwise AND

operations on both original Vlters. Only bits that are set in both Vlters are also set in the

resulting Vlter.

Plain Bloom Vlters are optimized with respect to the size of the Vlter m, the number of

elements n, the number of hash functions k, and the false positive rate f . For instance, for a

givenm and n the number of hash functions is optimized to minimize the false positive rate.

Bloom Vlters also allow various optimizations of which two approaches are presented:

• compressed Bloom Vlter

• scalable Bloom Vlter

Mitzenmacher [21] reconsiders the optimization problem of Bloom Vlters. He aims at optimiz-

ing a compressed Bloom Vlter that minimizes the bits to be transferred rather than enhancing

the required storage space of the uncompressed Vlter in memory. Since the optimization of

plain Bloom Vlters results in an uniform distribution of bits [21], a compression does not

gain any space beneVts. He shows that choosingm larger and k smaller results in a smaller

compressed Bloom Vlter that sustains or even lowers the false positive rate. He thus achieves

an optimized compressed Bloom Vlter that is about 30% smaller than the plain Bloom Vlter

with the same false positive rate.

Compressed or plain Bloom Vlters require that the number of elements is known prior to

using the Vlter. To achieve more Wexibility, Almeida et al. [22] propose scalable Bloom Vlters.

In their approach, a Bloom Vlter is Vrst chosen for a small set of elements with a certain false

positive rate. When half of the bits are set, the Bloom Vlter is full and a new one is added

that has a tighter false positive rate. A member query is performed by checking both Vlters

sequentially. The second Vlter requires a tighter false positive rate as all single Vlters are

independently queried. Take, for example, a scalable Bloom Vlter with a desired false positive

rate of 1 %. The Vlter consists of a single plain Bloom Vlter with false positive rate f0 = 0.01. If

a new Vlter were added with a false positive rate of f1 = 0.01, the probability of not receiving a

false positive when checking for an element in both Vlters is P = (1−f0)∗ (1−f1) = 0.9801.

The probability of receiving a false positive is therefore 1−P = 0.0199 and thus approximately

2 %. Choosing all Bloom Vlters with a tighter false positive rate lets the overall rate converge

to the desired value.

2 Background 10

Figure 2.2: Architecture of an RPL Routing Domain – The Vgure shows a Directed Acyclic
Graph that consists of two Destination Oriented DAGs inside an RPL instance. Both
DODAGs are connected through a backbone link by their roots, R1 and R2. The
position of each node is indicated by its rank.

2.3 Design Concept of RPL

This section introduces the key features of the IPv6 Routing Protocol for Low-power and Lossy

Networks (RPL) [5]. This includes the topology creation and maintenance, communication

patterns as well as the security properties that are relevant for this survey.

The main goal in the design of RPL is to provide a generic standard for various applications

in LLNs. These applications include urban [23] and industrial [24] environments and home-

or building automation [25, 26] which diUer in terms of traXc Wow pattern, security and

message delivery requirements. RPL deVnes the general functionality of topology creation

and maintenance and provides specialized and optional features in external speciVcations to

remain applicable across many variable scenarios. An Objective Function (OF) deVnes the exact

procedure by which a node selects its position in the network and allows diUerent applications

to optimize the topology formation to its speciVc requirements [5, p. 17].

2.3.1 Architecture of RPL

An RPL domain is constructed as a tree-like topology that consists of various nodes. The

hierarchy is represented by a Directed Acyclic Graph (DAG). All edges of the DAG are directed

2 Background 11

in a way, so that no cycles exist. It fragments into one or more Destination Oriented DAGs

(DODAG) [5, p. 13], where each DODAG is rooted at a dedicated sink node that serves as

data collection point [5, p. 10]. These root nodes provide connectivity between the nodes of

the DODAGs through a common backbone link. Each root oUers a collection point for data

aggregation and functions as an LLN Border Router (LBR) to provide connectivity outside the

RPL routing domain. Each node in the DODAG functions as a router or a host. Hosts generate

but do not forward RPL traXc. A router both generates and forwards RPL traXc [5, p. 13] and

has one or more child nodes. Figure 2.2 illustrates an exemplary RPL instance consisting of a

DAG with two DODAGs.

The initial topology is created proactively and allows upward traXc to be forwarded along

the DODAG. The root maintains conVguration parameters which are distributed downwards

to all nodes. Each member of the DODAG periodically transmits these parameters to its

neighbors to provide updated routing information for members or to allow new nodes to

join the network. A new node processes this information, selects a member as parent and

calculates a rank which denotes its relative position in the DODAG toward other nodes and

the root. The rank of a node is based on the rank of the parent and increases monotonically

starting at the root node which has the lowest rank. Each node subsequently calculates a rank

that is higher than each of its parents. A parent denotes a potential next-hop and upward path

toward the root. The best suited parent according to chosen metrics and constraints is elected

preferred parent which is the default next hop on an upward path [5, p. 67].

Downward routes allow the root to communicate with nodes within the network and provide

connectivity between arbitrary nodes. The root knows a path to all downward destinations

and thus forwards the traXc directly. In-network nodes send messages upwards Vrst, until

they reach a common ancestor of the source and destination which is able to redirect the traXc

downwards. Messages travel downwards henceforth until they reach their destination.

Loops in the topology are detected and removed reactively during forwarding operations.

A local repair mechanism increases the frequency in which control messages are sent to

remove inconsistent routing states. If local repairs cannot suXciently sustain consistency of

the topology, a global repair is initiated by increasing the DODAG version number. The version

number of a DODAG is an abstract representation of the current topology setting which

may evolve due to rank changes or local repairs. If local repairs cannot sustain a consistent

topology, an increased version number is propagated by the root and initiates a reconstruction

of the entire topology. During such a global repair nodes can rearrange their position in the

DODAG. Only the root node is permitted to increase the version number as it aUects all nodes

in the topology [5, p. 69].

2 Background 12

2.3.2 Topology Creation and Maintenance

RPL deVnes mechanisms for the formation of the topology and repair mechanisms to recover

from failure of nodes and routing loops. For this purpose, routers exchange an RPL speciVc

type of ICMPv61 messages which contain the required routing information. Up- and down-

ward routes along the DODAG are created by sending messages in the opposite direction.

Upward paths toward the root are thus created by sending DODAG Information Objects (DIOs)

downwards from the root toward the leaves. Downward routes are established by sending

Downward Advertisements Objects (DAOs) from leaves toward the root.

DODAG Formation A DODAG consists of a root node and an arbitrary number of nodes

within the network. The exchange of control messages allows nodes to discover and maintain

other neighbors and to establish connectivity to the root [5, p. 67]. The root initiates the

construction of the topology by distributing conVguration parameters enclosed in DIOs [5,

p. 66]. To join the DODAG, a node either waits until it receives a DIO from its immediate

neighbors or requests a DIO from a neighbor by sending a DODAG Information Solicitation

(DIS) message [5, p. 115]. The DODAG successively grows as the information is propagated

downwards which allows new and distant nodes to join the network. The message exchange

during the topology creation is illustrated in Figure 2.3.

In the process of joining, each node subsequently selects candidate neighbors and parents [5,

p. 67]. The candidate neighbors are one-hop neighbors reachable over link-local multicast.

A node selects a subset of neighbors as parents which are located higher in the topology

and indicate a next hop for upward traXc. Finally, each node elects a single parent to be its

preferred parent which denotes the default next-hop for upward traXc [5, p. 67] (see Fig. 2.3(b)

– 2.3(d)). All members of a DODAG select at least one parent by which they are attached to the

root [5, p. 73] and which allows them to send upward traXc [5, p. 66]. Multiple parents oUer

optional routes that enable load balancing or alternative paths in case of failure [5, pp. 19, 67].

Once a node has selected a set of successors, it determines its position in the DODAG.

For this purpose, the node computes its rank by adding a step to the rank of its preferred

parent [5, pp. 20 f., 107, 108]. The size of this step is deVned by the implementation and the

objective function.2 The minimum increase is denoted by the parameter MinHopRankIncrease.

Various metrics [29] that are carried in DIOs inWuence the calculation of the rank which allows

determination of the optimal path in terms of metrics, such as number of hops or expected

1ICMPv6 is the Internet Control Message Protocol for IPv6 [27].
2The necessary objective functions a node requires to operate in a speciVc LLN are included in the implementation
[5, p. 8].

2 Background 13

(a) Step1: Initial DIO Propagation (b) Step 2: Route Establishment & DIO
Progagation

(c) Step 3: Route Establishment & DIO
Progagation

(d) Resulting DODAG

Figure 2.3: Creation of Upward Routes in RPL – The rank of a node is denoted by the
number in each circle. Default upward paths between two nodes are depicted by
black arrows. Grey striped lines indicate optional paths. (a) shows the multicast of
DIS and the initial DIO propagation. In Figures (b) and (c) nodes join the DODAG,
establish routes and propagate DIO messages. (d) shows the resulting DODAG.
(Vgures adapted from Bauer [28])

2 Background 14

MOP Description Multicast

0 no downward routes −
1 non-storing mode −
2 storing mode −
3 storing mode X

Table 2.1: RPL Mode of Operation (MOP) Encoding [5, p. 40]

transmission count (ETX). This way the rank represents the relative distance of a node toward

the root and deVnes all parent-child relations in the DODAG [5, p. 20]. Finally, the node

advertises its rank by transmitting DIO messages to its neighbors. This allows others nodes to

join or update their own routing tables.

A node schedules its DIO transmissions by a "polite gossiping" protocol called trickle

algorithm [30]. "Polite gossiping" means that a node periodically sends information, but

remains quiet if other nodes have recently sent the same information [31]. Hence, trickle

distinguishes two basic incidents: reception of consistent messages (same information),3 and

reception of inconsistent messages (new information). In the Vrst case, trickle determines

the number of consistent DIO messages received within a certain time interval. A DIO is

transmitted if the number of consistent messages that have been received does not exceed

a deVned threshold. Once the time interval expires, its size is doubled and the interval is

started again. This is repeated until a maximum interval size is reached, so that DIOs are sent

less frequently as long as only consistent messages are received. However, upon reception

of an inconsistent message, the interval size is reset to its original size. In other words, the

transmission delay of DIOs grows exponentially until an inconsistent message resets the

interval and DIOs are thus sent with higher frequency.

Creation of Downward Routes Downward routes are established for communication of

the root with nodes within the network and are provided by the node itself. The node therefore

sends DAO messages upwards that contain its IP address or preVx and that allow for the

reachability of that node. The support of downward routes is optional and supported in either

storing or non-storing mode of operation as shown in Table 2.1. The mode of operation deVnes

the basic paradigm of how the downward routing states are maintained.

In non-storing mode, the root maintains source routes toward all downward destinations

[5, p. 78], so that routers do not store a downward routing state. To advertise a downward

destination, a node includes its own address as well as the address of its parent in a DAO. The

3An RPL node considers a DIO consistent if it does not change its upward routing state [5, p. 74].

2 Background 15

(a) DAO Propagation of Leaf Nodes (b) In-Network Aggregation & Propaga-
tion

(c) Collection at Root Node (d) Resulting Downward Paths

Figure 2.4: Creation of Downward Routes in RPL – DAO routes are created upon upward
paths which are not shown for clarity reasons. Lines in the upward direction denote
the sending of DAO messages, downward lines are established paths. Dashed lines
indicate an optional route that enables multiple downward paths. (a) shows the
initial DAO propagation by leaf nodes. In Figure (b) and (c) nodes receive, aggregate
and forward DAO messages from their sub-DODAG. The resulting downward
topology is illustrated in (d).

2 Background 16

address of the node indicates the downward destination, and the parent’s address denotes the

path toward it. A node may add several parents to establish multiple downward paths for load

balancing or route resilience. Assigning preference among these parents allows for the root to

Vnd the optimal downward route to each destination. The DAO is sent directly to the root and

forwarded by other nodes. A node that receives such a DAO aggregates the downward routing

states by including its own destination and path tuple in the message [5, p. 85]. The root node

receives all DAOs and recursively creates source routes from these tuples [5, pp. 81, 85, 88]. If

a DAO parent of a node changes, it provides an updated DAO to the root. The root is able to

update all aUected source routes without acquiring DAOs from all nodes on the path [5, p. 85].

Non-storing mode thus has the advantage of requiring less storage and computation eUort by

each node. However, a direct node-to-node communication requires a message to travel to the

root Vrst which then sends it on a downward route which may lead to longer point-to-point

paths.

In storing mode, each router maintains the next-hop information for downward destinations

and autonomously forwards downward traXc [5, p. 78]. For this purpose, a node receives

DAO messages from its sub-DODAG and updates its downward routing table according to

the received routing information. The node aggregates the information and sends a DAO

containing its entire downward routing state to one or multiple parents. Each of these parents

provides connectivity to all downward destinations that the node advertises [5, p. 86]. As in

non-storing mode, assigning a preference among these parents determines the optimal route.

In contrast to non-storing mode, the parent processes the information directly, so that the

downward routing state propagates hop-by-hop to the root [5, pp. 84, 86]. The advantage of

storing mode is the creation of shorter downward paths. A message may not have to travel all

the way to the root before being forwarded downwards to higher ranks.

Figure 2.4 illustrates the creation of downward routes for storing as well as for non-storing

mode. Note that in non-storing mode it is not necessary to send a DAO to multiple parents to

create multiple downward routes as this information can be aggregated in a single message.

DAOs are triggered by the DAO Trigger Sequence Number (DTSN) that is contained in DIO

messages. By sending an increased DTSN, a node requests the transmission of DAOs from

its immediate children. In storing mode, a node increases its DTSN to maintain only its own

routing table [5, p. 83]. In non-storing mode, the DTSN is used by the root to demand a global

DAO update, in case a global repair (incremented version number) is not required [5, p. 84].

Loop Avoidance Strategies Strictly following the rank properties during the DODAG cre-

ation provides a loop-free topology [5, p. 68]. However, due to nodes dynamically joining

2 Background 17

Field Description
′O′ − flag traXc direction (Wag set: downward, else upward)
′R′ − flag indicates rank-error, if set
′F ′ − flag indicates forwarding-error, if set

RPLInstanceID ID of RPL instance
SenderRank rank of the sender

Table 2.2: RPL Control Information in Datagrams [5, p. 101]

and leaving the network or nodes moving in the topology, routing states become inconsistent.

Hence, members of the DODAG produce updated control traXc to prevent outdated neighbor

relations from disrupting the routing and forwarding operations.

Once a node is attached to the DODAG and has advertised its rank, a loop avoidance strategy

of RPL restricts further rank changes. In general, moving closer to the root by decreasing the

rank does not hold the risk of creating a loop [5, p. 72]. A rank decrease is allowed as long

as the rank remains greater than the rank of all parents. A node that decreases its rank must

therefore remove all parents with lower or equal rank [5, p. 71].

Moving further away from the root by increasing the rank on the other hand may result

in a routing loop. A loop is caused, for instance, by a node that selects its former child as

new parent after increasing its rank. To avoid these loops, a node advertises rank changes in

updated DIO messages. The reception of such an update causes a resetting of the trickle timer

as the new information is inconsistent with the node’s current routing state. A local repair is

thus triggered, resolving the inconsistent routing state.

A node that cannot maintain any valid parents detaches from the DODAG by advertising a

rank of inVnity to all neighbors [5, p. 72]. A child node that receives such a poisoning message

from a parent removes that neighbor from its routing table. As an alternative to poisoning,

a node may become the root of a Woating DODAG, for instance, to sustain interconnectivity

during a repair [5, p. 18]. Nodes that have no alternative routes join the Woating DODAG which

allows a communication with other nodes until a connection to the root is re-established.

A node may also remove a downward route if it does not further provide a forwarding path

to a target. In storing mode, a node notiVes the parent by sending a No-Path DAO which is a

DAO with a lifetime of zero. A No-Path DAO indicates the loss of reachability toward a target

and allows the parent node to delete the child as next hop for downward traXc. A non-storing

node that removes a parent notiVes the root by sending an updated DAO.

2 Background 18

Reactive Loop Detection The loop avoidance strategies help to maintain a consistent topol-

ogy. However, a certain message loss rate due to poor link quality or signal interference is

expected in every LLN. A proactive approach for maintaining the topology creates a larger

overhead for links that are not used at the time. RPL therefore provides a reactive detection

and recovery mechanism to cope with potential loops by appending RPL control information

to datagrams, such as rank and traXc direction [5, pp. 18, 101]. This rank-based data-path

validation allows RPL to detect inconsistencies reactively rather than resorting to the frequent

proactive exchange of control traXc beyond the initial creation of the topology. The control

information is processed and updated at every hop on the path toward the destination.4 A list

of the required data-path validation information is given in Table 2.2.

An inconsistency is detected by using three Wags (’O’, ’R’, ’F’) and the rank of the sender. The

rank of the sender is set every time before forwarding a message by the corresponding sender

which is contained in each datagram. This validation process covers two basic scenarios:

1. The sender’s rank and the direction of the traXc (’O’-Wag) do not match. The recipient

of a downward packet must have a lower rank than its predecessor, indicated by the

SenderRank Veld. In turn, the sender’s rank of a packet traveling upwards must be

higher.

2. A forwarding error occurs (’F’-Wag set) which indicates that a node does not maintain a

route to the destination, e.g. due to an obsolete or not yet updated routing state.

The loss of two sub-types of messages result in this kind of loop: a DIO message that poisons a

route and a No-Path DAO that removes a downward route [5, p. 26 f.]. The following example

scenarios illustrate both incidents.

• Example scenario 1: Figure 2.5(a) visualizes an upward loop. Node A detaches from

the DODAG and poisons its routes. Its child node B does not receive the message

and continues to use the detached node A as preferred parent. Next, node A rejoins

the DODAG and elects B as preferred parent in turn. Each time either one forwards

data traXc, the message oscillates between A and B, thus creating a loop [5, p. 26].

The inconsistency lies within the perspective of both nodes: both act as a child of the

other, hence the traXc going upwards travels downwards from the other node’s point of

view. If A receives a message from B, with a smaller rank and the O-Wag set, indicating

upward traXc, A will detect the inconsistency.

4Details on where the information is placed are not speciVed by RPL. However, an exemplary external speciVcation
by Hui et al. [32] proposes to enclose the control information in the IPv6 Hop-by-Hop Options Header.

2 Background 19

(a) Upward Loop (b) Downward Loop

Figure 2.5: Formation of Routing Loops in RPL – Figure a) shows a loop due to a lost poison
message. An upward message is falsely sent downwards. In b) the loss of a No-Path
DAO results in a downward loop. A downward message is falsely sent upwards.

• Example scenario 2: Assume three nodes A, B, and C as illustrated in Figure 2.5(b):

Node A is a DAO parent for B and B is a DAO parent for C . Node C invalidates the

downward path by sending a No-Path DAO message to B. Node B forwards the update

to A. However, A does not receive the message and assumes a valid downward route to

C over B. Node A sends a message to C . However, B forwards the message back to A,

attempting to Vnd a common ancestor. The message oscillates between nodes A and B

[5, p. 27]. This inconsistency is addressed by the rule that a message only changes its

direction once at the common ancestor [5, p. 104]. Hence, if a child receives a downward

packet but does not provide the downward route to that destination, an inconsistency is

detected.

Reactive Recovery As depicted in Example scenario 1, a message traveling in the opposite

direction with respect to the data-path validation indicates an inconsistent routing state. A

node that detects this inconsistency sets the rank error-Wag in the packet information and

forwards the message according to RPL. A single error along a path is not considered critical,

therefore the recovery mechanism is only triggered upon the reception of a packet with the

error-Wag already set [5, p. 103]. In this case, the node discards the packet and resets its trickle

timer, thus sending DIO messages in order to locally repair the routing state. The risk of such

2 Background 20

a loop is reduced by buUering the current DODAG version number when detaching from the

DODAG [5, p. 69]. A node compares the old and new version number when joining a new

DODAG version to ensure that it is not re-attaching to its former sub-DODAG [5, p. 69 f.].

The recovery for downward inconsistencies as in Example scenario 2 is distinguishable by

storing and non-storing mode. A node that is unable to forward a downward message in

storing mode sets the forwarding error-Wag in the RPL packet information and returns the

packet to its predecessor. The sender updates the downward routing table by removing the

entry that caused the error. The node then unsets the error-Wag and attempts to send the

packet on a diUerent route [5, p. 104]. This process is repeated until either a valid route is

found or no alternative route remains. If no alternative exists, the node may request a DAO

update from its children. In non-storing mode, each node picks the next-hop from the source

routing header. If a message cannot be forwarded, the node discards the message and sends

an ICMP error back to the root [5, p. 103] which may trigger a DAO update from the entire

DODAG. The risk of this loop is reduced by acknowledging No-Path DAO messages [5, p. 27].

The above recovery mechanisms describe a local repair. If an intolerable degree of inconsis-

tencies exist or if the local repair mechanisms cannot establish a consistent topology, the root

increases the version number to initiate a global repair [5, p.17]. This global repair rebuilds the

entire topology and creates a new DODAG. The rank of nodes that join the new version is not

related to their rank in the prior version [5, p. 17]. A global repair does not necessarily result

in a diUerent topology setting since the same parent-child relations might form.

2.3.3 Communication in RPL

The hierarchical structure of the RPL topology allows traXc to Wow in diUerent directions

along the DODAG. RPL hereby provides basic traXc Wow patterns as well as support for

multicast. The following gives an insight into these traXc Wow patterns as well as multicast in

RPL.

TraXc Flow Patterns RPL provides the infrastructure for the following traXc Wow patterns:

• Multipoint-to-Point

• Point-to-Multipoint

• Point-to-Point

The topology is optimized for P2MP and MP2P traXc [5, p. 13 f.] which are the fundamental

communication patterns for many applications like home and building automation [25, 26]

and urban environments [23].

2 Background 21

Multipoint-to-Point (MP2P) traXc is a mandatory feature of RPL and is naturally supported

by the structure of the DODAG. Upward routes provide convergecast traXc on which all nodes

send messages to their parents, so that the traXc is forwarded along the DODAG until it

reaches the root that processes or aggregates the data. The root can also function as an LLN

border router to allow forwarding to destinations on other networks.

For example, sensor nodes that monitor the temperature of a room will periodically advertise

their readings. The root collects measured data, but does not necessarily analyze or evaluate

the data, and sends a merged or pre-processed packet to an application server.

Point-to-Multipoint (P2MP) traXc is an optional feature in RPL and supported by the creation

of downward routes. Downward routes allow the root to communicate with devices in its

sub-DODAG. Depending on the mode of operation setting, nodes either maintain routing states

and are able to make forward decisions autonomously, or they only forward the downward

traXc according to the source routing header. Downward routes also allow the support of

multicast operations. P2MP traXc is required especially in home automation [25] and urban-

and industrial environments [23, 24].

Point-to-Point (P2P) communication between two arbitrary nodes of the DODAG is provided

by up- and downward routes. P2P communication is often required in applications like

building automation [26] and urban environments [23]. In RPL a P2P message destined to an

immediate neighbor can be delivered to that node directly [5, p. 77]. Otherwise the message

is forwarded upwards toward the root until it reaches a common ancestor that redirects the

message downwards. In storing mode, the common ancestor can be any of the nodes on the

upward path. In non-storing mode, it would always be the root, with the exception in case that

the destination is located on the path from the source to the root node [5, p. 19]. P2P traXc is

constrained by the properties of the tree-like topology: It is quite eXcient to forward messages

up- or downwards, forwarding a messages sideways among the same ranks, however, involves

routing arcs [33].5

Multicast in RPL The traXc infrastructure can also be applied in support of multicast traXc.

RPL speciVes the basic support for multicast operations in terms of group registration and

forwarding multicast traXc. The details on multicast in LLNs, the creation of a multicast based

DODAG, and speciVc RPL multicast operations are not deVned [5, p. 104 f.].6 The support for

multicast is only provided by storing mode and broadcasted by the mode of operation setting

in every DIO [5, p. 104].

5Goyal et al. [34] propose optimization for non-storing mode by reactively creating P2P routes. They increase the
performance of P2P by spanning a temporal DODAG sideways.

6Hui and Kelsey [35] deVne a framework for multicast forwarding in LLN to specify these features.

2 Background 22

The registration to a multicast group is equivalent to the advertisement of a downward

destination. A node registers to a group by sending a DAO message to one or multiple

DAO parents. The target address contains the required multicast group address that the

node subscribes to [5, p. 104]. A node either sends the DAO message to multiple parents

or the preferred parent only. Hence, each node has to make a trade-oU of redundancy and

reliability. Using a single route for the reception of multicast traXc holds the risk of message

loss. Receiving multicast traXc on multiple routes on the other hand may result in redundant

messages which would have to be discarded [5, p. 105].

A node that receives multicast traXc from its parents copies the message to all children

which are registered to that group as well, except the predecessor of that message. Multicast

messages originating from the sub-DODAG are forwarded to the preferred parent or alternative

parents, respectively. The root forwards the traXc to external sources, if required. In this

manner the root functions as an automatic rendezvous point for the RPL network and an

outside domain [5, p. 105].

2.3.4 Security of RPL

RPL provides basic security features to deploy secure control messages by which the com-

munication channel is secured. The security is optional and intended to provide protection

in the absence of link layer security. Other than unsecured mode where RPL relies on link

layer security, RPL security operates in either of two deVned security modes that protect the

network against an intruder [5, p. 90]:

• preinstalled mode

• authenticated mode

In preinstalled mode all nodes are priorly equipped with a global or pair-wise shared key.

Using the pre-shared key, each node is enabled to send secured control messages and thus

proves its authenticity with this key during the process of joining [5, p. 90]. Preinstalled mode

provides message conVdentiality, integrity, and authentication [5, p. 32 U.].

Authenticated mode also relies on a pre-shared key. Using this key, a node is only permitted

to function as host and thus not allowed to forward messages on behalf of other nodes. To fully

join as a router, the nodes Vrst obtain a second key from a key authority using the pre-shared

key. The key authority determines whether the node is permitted to function as a router [5, p.

91]. Authenticated mode is provided for future use, as details on the key authority and key

exchange are not speciVed by RPL [5, p. 92].

2 Background 23

RPL speciVes the required cryptographic mechanisms to provide authenticity, integrity and

conVdentiality. These mechanisms are

• authenticated encryption

• digital signatures

RPL employs CCM (Counter with CBC-MAC) [13] as authenticated encryption mode, with

AES-128 as underlying block cipher. CCM provides a CBC-MAC (Cipher Block Chaining

Message Authentication Code) for message integrity and authentication as well as encryption

in counter mode for conVdentiality. The most important requirement of CCM to ensure

security is that the CCM nonces that are required for the generation of unique key streams do

not repeat for a given key (see Sec. 2.1.2).

In RPL such a CCM nonce is denoted by a 32 bit incremental counter which is sequentially

increased for each secured transmission. This counter is used when encrypting messages in

CCM mode and for message replay protection. The counter can alternatively store a timestamp

in which case delay protection is provided as well. To protect incoming as well as outgoing

packets, a node maintains two individual counters for each particular destination address [5,

p. 94]: an outgoing counter for the encryption of traXc and an incoming counter for the

decryption and replay/delay protection of messages [5, p. 96]. The applied outgoing counter

value is transmitted in each secure control message to allow decryption for the receiving node.

RPL provides a synchronization by exchanging Consistency Check (CC) messages to ensure

non-repeating counters and to compensate for counter state loss upon failure of a device.

Figure 2.6 shows the CC message exchange after the failure of a node. The synchronization is

initiated by a CC request message which contains a nonce and the expected outgoing counter

of the destination. A node replies with a CC response message by which it transfers its actual

counter values. The requesting node sets the incoming counter to the value received within

the response. Its outgoing counter is set to an increment of the counter value that has been

applied to secure the response message. Both messages carry the same nonce to prevent a

replay attack.

A synchronization can also be initiated when a node receives a control message that is

secured by an initial counter state that is inconsistent with respect to its own states. In this

case, the receiver issues a CC response to deliver the values it currently maintains for the

sending node. For example, a node that has failed and now restarts, begins its CCM counter

at zero and sends secured messages. A receiving node maintains the actual counter states

for that node and thus transmits its counter states in a CC response [5, p. 47]. This example

2 Background 24

Figure 2.6: Synchronization of CCM Counter – Node A sends a CC request {〈η〉}0 to B.
The request contains a nonce η and is protected by A’s initial counter state (0).
B replies with a CC response {〈η, 8〉}6 containing its incoming counter (8) and
echoing η. The response is secured byB’s outgoing counter (6). NodeA resets both
counter states, so that further communication uses synchronized counter states.

is analogue to Figure 2.6, however not directly initiated by a CC request, but implicitly by a

control message with inconsistent counter state.

An RSA digital signature scheme [36] allows the creation of signatures of 2048 or 3072 bit [5,

p. 99] as an alternative to authentication by CBC-MACs. The signature is created by signing

the SHA-256 (Secure Hash Algorithm, 256 bit) [37] hash value of the message rather than the

entire message [5] and provides authentication and integrity. When using digital signatures,

encryption can be applied using AES-128 in CCM mode as well. In contrast to the CCM

speciVcation, no further CBC-MAC is created when a digital signature is applied because the

signature provides suXcient authenticity [5, p. 99].

3 Security Analysis of RPL

In this chapter the security of the IPv6 Routing Protocol for Low-power and Lossy Networks

is analyzed. The architectural components of an RPL network comprise of a root node and

an arbitrary number of additional routers and hosts as depicted in Figure 3.1. The root is

responsible for the creation of the topology and global maintenance, serves as a data collection

point and supplies special functionality such as border routing into IP-based networks. Routers

send and maintain routing information to provide connectivity between LLN devices. Hosts

carry out the actual tasks, for example sensing environmental conditions and sending the

measured data to the root.

All messages that are exchanged between devices are transmitted over-the-air. This opens

the door for an outsider exploiting potential weaknesses of the network, such as unauthorized

modiVcations of messages or gaining access to sensitive information by monitoring message

exchange. Moreover, the accessibility of deployed devices, especially in public places makes it

easier for an attacker to compromise a device, if not properly protected. This enables him to

read and substitute routing information or obtain security credentials.

RPL speciVes several security mechanisms to mitigate these threat scenarios. For a precise

security evaluation, it is necessary to Vrst describe potential threats and the attackers. Hence,

this chapter begins with the deVnition of the threat and attacker model.

3.1 Threat and Attacker Model

The threat categories relevant for this work are related to those in the analysis by Tsao et

al. [38], and threats therefore fall into either one of the categories authenticity, integrity,

availability or conVdentiality. Non-repudiation is not considered, because it is not relevant in

the communication between devices in the context of the routing protocol [38].

Before categorizing all threats, an overview of the used terminology is given.

• Control plane: provides the support that is required for the establishment and main-

tenance of routing paths. Routers therefore exchange control plane messages which

contain the relevant routing information to Vnd the quested path for data packets.

3 Security Analysis of RPL 26

Figure 3.1: Architecture and Components of an RPL Routing Domain – DODAG 1 and
DODAG 2 with root nodes R1 and R2 and many routers and hosts, respectively
(empty circles). Each router or host may select multiple parents (dashed lines). Both
DODAGs are connected by a common backbone link.

• Data plane: provides the support for data forwarding. A router that receives a packet

looks up the corresponding entry in its routing table which has been created by the

control plane and thus decides the next hop for a given data packet.

• Deception [10]

– by masquerade: an attacker impersonates an authorized node to deceive another

authorized node. The goal of the attacker is to obtain the privileges of the im-

personated entity to execute functions or gain access to resources that require

authorization. Examples for an impersonation are replay attacks or identity spoof-

ing.

– by falsiVcation: subcategorizes into substitution and insertion. Substitution denotes

any illegal modiVcation (alter or replace) to valid data to deceive an authorized

node. Insertion is the illegal introduction of false data to deceive an authorized

node.

• Disruption [10]

3 Security Analysis of RPL 27

– by corruption: subcategorizes into tampering and malicious hardware1. Tampering

denotes any illegal modiVcations to the routing logic, data or control informa-

tion that alter the functions of the routing protocol. Malicious hardware is any

introduced or maliciously used hardware to modify routing behavior.

– by obstruction: subcategorized into overload and interference. Overload is any

form of exhaustion of nodes or network. Interference denotes the blocking of

communication on the control or data plane.

• Disclosure [10]

– by interception: denotes the unauthorized access to sensitive information by spying

on the message exchange (eavesdropping).

– by inference: denotes the unauthorized access to sensitive information by interpret-

ing or inferring the characteristics of the communication (traXc analysis).

3.1.1 IdentiVcation of Threats

A threat is deVned as an incident that potentially causes harm. A vulnerability is a weakness

of the system that allows for threats to occur [39]. Attacks aim at damaging or compromising

the assets of a system by exploiting vulnerabilities and are thus deVned as the realization of a

threat. Hence, when considering an attack, a threat can be described as the potential for an

attack by exploiting a vulnerability.

Assets in an LLN are routing information, resources, processes and nodes [38]. Routing

information is exchanged over-the-air and partially stored by every node. Resources include

CPU cycles, memory, energy capacities and communication bandwidth. Processes provide

services such as route creation and maintenance required by the network. Nodes provide

interconnectivity and form the basis of the LLN.

From these assets it can be deduced that the possibility of an adversary to gain access to

an asset is either given by exploiting the wireless communication channel or by accessing a

device physically or remotely. Furthermore, RPL has been designed for interoperability of

smallest devices where hosts have the ability to connect to the other IP-based networks. This

paradigm creates the threat of attacks launched from the Internet. However, it is assumed that

border routers are able to use complex and praxis-proven cryptographic protocols, such as

digital signatures combined with an infrastructure for digital certiVcates to communicate with

hosts or routers in other routing domains. This work therefore focuses on threats and attacks

1Re-deVned from RFC-4949, which deVnes malicious logic as hardware, Vrmware and software.

3 Security Analysis of RPL 28

Classification Threat

Authenticity /
Deception of an authorized node by masquerade

Integrity
Deception by substitutions in the control / data plane
Deception by insertions in the control / data plane

Availability
Disruption of control / data plane by corruption
Disruption of control / data plane by interference
Disruption of control / data plane by overload

ConVdentiality
Disclosure of sensitive information by interception
Disclosure of sensitive information by inference

Table 3.1: Summary of Threats

launched from inside an RPL routing domain. Hereby it is assumed that border routers, due to

their essential role in RPL, are tamper resistant and thus not compromised by an attacker.

The relevant threat categories are summarized in Table 3.1 and described in the following.

Threats to integrity and authenticity The communication channel can be exploited by the

substitution of message content or the insertion of forged messages. This can, for example,

be achieved by intercepting messages and making illegal modiVcations before transmitting

them to the actual destination or by accessing a node directly. An attacker that has access to a

node may substitute its routing state or reprogram the device with a malicious code, so that

the node sends false routing information. He thus has the ability to inWuence or control route

creation and maintenance. He further impersonates other authorized devices to gain their

privileges. This enables him to access and misuse protected resources or routing information,

or to corrupt processes.

Threats to availability A routing protocol requires services for topology/route creation,

maintenance and forwarding. Routers or nodes exchange routing information and provide

connectivity, so that all messages reach their destination. Nodes require a minimum of

resources to function correctly and to provide those services. An exhaustion of these resources

leads to a decreased availability of routing and forwarding. Threats on the availability are

thus the disruption of the control or data plane. An attacker achieves this by obstruction or

corruption of message exchanges.

Threats to conVdentiality The routing information is subject to unauthorized disclosure.

An adversary gains unauthorized access to the routing information by intercepting the commu-

nication channel or by accessing a node directly. He may further analyze the communication

3 Security Analysis of RPL 29

patterns and infer helpful information. He thus gains knowledge of routing states which help

him to detect a lucrative access point for further attacks.

3.1.2 Attacker Model

The attacker is provided with certain capabilities and resources to exploit potential vulnera-

bilities of the RPL network which thus denotes the actual risk of a threat. RPL implements

cryptographic countermeasures which require security keys. For this reason, this work dis-

tinguishes two classes of attackers, as deVned by Karlof and Wagner [40]: an insider that has

obtained a set of security credentials, and an outsider attacker with no security keys.

Outsider attacker The outsider attacker tries to intrude the network from outside the

security perimeter and thus denotes an unauthorized entity. This means that he has no access

to any cryptographic keys and is restricted by the security measures of RPL. He thus intends

to exploit the wireless communication channel.

The attacker is assumed to be an experienced hacker. Hence, he is assumed to possess

standard tools including a general purpose computing device such as a modern laptop which

gives him much higher resources than remaining nodes in the network. Furthermore, air-

sniXng tools like Wireshark to capture wireless communication and tools to substitute the

content of messages and insert new messages into the network are assumed to be be available

to this class of attackers.

The outsider attacker is not limited to a single device. Multiple laptops enable the attacker

to establish out-of-band communication between attacking devices. Furthermore, he may

install malicious hardware, like directed or more sensitive antennas, to inWuence the signal

propagation of the in-band communication and to increase his transmission and reception

range.

Insider attacker All characteristics of the outsider attacker apply to the insider attacker as

well. Additionally, the insider attacker is assumed to have obtained a set of security keys.

This might be done by an insider (traitor) actually selling or providing cryptographic keys,

or by compromising one or more devices of the network. For instance, a memory readout

enables him to extract routing information and security keys which he copies to an additional

laptop-class device. Hence, he is able to act as an authorized entity with the same privileges of

the compromised node. It is further assumed that these privileges allow the insider attacker to

function as a router in the network.

3 Security Analysis of RPL 30

3.2 Security Objectives

Security solutions for RPL must mitigate the potential threats. As summarized in Table 3.1,

each threat in this model belongs to one of the following three classes: authenticity and

integrity, availability or conVdentiality.

In the following, the available (cryptographic) tools and protocols that might be used to

protect threats against authenticity and integrity, availability and conVdentiality are brieWy

introduced. Note that the physical theft of a node cannot be directly countered on the network

layer [38]. Therefore, the countermeasures, for example using tamper resistance hardware, are

out of the scope of this thesis. Furthermore, the integrity protection is typically considered

in combination with authenticity in the form of (message) authentication. Hence, the tools

available for protecting the authenticity and integrity are described in the same section.

Authenticity and integrity Message authentication is required in LLNs to ensure that the

source is who it claims to be and thus to create a bond of trust between communicating

partners. The RPL security model must therefore prevent an adversary from masquerading

as an authorized node and from inserting false messages into the communication channel.

Integrity checks are required to detect the substitution of message content. This prevents an

attacker from inWuencing the routing behavior by illegally modifying routing information

during transfer.

Availability Mechanisms that provide availability consider the usability or reliability of

services and resources when they are required. Thus, the interference or disruption of

the communication channel and the exhaustion of the resources of nodes are threats to

availability. RPL must therefore provide a suXcient amount of message redundancy to ensure

the availability even in the event of node failure and partial disruption of the network.

Implicit threats to availability are evident whenever the violation of integrity or authenticity

leads into the unavailability of a service. This is the case, for instance, if traXc is redirected by

corruption of routing information. Hence, the implementation of authentication schemes and

integrity checks increase the availability as well.

ConVdentiality When sensitive data is transmitted over-the-air, it is important to prevent

that information from unauthorized disclosure by an attacker. In general, it is hard to detect

whether an unauthorized node has read the message during transit. ConVdentiality provides

protection so that only authorized entities gain knowledge of the message content, and it

is typically provided by encryption. Further, an attacker may analyze traXc Wows and read

3 Security Analysis of RPL 31

unencrypted routing information as a preparation for another attack. To make it more diXcult

for an attacker, for instance, to spot lucrative access points, the routing information may be

encrypted. However, the mere knowledge of routing information does not directly inWuence

the routing behavior [38]. Hence, these threats are not the primary concern of this survey.

3.3 Security Evaluation of RPL

This section evaluates the RPL compliance to these security objectives in consideration of an

outsider as well as an insider attacker. The security mechanisms used in RPL are assumed

to operate with a preinstalled key. The keys required for encryption and authentication are

shared among root node, routers and hosts by using a key management mechanism. Due to its

central role for security models based on cryptographic keys, the key management of RPL is

discussed as prerequisite to other security mechanisms.

3.3.1 Key Management

Cryptographic protocols require a security key, so that it is important to equip each node

with all necessary keys. There are two basic paradigms for key management: manual and

automated key management [16]. RPL speciVes a manual key management in which keys

are preinstalled by some out-of-band mechanism. The speciVcation of an automated key

management is left to external documents.

The manual out-of-the-box key management of RPL provides symmetric group keys or

pair-wise keys. A group key, however, is a security breach already in case a single key is stolen,

as the entire group shares the same key. While pair-wise keys mitigate this impact, they may

result in scalability issues, if the number of nodes becomes large, as each node stores n− 1

keys to securely communicate with all other nodes.

This minimal speciVcation of a manual key management complies with the overall goal of

RPL to provide only basic security features. However, especially large scale networks require

an automated key management to prevent the overuse of security keys and to revoke keys in

the case of a compromised node [16].

As a possible solution to these problems, Alexander and Tsao [41] propose AMIKEY which

is currently at the state of an Internet draft. Their approach denotes a key management for

LLNs based on on Multimedia Internet KEYing (MIKEY) [42]. Next, AMIKEY (Adapted MIKEY)

is brieWy introduced and evaluated for use with RPL.

3 Security Analysis of RPL 32

(a) Key Assignment Requested by Client

(b) Key Assignment Initiated by KMS

Figure 3.2: AMIKEY Key Assignment – SimpliVed view of the key assignment process in
AMIKEY. The TEK generation key(s) (TGK) and the security parameter (SP) are
encrypted using the pre-shared key (PSK). (a) shows the initiation by the client and
(b) the initiation by the key management server (KSM). (Based on [41])

Automated key management by AMIKEY AMIKEY intends to improve the security of RPL

by allowing to dynamically exchange master keys or TEK Generation Keys (TGKs). Session

keys or TraXc-Encryption Keys (TEK) are derived from the TGK. TEKs allow for frequent key

refreshment to prevent the overuse of security keys and allow for re-keying if a session key is

compromised. The TGK is exchanged using either a pre-shared key, asymmetric cryptography

or optionally DiXe-Hellman key exchange.

AMIKEY is designed to support the authenticated security mode of RPL. In authenticated

mode a joining node uses a pre-shared key to obtain a second key from a key authority.

Figure 3.2(a) shows a node that requests a key assignment using a pre-shared key (PSK). A

client sends a request to a key management server (KMS). The KMS initiates the key assignment

by sending an initiator message, protected by the pre-shared key, that contains one or more

TGKs and a set of security parameters (SP). The update of a TGK works in the same way, so

that a node sends a request message to the KMS and receives a new TGK from the KMS.

3 Security Analysis of RPL 33

Technique Defends against Outs. Ins.

CCM / AES, RSA unauthorized disclosure of security keys X –
AES in counter

mode
unauthorized disclosure of routing information
by interception of control messages

X ×

CBC-MAC /
deception by substitution of information in control
messages

X ×

RSA signature deception by insertion of forged control messages X ×
deception by masquerading as authorized node X ×

Counter
deception by insertion of outdated control messages
(replay)

◦ ×

Timestamp disruption by overly delaying control messages X ×
(X) detected / prevented (×) not defended (◦) mitigated

Table 3.2: Cryptographic Defense Techniques in RPL – Protection against an insider (Ins.)
and outsider (Outs.) attacker.

Re-keying can also be initiated by the KMS as visualized in Figure 3.2(b). The KMS sends

the key update to the node which responds to complete the key update and to provide mutual

authentication. The communication is secured by a pre-shared key. The key exchange can

alternatively be secured using public/private keys or a key exchanged by the DiXe-Hellman

protocol. This approach relaxes the scalability issue of pair-wise keys and provides equivalent

protection in case of a compromised session key. However, once a PSK is compromised, all

communication that has been secured with the PSK is potentially breached. An adversary may

decrypt priorly exchanged and recorded TGKs by using a stolen PSK.

A practical issue of AMIKEY is that it has not yet been standardized. Current RPL implemen-

tations therefore have to resort to other key management solutions or simply the preinstalled

mode of RPL with a manually installed key. The security of this preinstalled mode is analyzed

next.

3.3.2 Cryptographic Defenses

RPL deVnes various cryptographic countermeasures such as authentication schemes, optional

encryption as well as replay and delay protection. These cryptographic defenses of RPL cover

all types of control messages. However, datagrams which also contain routing information are

not secured by RPL. The security protocols described in this section therefore only consider

control messages and not datagrams. The security constructs and procedures provided by RPL

are summarized in Table 3.2 and discussed in the following.

3 Security Analysis of RPL 34

The cryptographic protocols that protect the authenticity, integrity and conVdentiality of

control messages of RPL include

• AES-128 in counter mode (CCM2)

• CBC-MACs (CCM)

• RSA signatures

In RPL, encryption is provided by CCM with AES-128 in counter mode. This encryption scheme

requires the creation of a unique key stream by using a secret key and a unique CCM nonce

for each key stream. In RPL, unique nonces are provided by an incremental counter which is

increased for each secured control message and is included in the message. The encryption

covers the entire base of the control message, excluding the IPv6 and ICMPv6 header as well

as security parameters of RPL which is required for decryption.

CCM provides the authentication of messages by CBC-MACs to verify the origin and the

integrity of control messages. For this purpose, a MAC is created over the entire unsecured

control message. A node that receives such an authenticated message veriVes the source

and the integrity of the message. If successfully veriVed, the node can be certain that the

content of the message has not been substituted and has been created by the corresponding

key owner. The node therefore trusts the data contained in the message and its source. If the

veriVcation fails, the message is dropped. If encryption is applied, additional authenticated

data provided by CCM is used to authenticate the unencrypted IPv6 and ICMPv6 header and

security parameters to allow the veriVcation of these information before decrypting a message

[5, p. 97].

An outsider attacker that intends to forge a MAC or to decipher an encrypted message has

to break the security of CCM or AES. The security of CCM has been proven by Jonsson [43].

He demonstrates that it is infeasible for an adversary to derive information from a cipher

or to forge a valid cipher as well as authenticated data without knowledge of the secret key.

Likewise, when properly implemented and applied, no practical attack is known that breaks

AES-128 faster than an exhaustive search [44, 45]. An outsider attacker has to Vnd the key by

brute-force and search the key space of 2128 which is eUectively infeasible. A MAC therefore

prevents an outsider attacker from falsifying routing information or from masquerading as an

authorized node and inserting messages into the network.

In RPL digital RSA signatures can be applied as an alternative to CBC-MACs. The authen-

tication and veriVcation process is similar to MACs, only that public/private key pairs are

2CCM: Counter with CBC-MAC / CBC-MAC: Cipher block chaining message authentication code

3 Security Analysis of RPL 35

used instead of a single secret key. The sender signs a message with its private key which can

be veriVed by any node that has access to the corresponding public key. Upon success the

verifying node trusts that the data has been created by the owner of the private key.

The security of RSA signatures has been proven by Bellare and Rogaway [46]. They show

that forging a signature is as hard as solving the RSA problem [47] for which no eXcient

algorithm is known when using keys of at least 1024 bits [48]. Hence, an outsider attacker can

neither forge a RSA signature nor extract the private key from a secured communication and

is thus prevented from claiming a false identity or from falsifying routing information.

The signing with a private key allows a distinct identiVcation of the owner of the private key,

if combined with a corresponding digital certiVcate. However, the signature scheme comes

with 3 major drawbacks. First it requires additional infrastructure to issue and propagate these

certiVcates and to allow a distinct identiVcation of the key owner. However, as of writing this

thesis, such a public-key infrastructure has not been standardized for RPL. Secondly, public

and private keys are much larger than symmetric keys: AES keys are provided with 128 bits,

whereas RSA signatures in RPL have a key size of 2048 and 3072 bits. Such large keys increase

the memory requirements and the transmission costs in a multi-hop LLN [49]. And lastly,

the computational requirements and thus energy consumption are much higher compared to

symmetric approaches [50, 51]. Using signatures may be useful for an initial authentication of

the root, but is infeasible for regular authentications or veriVcations of in-network routers

when considering very constrained devices. Additional signature schemes such as elliptic

curve cryptography [52, 53] as well as concepts for certiVcates can be provided by future

external speciVcations like AMIKEY.

Both approaches, CBC-MAC and RSA signatures, prevent an outsider attacker from the

falsiVcation of messages or from masquerading as an authorized node. The insider attacker

on the other hand behaves as an authorized node and therefore sends and receives control

messages. He may insert false routing information or substitute data within all messages using

the acquired security keys. Signatures or pair-wise applied secret keys may hereby reduce the

scope of the security keys that can be obtained by an insider attacker [5].

Replay and delay protection In addition to authentication and encryption schemes, RPL

also provides replay and delay protection by the following constructs:

• sequential counters (replay protection)

• timestamps (delay protection)

3 Security Analysis of RPL 36

In a message replay attack, an adversary retransmits a prior message to an honest node. For

the detection of replay attacks, RPL takes advantage of the property of CCM of non-repeating

nonces. If a nonce ever repeats, a replay attack is detected. A node therefore maintains two

sequential counters for each target: an outgoing counter to secure control messages toward

another node and a counter for incoming secured control messages of that node. A node

that receives a message checks whether the contained counter is an increment of the current

incoming counter state for the source. If a counter value repeats, a potential replay attack is

detected and the message is dropped [5, p. 96].

This detection techniques can only reliably detect replay attacks, if the counter states of

nodes are synchronized. This is achieved by the exchange of consistency check (CC) messages.

This process is initiated either upon reception of a CC request or if a secured control message

is received that has been secured with an counter state of zero, although the receiving node

maintains diUerent states. This may happen when a node reboots and loses its counter states.

Since in both cases the counters are potentially unsynchronized, a replay protection during

synchronization is not provided by these counters. For this reason, a CC request message

contains an additional nonce that is echoed in the corresponding CC response. When the

response is received, the requesting node checks the nonces and only updates its counters upon

a positive match. In contrast, a secured control message with the unexpected counter value

of zero is not protected against replays. The reason for this is that echoing the zero-counter

value in the response is trivially predicted by an attacker and thus does not provide replay

protection.

This sequential counter, however, cannot protect against an attacker that prolongs the

propagation of control messages. Therefore RPL provides a timestamp that detects such delay

attacks. In a delay attack, an outsider attacker postpones a control message for a certain period

of time. To detect a delay the CCM counter is applied and represented by a timestamp. If

the timestamp in a received message indicates that the message delivery took longer than a

tolerated delay, the message is dropped. A substitution of the timestamp is detected by the

message integrity check. A timestamp also provides replay protection, but comes with the

drawback of requiring a loose time synchronization.

3.3.3 Non-Cryptographic Defenses

RPL has certain characteristics within its design that can be applied to increase the availability

of services of the network and may also be used to protect against the unauthorized access to

routing information. These characteristics are:

3 Security Analysis of RPL 37

Technique Defends against / mitigates

Control message
redundancy

Disruption by interference (blocking / dropping of messages)

Multiple paths Disruption by interference (partial blackout of network)
TraXc

randomization
Disclosure by inference and interception of routing information

Bi-directional link
validation

Disruption by interference (unidirectional links)

Table 3.3: Non-Cryptographic Defense Techniques in RPL – This table shows the inherent
design properties that may mitigate attacks on availability and conVdentiality. All
properties apply to the outsider as well as the insider attacker.

• control message redundancy

• multiple paths

• traXc randomization

• bi-directional link validation

Redundancy is a common method for increasing the availability of a service. Since message

loss is one of the characteristics of LLNs, RPL sends control messages redundantly. DIO

messages, for instance, are scheduled redundantly by the trickle algorithm. If messages are

lost or blocked by an attacker, another transmission may be received.

Multiple paths are another form of redundancy by which nodes select multiple parents for

resilience against node failure or for load balancing. Multiple paths provide some resilience

against denial of service attacks as well. If an attacker disrupts parts of the network, the

children of aUected nodes may choose an alternative path to sustain the connectivity to the

root.

TraXc randomization [38] is a technique by which the next-hop for each packet is chosen at

random from one of multiple choices. An attacker that eavesdrops or analyzes traXc Wows

may thereby only receive a small part of the traXc, so that the impact of these attacks is

mitigated. However, it may not be applicable in scenarios where randomized traXc is not

desired, for example if routing is optimized for preserving energy resources of certain devices.

Another technique is the validation of bi-directional links which is required by RPL. The

reason for this is that upward routes are created by sending DIO messages downwards, and

downward routes are created by sending DAOs upwards. The validation of bi-directionality

3 Security Analysis of RPL 38

Type Attack Outs. Ins.

Wiretapping
Eavesdropping X ×
TraXc analysis ◦ ◦

Identity misuse
IP spooVng X ×
Sybil attack X ×

Crypto-suite attacks
CC-replay attack × ×
Cryptographic processing attack X ×

Illegal repair
Version number attack X ×
Poisoning attack X ×
Datagram forgery × ×

Distance fraud
Rank spooVng X ×
HELLO Wood attack X ◦
Wormhole attack × ×

TraXc Vltering
Selective collision ◦ ◦
Selective forwarding X ◦

(X) detected / prevented (×) not defended (◦) mitigated

Table 3.4: Summary of Attacks against RPL – Attacks by an insider (Ins.) and outsider
(Outs.) attacker.

can be used to mitigate attacks that create false neighbor relations by creating uni-directional

links [40].

These techniques by themselves do not prevent an attack, but may mitigate the impact

of attacks launched by outsider as well as insider attackers. Table 3.3 summarizes these

characteristics which are further evaluated in the next section.

3.4 Attacks and Countermeasures

The defense techniques of RPL greatly reduce the impact of an outsider attacker, but cannot

defend against an insider that has access to the required security keys. Furthermore, datagrams

are not covered by the RPL security but play an important role for the maintenance operations.

Therefore, datagrams denote a vulnerability which is exploitable by an outsider attacker.

This section presents the potential attacks against RPL in consideration of an insider and

outsider attacker and discusses potential countermeasures. The attacks are summarized in

Table 3.4 and described in the following.

Wiretapping The communication in RPL takes place over a wireless medium. An attacker

that is able to receive the communication of authorized devices may spy on their communica-

3 Security Analysis of RPL 39

tion to obtain sensitive information. This work distinguishes between two attacks that allow

this unauthorized disclosure by wiretapping3:

• eavesdropping

• traXc analysis

An adversary that eavesdrops on the communication channel receives the messages of

authorized nodes to gain access to sensitive information. The insider attacker decrypts

control messages that are encrypted using the acquired security keys and thus undermines

the conVdentiality of routing information. Although the outsider attacker is prevented from

eavesdropping on the content in control messages, the routing information in datagrams may

not be encrypted. In this case the outsider has access to the transmitted information.

Further, the outsider attacker has the ability to analyze traXc Wows. In a traXc analysis, he

monitors traXc Wow patterns to obtain and evaluate routing information. The encryption does

not conceal header information, so that he examines communication behavior of devices. He

implies topology settings and message timings or searches for an attractive attacking point

such as a device to compromise. Furthermore, routing may account for energy resources, so

that traXc Wows reveal information of nodes that have low energy supplies. These devices may

be targeted in a denial of service attack. Multiple paths and the randomization of traXc can be

applied to mitigate a traXc analysis, if applicable by the speciVc application. Characteristic

traXc Wows are thereby obfuscated and reveal less information.

Identity misuse An adversary can also inWuence the routing behavior by the falsiVcation

of messages. When inserting messages with a false identity he obtains unauthorized access

to resources or processes and deceives honest nodes or disturbs the network. The following

attacks allow an adversary to masquerade as an authorized node:

• IP spooVng

• Sybil attack

In an IP spooVng attack the insider attacker uses the IP address of an authorized entity.

He spoofs his identity to any other node to gain its privileges. For example, the attacker

impersonates the root node and is thus able to propagate the root’s rank (see rank spooVng).

3Although the term wiretapping infers a mechanical connection, this work uses the term for wireless links as well
according to Shirey [10].

3 Security Analysis of RPL 40

Such an IP spooVng attack could be prevented by using Cryptographically Generated

Addresses (CGAs) [54]. A CGA is generated with a public/private key pair, so that only the

private key owner can generate messages from this address. CGAs rely on the use of RSA,

so that they may be infeasible for use in many LLNs. However, Sarikaya et al. [55] propose

a lightweight approach especially for LLNs by using elliptic curve signatures. The use of

these CGAs is not yet standardized for RPL, so that IP spooVng is applicable for an insider

attacker. As IP spooVng requires the creation of an authenticated message, an outsider attacker

is detected by the authentication schemes.

Another misuse of identities is denoted by a Sybil attack [56] in which an insider attacker

creates multiple fake identities on a single hardware interface. The goal of this attack is to

insert the false identities into the routing tables of other nodes. The insider attacker thereby

provides seemingly valid routes through multiple artiVcial parents. A node unknowingly

selects these artiVcial parents and thus a multitude of traXc is directed toward the attacker.

Techniques like multiple paths do not mitigate this attack, as all forwarding decisions lead

toward the attacker.

The outsider attacker is prevented from both attacks. He may, however, masquerade as an

authorized entity by a message replay attack.

Crypto-suite attacks Crypto-suite attacks are targeted at the security features of RPL and

may be used to implement identity misuse or to exhaust the resources of nodes. Such attacks

include:

• CC-replay

• cryptographic processing

Although RPL provides replay protection, an outsider attacker can avoid detection under

constrained conditions. In a CC-replay attack the outsider attacker exploits a weakness of the

CC synchronization process which allows him to replay a control message that is secured by

an initial (zero) counter value. Assume two honest nodes which have communicated before

and thus maintain non-zero CCM counter states. Providing that the attacker has received

a secured control message with a zero-counter state from this communication, he replays

this message to the original destination. The receiving node assumes that the source of the

message has lost its counter states and thus replies with a CC response. If executed repeatedly

the processing of the replayed message and the resulting transmission of a response overloads

the victim and strains its energy resources.

3 Security Analysis of RPL 41

Possible countermeasures may involve a threshold to limit the number of initiated synchro-

nizations due to the reception of such a message. This of course bears the risk of an attacker

exhausting this threshold to prevent a required counter synchronization upon a device failure.

A more complex countermeasure could analyze the progress of security counters during the

communication. Hereby, the alternating reception of message that are secured with zero

counter states and the correct counter indicates suspicious behavior.

Attacks that are also directed at the security model of RPL are cryptographic processing

attacks [38]. Hereby an outsider attacker intends to exploit the order in which secured control

messages are processed in RPL to force a node to decrypt an invalid message before it is

dropped. An outsider attacker substitutes the replay protection counter and replays the forged

message. For this purpose, RPL uses additional authenticated data that is provided by CCM.

This additional authentication allows the veriVcation of unencrypted information and thus

the replay protection counter, so that this attack is detected. The insider attacker on the other

hand simply sends valid secured messages and forces an honest node to perform decryptions

and veriVcations to drain energy resources and to disrupt the node.

Illegal repair The initiation of illegal repairs denotes a type of attack that enables an ad-

versary to disrupt larger parts of the network. Hereby the insider and outsider attacker start

a global or local repair, respectively. There are several methods that initiate such an illegal

repair:

• version number attack

• poisoning attack

• datagram forgery

A version number increase initiates a global repair of the topology and is reserved for the

root node. Typically this repair is started when local repairs do not suXciently resolve the

inconsistencies within the topology. In a version number attack [6], a global repair is triggered

by an insider attacker. He propagates an illegal increased version number to all neighboring

nodes. These nodes reset their trickle timer and begin to frequently send DIO messages. The

version update is propagated to all nodes in the network, so that the entire topology is re-built

by the attacker. When repeatedly executed, this attack disrupts the forwarding operation of

the data plane by overloading the communication channel with control plane messages and

exhausts the energy resources of all nodes. Countermeasures to this attack are discussed in

Chapters 4 and 5.

3 Security Analysis of RPL 42

A variant of the version number attack with local impact is the poisoning attack. As

presented by Le et al. [57] an insider attacker poisons its upward routes and cause neighboring

nodes to update their parents set. As a result, the neighbors reset their trickle timer and send

DIOs more frequently for a local repair. This attack is done repeatedly to overload these nodes.

Le et al. propose an intrusion detection system that monitors the network and detects such an

attack.

The propagation of a falsiVed version number or increased rank requires an attacker to

send authenticated messages, so that only an insider attacker has the ability to launch these

attacks. An outsider attacker is limited to the falsiVcation of datagrams which contain routing

information as well and which are not protected by the security of RPL.

Hui and Vasseur [32] describe an attack in which a datagram forgery allows the outsider

attacker to create an inconsistency that results in a local repair. Hereby the outsider attacker

modiVes the routing information of datagrams, so that the traXc direction is inconsistent with

respect to the rank within the datagram. He returns the datagram to the predecessor, so that

it resets its trickle timer as it wrongfully detects a routing loop. Alternatively, the outsider

attacker clears downward routing entries in storing mode, when a datagram is returned to the

predecessor with the forwarding error bit set. As this indicates a false downward routing state

within the predecessor, it wrongfully deletes the downward route.

To mitigate the impact of attacks on the routing information in datagrams, Hui and Vasseur

propose a threshold that restricts the number of times a node maintains its routing tables due

to inconsistencies in datagrams. A drawback of this approach is that an attacker may exhaust

this threshold to locally disable the repair service.

Distance fraud In a distance fraud attack the adversary propagates a false topological or

physical distance to other nodes. He attracts traXc by seemingly providing a shorter distance

to the root than other nodes in the vicinity or creates non-existing neighbor relations. These

attacks include:

• rank spooVng

• HELLO Wood

• wormhole

In RPL the topological distance to the root is represented by the rank. In a rank spooVng

attack [6], an insider attacker propagates an improperly decreased rank to improve its po-

sition in the topology. Since the low rank suggests a more proVtable path toward the root,

neighboring nodes wrongfully select the attacker as parent.

3 Security Analysis of RPL 43

(a) Regular RPL routing hierar-
chy

(b) Topology after a rank spoof-
ing attack

(c) Topology after a replay attack

Figure 3.3: Rank Spoofing and Replay Attacks – RPL topologies (a) of regular arrangement
and (b) after rank spooVng. The attackerM propagates a rank jM falsely decreased
by ∆, and thereby incorrectly attracts nodes 1, 2, 4, and the parent nodeH which
creates a sinkhole. (c) visualizes a replay of the parent rank, only attracting nodes
1, 2, and 4 with intact upstream to H .

In RPL the rank is calculated by incrementing the parent’s rank. The minimum increase

between the parent’s and the own rank is denoted by the parameter MinHopRankIncrease

(MRI).4 Hence, any propagated rank lower than the sum of the parent’s rank and MRI is

considered illegal and therefore rank spooVng. The lowest rank spooVng is therefore a rank

replay in which an attacker claims the rank of his parent. The spoofed rank, jspf , is thus

deVned by

jspf = jP −∆ with ∆ ≥ 0, (3.1)

where jP denotes the rank of the parent and the parameter ∆ represents the degree of the

rank spooVng in rank level or hops.

Figure 3.3(a) shows an exemplary RPL topology created exclusively with honest ranks.

Figure 3.3(b) illustrates the forged topology after a rank spooVng attack. NodeM propagates

a lower rank than all its immediate neighbors. This causes all nodes, even former parent H ,

to select M as parent and creates a sinkhole within the topology. This sinkhole prevents

the attacker from sending traXc to the root, because all surrounding nodes selected him as

4For simplicity, this work assumes that each node increases its rank by 1 hop per rank level.

3 Security Analysis of RPL 44

next-hop for upward traXc. To remain connected to the root, the attacker may resort to a rank

replay attack.

A rank replay attack is a special case of rank spooVng in which the attacker illegally claims

the rank of his parent. This is equivalent to a rank spooVng with ∆ = 0 by which the adversary

moves one level up in the hierarchy. Figure 3.3(c) shows the eUect of a rank replay attack.

Three additional nodes choose the attacker as parent. The attacker may use nodeH for upward

traXc, as it does not select him as parent due to his equal rank. However, once the attacker

sends upward traXc through a parent node of equal rank, the parent will notice a violation

of the monotonic rank order. The message is not dropped until the second inconsistency on

the path, but decreases the probability of successful message delivery. The insider attacker

circumvents this consistency check by using a correct rank when communicating with his

parent and announces the replayed rank to its children. Since RPL does not specify any checks

that combine the rank of child nodes with the rank in a datagram, the inconsistency detection

fails to detect such a rank replay attack. Topology authentication schemes to defend against

rank spooVng and rank replay are thoroughly described in Chapters 4 and 5.

Distance fraud is also possible by the introduction of malicious hardware. The insider

attacker may propagate his real or a spoofed rank with an increased transmission strength. In

this HELLO Wood attack [40] the insider attacker sends DIO messages to distant nodes, which

are unable to transmit messages over the same distance. Each transmission of these nodes

toward the attacker is lost in a black hole [40]. A mitigation technique is the validation of

bi-directional links by which a node only accepts messages if it also has a connection to the

source. However, as shown by Wallgren et al. [58], this validation only mitigates the attack

to some degree. Furthermore, bi-directional link validation techniques fail once an attacker

uses a very sensitive receiver allowing him to receive traXc of his victims and to conVrm

bi-directionality [40]. However, since a HELLO Wood attack requires the attacker to provide a

valid DIO message, the outsider attacker is prevented from this attack.

Another possibility for a distance fraud is a wormhole attack. Hereby two attackers commu-

nicate through an out-of-band channel. Through this wormhole the attackers may connect

honest nodes that are actually far away, and inject a lower rank anywhere in the topology. All

traXc is tunneled through the wormhole and passes the attackers. The out-of-band channel

hereby creates a virtual upward path that allows the attacker at higher rank level to create a

sinkhole and to forward data traXc to his accomplice. Hereby he sustain the connectivity to

the root. In principle the wormhole attack can be used in combination with various attacks

[58] and is applicable to an outsider as well as insider attacker.

3 Security Analysis of RPL 45

TraXc Vltering In traXc Vltering attacks an adversary selectively interferes with the com-

munication of other nodes to block certain messages or even entire services. TraXc Vltering

may be implemented by the following attacks:

• selective collision

• selective forwarding

In a selective collision attack [59] the outsider attacker creates targeted physical interference

to prevent honest nodes from sending or receiving messages. He predicts the point in time a

node transmits a message and sends messages simultaneously to occupy the communication

channel or to create collisions. The required timing can be inferred by prior traXc analysis.

By blocking DIO messages the attacker impedes the propagation of a version update and – in

contrast to the version number attack – prevents aUected nodes from performing a (global)

repair. As this attack requires precise timing, the attacker might not be able to block all

messages. In general, attacks that involve physical jamming are impossible to be prevented on

the routing layer. They are best anticipated on the physical layer [38], for instance, by spread

spectrum communication [60] in which diUerent channels are used which may not be aUected

by the attack.

The insider attacker has the ability to selectively forward messages [40]. As he functions

as authorized entity, he is included in the topology and selectively forwards messages that

he receives. He may deny forwarding of data plane messages or refuse to propagate control

messages, such as DIOs or DAOs. For instance, by not forwarding DAOs to the root, the

attacker prevents his sub-DODAG from creating downward routes.

Selective collision as well as forwarding attacks can be mitigated by traXc randomization,

since only part of all traXc may be forwarded or directed toward the attacker [58].

3.5 Discussion

RPL deVnes the basic security features to provide protection against potential attacks. Many

details have been left to external speciVcations such as the deVnition of an automated key

management. The manual key management provided by RPL meets the minimal requirements

for implementing security in an RPL network. Further speciVcations such as AMIKEY may

supplement an automated key management for scenarios that cannot manually provide security

keys. Until a standard is released, implementations have to resort either to non-standardized

approaches or the preinstalled security mode of RPL.

3 Security Analysis of RPL 46

The preinstalled security mode provides authenticity and integrity as well as conVdentiality

by a pre-shared key. ConVdentiality is provided by encryption. Although the encryption

in RPL makes it more diXcult to implement some attacks, it cannot prevent attacks on the

routing operations that were presented in this work. Authenticity and integrity therefore

denote the most important objective. Two approaches are provided for the authenticity and

integrity of messages: message authentication codes and digital signatures. While message

authentication codes provide authenticity and integrity that is feasible even for restricted

devices, the digital signature scheme requires large keys which result in high computational

and memory overhead as well as large message sizes. Until additional signature schemes are

speciVed, RPL implementations may apply message authentication codes or resort to careful

use of digital signatures, such as an initial authentication of the root node.

These cryptographic protocols prevent most attacks against an outsider attacker that exploits

the control message exchange. However, an outsider attacker may launch a message replay

attack under constrained circumstances and thus drains the energy resources of the victim

node. Other attacks are targeted at the routing information in datagrams by which a local

repair is started or the integrity of routing tables is violated.

Since cryptographic protocols are ineUective once an attacker has access to the security

keys, an insider attacker may launch various attacks. Although design properties of RPL can

mitigate some of these attacks, the insider attacker remains a serious threat to an RPL network.

Especially rank spooVng and version number attacks aUect large parts or even the entire

network. Due to their severe impact, in the further course of this work the focus is directed to

these topology attacks and especially to defense techniques against version number and rank

spooVng as well as rank replay attacks.

4 Topology Protection in RPL: VeRA

The version number and rank spooVng attacks denote eUective attacks that are launched by

an insider attacker. The version number attack enables an adversary to start a global repair. If

done repeatedly, this type of attack disturbs the network communication and exhausts the

resources of nodes. In a rank spooVng attack the adversary redirects traXc toward himself by

lowering his rank beyond the allowed limits.

A countermeasure against these topology attacks is proposed by Dvir et al. [6]. They

introduce the Version Number and Rank Authentication (VeRA) protocol for RPL which aims

at detecting version number and rank spooVng attacks by applying one-way hash chains to

protect the version number and ranks. While a version number attack can be suXciently

subverted, VeRA remains vulnerable to topology attacks by rank spooVng [8, 9, 61]. The Vrst

vulnerability allows an attacker to create a forged rank hash chain and to claim any rank in

the topology. In a second attack, the adversary replays the rank of his parent and thus moves

one rank level up in the hierarchy.

In this chapter, two defense techniques [8, 9] are proposed that defend against these

vulnerabilities and make VeRA resistant against rank spooVng and rank replay attacks. An

encryption chain is introduced that prevents an attacker from creating a forged rank hash

chain. A further challenge-response scheme based on the secret knowledge of propagated

elements of the rank hash chain detects a rank replay attack. However, it is shown that the

isolation of the attacker remains a challenging task, and a Vrst impression to its solution is

given.

4.1 Overview of VeRA

The topology authentication scheme VeRA prevents version number attacks and rank spooVng

by using one-way hash chains with a Vxed length. The principle of VeRA is based on two key

properties of hash chains. First, a node that holds a hash element cannot eXciently compute

the inverse and thus a prior element of the hash chain. Secondly, it is easy to compute the end

4 Topology Protection in RPL: VeRA 48

Symbol Definition

i Index for Version Hash Chain (0 . . . n)
j Index for Rank Hash Chain (0 . . . l)
l Index of last Rank Hash Element
n Index of last Version Hash Element
Vi i-th Element of Version Hash Chain
Ri,j j-th Element of Rank Hash Chain for i-th Version
r Random Seed for Version Hash Chain
xi Random Seed for Rank Hash Chain at Version i
h(·) One-Way Hash Function

enck(·) Symmetric Encryption of · with Key k
deck(·) Symmetric Decryption of · with Key k
ci i-th Element of Encryption Chain

Table 4.1: Glossary of Notations

of the chain if the length is known. These properties allow for a node to validate the version

number and the rank of its parents as follows.1

VeRA generates hash chains to represent all version numbers and the ranks for each version.

The hash chains are created by repeatedly using the output of a hash function h(·) as new
input for the same hash function, starting with a random seed as visualized in Table 4.2. A

reversed hash chain for the version numbers is created where each link of the chain Vn . . . V0
denotes a speciVc version. In addition, a rank hash chain is created for each version where a

rank is implied by the index of each link Ri,0 . . . Ri,l. A single rank or version hash element,

respectively, is thus denoted by the formula:

Vi = hn+1−i(r), Ri,j = hj+1(xi) (4.1)

Seed r is chosen once and initializes the version hash chain. Since each version has a separate

rank hash chain, the random value xi is chosen uniquely for each version.

In the bootstrapping phase, the root node creates a message authentication codeMACV1(R1,l)

of the last element of the next version’s rank hash chain with the corresponding version hash

element as secret key. Furthermore, the root generates a signature {V0, MACV1(R1,l)}sign of

the MAC and the last element of the version hash chain V0. The version hash element is later

used to verify each version update. The MAC creates a correlation between V1 and the last

1The used abbreviations are summarized in Table 4.1.

4 Topology Protection in RPL: VeRA 49

h(r) = Vn
h(Vn)−−−→ Vn−1 . . . V1

h(V1)−−−→ V0

xn xn−1 . . . x1
h(xn) h(xn−1) h(x1)
↓ ↓ ↓

Rn,0 Rn−1,0 . . . R1,0

h(Rn,0) h(Rn−1,0) h(R1,0)
↓ ↓ ↓
...

... . . .
...

h(Rn,l−1) h(Rn−1,l−1) h(R1,l−1)
↓ ↓ ↓
Rn,l Rn−1,l . . . R1,l

Table 4.2: Creation of the Version Number and Rank Hash Chains in VeRA – The
authenticated RPL topology creation begins in version V1, since version V0 initializes
the protocol.

element of the rank hash chain used in version 1. The signatures reliably authenticate the root

as creator of the version number hash chain.

In the initialization phase, the root node disseminates these values to all children:

〈V0, MACV1(R1,l), {V0, MACV1(R1,l)}sign〉

If the signature is successfully veriVed, the receiving nodes accept and store the parameters V0
and MACV1(R1,l). In each version update the root node disseminates the parameter

〈Vi, MACVi+1(Ri+1,l)〉 .

A node receives these parameters, e.g. in a DIO along with other parameters such as numeric

rank and version number. A node thus receives the version hash element Vi to verify the

version number by checking if hi(Vi) = V0 holds. In other words, it hashes the received

version hash element i-times which must result in the end of the version hash chain V0 or the

version number is invalid. Furthermore, a node uses Vi as key to verify the rank of its parent.

The parent claims an arbitrary rank that is represented by one of the rank hash elements. The

propagated rank of the parent is denoted by j, so that the child performs l− j hash operations

4 Topology Protection in RPL: VeRA 50

on the received rank hash element to obtain the end of the chain. The MAC which is now

veriVable by Vi authenticates the end of the rank hash chain:

MACVi(Ri,l) = MACVi(h
l−j(Ri,j)) (4.2)

If both version number and rank validation are successful, the ranks of the parent and version

number are veriVed according to VeRA. A node creates its own rank by performing additional

hashing operations on the parent’s rank hash element. The number of hashing operations

depends on the objective function in use. The node propagates its rank hash element in its

DIO transmissions.

4.2 Attacks against VeRA

The VeRA approach successfully prevents a version number attack in which an adversary

illegally propagates an increased version number. However, VeRA is subject to two topology

attacks that enable an attacker to create a forged rank hash chain or replay the rank of its

parent.

4.2.1 Version Delay Attack

In VeRA the correlation between a version hash element Vi+1 and the last link in the rank

hash chain is established by a cryptographic message authentication code MACVi+1(Ri+1,l)

with the version hash element used as secret key. In version Vi the MAC for the next version

i + 1 is disseminated without the key Vi+1 that is required to create the MAC. Due to the

one-way property of the hash function, the adversary cannot reconstruct Vi+1 from Vi with

feasible eUort and thus cannot create a valid MAC prior to the release of Vi+1. The MAC and

the version hash element of the Vrst version are signed, so that the Vrst rank hash chain is

securely linked to the Vrst version.

However, this correlation can be broken in subsequent version updates. Subsequent MACs

are not signed and solely rely on the secrecy of the required key Vi+1. An attacker exploits

the postponed propagation of the security key in a version delay attack. To launch such an

attack, the adversary withholds two subsequent version updates. He delays version Vi and its

contained MACVi+1(Ri+1,l). The attacker prevents honest nodes from receiving the version

update by performing a selective forwarding or collision attack on the DIO messages (see Sec.

3.4).

4 Topology Protection in RPL: VeRA 51

He waits until he receives the next version update and obtains Vi+1. Next, he creates a

forged rank hash chain R′i+1,l and computes its MAC′Vi+1
(R′i+1,l). He releases the previous

version Vi in which he replaces the original MAC by the forged MAC′. In this version he is

still bound to the original rank hash chain because the MAC that authenticates the rank hash

chain has been propagated in version i− 1. Finally, when he releases version i+ 1, he may

claim any rank of the chain. This is possible since he holds the entire hash chain R′i+1,l which

is veriVable by the forged MAC′. To continue the spooVng attack in consecutive versions, he

delays each subsequent version update to obtain key Vi+1, before releasing Vi.

For a child node it is impossible to detect this attack, because all information is veriVable

according to the VeRA protocol. In contrast, nodes that are closer to the root than the attacker,

still use the original hash chain and detect the use of an overly lowered rank with respect to

the traXc direction. To avoid detection, the attacker uses the true rank to communicate with

his parents and the forged rank for its sub-DODAG. As a result, the attacker resides in two

versions at the same time: in the real version propagated by the root and in the manipulated

version of the attacker. However, a node in his sub-DODAG may receive the version update

from an unrelated neighbor, thus migrating to the new version and escaping the attack. The

attacker may prevent this by choosing a position in the DODAG where he denotes a bottleneck.

4.2.2 Rank Replay Attack

VeRA is also vulnerable to rank replay attacks. The vulnerability consists in a node revealing

its rank hash element to prove its rank. This proof is, however, not bound to a node and thus

easily replayed by an attacker.

In VeRA a parent sends all information required for rank authentication to its children:

its numeric rank j and the correlating rank hash element Ri,j . An honest child node selects

rank j + 1 and creates Ri,j+1 = h(Ri,j). In its advertisements the honest child propagates

a veriVable rank j + 1. In a rank replay attack, a malicious node does not create Ri,j+1 and

simply forwards the rank hash Ri,j of its parent and thus claims rank j instead of j + 1.

Children of the attacker successfully verify the rank according to VeRA. Furthermore, the

eUect of the rank replay attack propagates to the children of the attacker as they select rank

j + 1 instead of j + 2 and thus seemingly denote a more attractive next hop to their children

in turn.

4 Topology Protection in RPL: VeRA 52

Rank Hash Element Applied Key Cipher
Rn,l – cn = Rn,l

Rn−1,l Rn,l cn−1 = encRn,l
(Rn−1,l)

.
R1,l c2 c1 = encc2(R1,l)
R0,l c1 c0 = encc1(R0,l)

Table 4.3: Creation of the Rank Encryption Chain

4.3 Defense Techniques

The vulnerabilities of VeRA allow an attacker to spoof any rank by delaying version updates

or to claim the rank of his parent in a rank replay attack. The attacker improves his position

in the topology and thus redirects traXc toward himself. This section proposes a prevention

technique for the version delay attack as well as a detection and mitigation technique against

rank replay.

4.3.1 Version Delay Countermeasure

The version number hash element in VeRA is linked to the corresponding rank hash chain to

prevent an adversary from advertising a forged rank hash chain in a given version. Section

4.2.1 showed that this correlation dissolves after the Vrst version update. This vulnerability is

exploited by an attacker that delays a version update and thus obtains the key to authenticate

a forged rank hash chain. The introduction of a reversed encryption chain defends against such

an attack.

The encryption chain is created as part of the initialization phase of VeRA. The root therefore

creates the version number hash chain and all rank hash chains Vrst. Next, the last rank hash

element of each chainRn,l . . . R0,l is encrypted as depicted in Table 4.3. The encryption begins

at the last version n, so that Rn,l denotes the Vrst key. This key is used to encrypt the next

last rank hash element Rn−1,l. The resulting cipher is used as key to encrypt the next rank

hash Rn−2,l and so forth. In general, each cipher cn . . . c0 is created by the formula:

ci = encci+1(Ri,l) (4.3)

4 Topology Protection in RPL: VeRA 53

Figure 4.1: Verification of the Rank Encryption Chain

After the initialization phase, the root signs the last link of the encryption chain co and the

version number hash element of the Vrst version V0. The root advertises the message

〈V0, c0, c1, RSender, {V0, c0}sign〉

to all children. It contains the version number hash V0, the last two ciphers of the encryption

chain c0 and c1 the rank hash element of the sender RSender , and the signature. Cipher c1 is

included in the initial message as well to allow rank validation and the creation of the topology

upon reception of the Vrst message. All further ciphers i + 1 are sent in each subsequent

version update. The rank veriVcation process is illustrated in Figure 4.1 and works as follows.

A node receives the initial message and veriVes the signature. Upon success, it stores

all values that it has received. The rank is veriVed by decrypting c0 using c1 as key. The

decryption is denoted by the formula:

Ri,l = decci+1(ci) = decci+1(encci+1(Ri,l)) (4.4)

The node validates that R0,l = hl−j(RSender) holds. In each subsequent version update, the

node obtains Vi and checks the version number by calculating hi(Vi) = V0. Further it obtains

cipher ci+1 which is used to decrypt the cipher ci that it received in the last version. Note that

4 Topology Protection in RPL: VeRA 54

cipher c0 is protected by the signature and all subsequent ciphers are implicitly veriVed since

they are deduced from the initially signed cipher.

4.3.2 Rank Replay Countermeasure

In a rank replay attack, the adversary exploits the use of hash chains in VeRA. The attack

is based on the fact that a node is required to reveal information to allow the veriVcation

of its rank that in turn can be replayed to a third party to claim the rank of that node. This

section proposes countermeasures against such a rank replay attack in VeRA. First, a detection

technique for a rank replay attack is presented that is based on a challenge-response. The

isolation of the attacker is discussed subsequently.

Detection of a rank replay attack To detect a rank replay attack, the proposed scheme is

composed of the following techniques:

• challenge-response procedure

• local rank announcement

The challenge-response procedure is based on the distribution of the elements of the rank

hash chain. In VeRA, an honest node of rank j holds two valid rank hash elements: The hash

element of its parent Ri,j−1 to verify the rank of that parent, and the rank hash it computes

for its own advertisements Ri,j . The one-way property of hash functions prevents any node

from obtaining the rank hash of a grandparent Ri,j′ where j′ < j − 1. Hence, an adversary of

rank Ri,j+1 that replays rank Ri,j of its parent cannot construct the rank hash element of its

grandparent Ri,j−1.

The key concept of the challenge-response is to take advantage of the grandparent’s hash

element as secret knowledge shared between two honest neighbors of equal rank. A node

therefore challenges a neighbor with the same rank to encrypt a random number with the

grandparent’s hash element as secret key. As only an honest parent knows this hash element,

it can provide a valid response and thus prove the legitimacy of its rank. The attacker on the

other hand only has access to the replayed hash element of the challenger and thus cannot

provide such a response.

A detailed illustration of the challenge-response procedure is given in Figure 4.2. NodeM

replays rank j of its parent HP which challengesM to prove its rank. HP therefore sends

a random nonce η toM . The random nonce prevents a message replay of a priorly solved

challenge. Furthermore,M must add its identiVer to the packet to ensure thatM has solved

4 Topology Protection in RPL: VeRA 55

(a) Replay Attack (b) Challenge-Response

Figure 4.2: Rank Replay Defense by Challenge-Response – (a) AttackerM replays the rank
announcement via multicast thus falsifying the local topology. (b) Its parent HP

receives the replay as well. The honest node challenges the attacker by sending a
random nonce η. The challenge can only be solved ifM has a relation with a node
of rank Ri,j−1.

the challenge independently. This preventsM from challenging another neighbor with the

nonce provided by HP .

To pass the challenge,M has to encrypt the message 〈IDM , η〉 using the rank hash element

of grandparent HGP as secret key. This is possible only if M knows a parent of rank ≤ j

and thus has access to the required secret key Ri,j−1. In the example in Figure 4.2, M has

replayed the lowest rank hash element available and is thus unable to provide a valid response.

It may either encrypt using the wrong hash element Ri,j , forge the response in some other

way or not reply at all. In either case, the misbehavior is detected by HP , so thatM fails the

challenge.

In caseM advertises an honest rank j + 1 and is challenged by a neighbor of equal rank,

it provides a valid response encRi,j (〈IDM), η〉 by using rank hash element Ri,j as key. The

challenger decrypts the message and checks if nonce η and IDM are correct. Upon success,

the challenge-response procedure is Vnished.

The challenge-response is initiated upon an inconsistency within data traXc. However,

assume an adversary that obfuscates a rank replay attack by using two ranks as described in

Section 3.4. He replays the parent’s rank to child nodes and uses the true rank for upward

4 Topology Protection in RPL: VeRA 56

connections. Parent nodes that receive his upward traXc discover a consistent rank. If

challenged, the attacker passes as he provides a valid response for his real rank. The local

rank announcement provides the basic technique to pin an attacker on a single rank and to

determine when to challenge a node. Each node is therefore required to advertise its rank

transparently to all neighbors which store the rank for later comparison (see Fig. 4.2(a)). The

announcement ensures that each node only uses one rank, and thus all one-hop neighbors

have a consistent view of each other’s rank.

Both local rank announcement and challenge-response work together as follows. Consider

Figure 4.2(a) in which nodeM advertises rank j of his parent HP which stores this rank for

neighbor M . Once the adversary sends data traXc to his parent it must use rank j in the

RPL packet information. Otherwise HP drops the message due to the inconsistent rank with

respect toM ’s prior announcement. HP examines the packet information and detects thatM

uses an equal rank of j for upward traXc. HP thus challenges nodeM which cannot pass the

challenge as it does not hold the required rank hash element Ri,j−1. If a local repair does not

remove this inconsistency andM continues to send upward traXc to HP with rank j, HP

identiVesM as attacker.

Isolation of the attacker Now that the culprit of a rank replay attack can be identiVed by

an honest neighbor, the challenging problem remains how to isolate the attacker. Since a

node higher in the topology and thus closer to the root detects the adversary, it can simply

ignore the attacker. Nodes in the attackers sub-DODAG on the other hand have to be notiVed

separately as they are still unaware of the attack. The detecting node is thus faced with two

challenging problems: Vrst, it has to inform the nodes in the sub-DODAG of the attacker and

secondly, it has to show proof that their selected parent has in fact replayed a rank.

The Vrst problem is challenging, because the detecting node has no reliable knowledge of

the topology and does not know the identity of the aUected nodes. This is because in RPL’s

non-storing mode, nodes do not keep track of downward targets. In storing mode, downward

routing tables may be aggregated and thus may not contain explicit information. Furthermore,

the attacker may forge or even block the downward routing information to avoid detection, so

that even the root node may not be able to reconstruct the routes passing the attacker and

thus lead to the aUected nodes. The detecting node may send a broadcast alert to reach the

infected area. However, at this point the aUected nodes have no evidence to trust the alert

message which leads to the second problem of showing proof.

This second problem is diXcult to handle, because in consideration of an insider attacker

the trust that is established by secret keys is corrupted. Although the detecting node may send

4 Topology Protection in RPL: VeRA 57

an authenticated alert message, this authentication is meaningless, since an insider attacker

sends authenticated messages as well. Relying on such an authentication opens the door for

an attacker framing honest nodes. The only reliable source of trust is the root node which is

assumed not to be compromised. Hence, the detecting node cannot provide the required proof

by itself and must include the root in the validation process.

The detecting node sends an alert message Vrst to the root node which contains the identity

and claimed rank of the attacker. From the root’s point of view the detecting node may either

be honest or may be an attacker trying to frame an honest node. Two approaches have been

proposed that deal with the problem of detecting and isolating attacker or defective nodes

in RPL. Wallgren et al. [58] send a heartbeat message to all nodes within a regular interval.

A node that does not reply has no suXcient connectivity to the root and is thus considered

defective or malicious. Weekly and Pister [61] propose that the root analyzes the data delivery

rate of each node. A node that does not meet a deVned rate is considered potentially malicious.

This approach takes advantage of the property that LLN routers are typically also hosts that

produce data – otherwise a malicious router could not be detected as it would only forward

data traXc.

To completely isolate the attacker, both approaches resort to a black- or whitelist that is

maintained by the root. A blacklist contains nodes that are unreachable and are therefore not

considered for parent selection. In contrast, a whitelist contains all nodes that are reachable.

A whitelist is thus Vlled a priori and starts with a large number of nodes, while the blacklist

grows during routing operations. The size of both lists is thus determined by the number

of malicious or unreachable nodes. When an attacker prevents its entire sub-DODAG from

communicating with the root, all nodes in the sub-DODAG will eventually be added to the list.

However, the notiVcation of a single attacker is only relevant to immediate children of the

attacker. An approach that only carries this information to the immediate children limits

the overhead to the aUected area. NotiVed children ignore the adversary and either select

a diUerent parent or poison their upward routes to indicate the loss of connectivity to the

root. In the latter case, due to RPL recovery mechanisms nodes automatically reconnect once

alternative paths exist. A possible alternative for isolating the attacker is an alert message

that is signed by the root and sent over unicast to the infected area and then propagated in a

local Wood to the aUected nodes. As illustrated in Figure 4.3, the root creates a message with

the ID of the unreachable node. The message is signed and sent back to the detecting node.

The detecting node adds a small hop-count and broadcasts the message. A node that receives

the alert message checks if one of its neighbors matches the ID. Upon a positive match, the

node ignores that neighbor for further parent selection and chooses an alternative route or

4 Topology Protection in RPL: VeRA 58

(a) Alert Propagation (b) Isolation in Progress (c) Successful Isolation

Figure 4.3: Attacker Isolation for Rank Replay Defense – Local Wooding of the signed
alert message {IDM}. In a) node H receives the alert message from the root and
begins its dissemination. b) shows nodes 1, 2 isolatingM by correctly selecting H
as parent. In c) malicious nodeM is isolated from topology.

temporarily disconnects from the network. The message is further propagated by all receiving

nodes. To increase the probability of a successful delivery to all aUected nodes, the hop-count

is only decreased by nodes that do not maintain a parent with the ID in the alert message.

Hereby the message is kept close to the attacker and is dropped if it moves too many hops

away.

4.4 Security Evaluation

The proposed defense techniques in this chapter comprise an encryption chain and a challenge-

response scheme to provide protection against arbitrary rank spooVng and a rank replay attack

in VeRA. This section analyzes the security of these schemes. Prior to the evaluation of these

approaches assumptions on the attacker are made.

4.4.1 Attacker Model

The attacker model is adapted from the insider attacker in Section 3.1.2. The presence of one

or multiple attackers is assumed that have captured devices of the network and thus function

as authorized node. Hereby, the attackers are assumed to be constrained by the capabilities of

the captured nodes and thus unable to install malicious hardware like directed antennas to

4 Topology Protection in RPL: VeRA 59

inWuence the propagation of their transmissions. The attackers are further unable to use an

out-of-band channel or to create multiple identities on a single interface in a Sybil attack.

Two diUerent types of attacker are distinguished: non-collaborating and partly-collaborating

attackers. Non-collaborating attackers are distributed in the network and do not communicate

or cooperate. partly-collaborating attackers agree upon their actions prior to deployment,

however, are unable to communicate after deployment unless within direct communication

range.

4.4.2 Reversed Encryption Chain

The encryption chain establishes a correlation between the last rank hash chain elements of

each version number. This is achieved by successively encrypting the last rank hash elements

with the cipher that results from the last encryption, starting at the last rank hash element of

the last version number. The last cipher is signed and propagated in the initial message.

An attacker that forges a rank hash chain with the last element R′0,l for the initial version

has to Vnd cipher c′1, so thatR
′
0,l = decc′1(c0). However, the cipher c0 is signed, so that Vnding

such a cipher is cryptographically infeasible, if the hash function is secure against pre-image

attacks and providing that the symmetric encryption and signature scheme are secure.

The subsequent ciphers are not signed. For the next version update the attacker may forge

a rank hash chain R′1,l. Since cipher c1 has been used as key in the veriVcation of the Vrst

version, it is implicitly authenticated. The attacker must therefore Vnd a cipher c′2 so that

R′1,l = decc′2(c1) which results in the same eUort as in the Vrst version and is thus infeasible.

The same holds for each subsequent version i. An attacker that tries to forge a rank hash

chain has to create a cipher c′i+1 so that the decryption of ci correctly results in R′i,l =

decc′i+1
(ci). The attacker is therefore prevented from forging a rank hash chain and from

claiming any rank.

The protection is provided even when attackers are able to partly collaborate as there is no

prior knowledge which the attackers may agree upon and that would allow an attack on the

encryption chain.

4.4.3 Challenge-Response Scheme

The challenge-response scheme detects one or multiple non-collaborating attackers that use the

rank of a parent. Since all children receive the rank hash from their parent for rank veriVcation,

an adversary may forward his parent’s hash element instead of computing an honest one.

4 Topology Protection in RPL: VeRA 60

A parent that detects this fraud challenges the attacker to provide the encryption of a nonce.

The key for encrypting the nonce is the grandparent’s rank hash, which is only known to nodes

that have calculated an honest rank. The nonce binds the message to a challenge-response

process and detects the replay of a response from a prior challenge-response initiation. When

chosen suXciently large, the probability of a prior challenge-response using the same nonce is

negligibly small.

To prevent an adversary from replaying the challenge to a neighbor of same rank, the

challenged node also includes its identiVer. If the adversary replays the nonce to challenge

a diUerent neighbor, the encrypted response will contain the identiVer of that neighbor by

which an attack is detected.

A parent initiates the challenge-response, if it detects that a node of same rank forwards

upward data traXc toward it. To circumvent detection, an attacker that sends data traXc

upwards may use two ranks. He therefore replays the parent’s rank to its children and uses

its true rank for upward traXc. The rank announcement prevents this twofold use of ranks.

All nodes transparently propagate their ranks which are stored by all neighbors nodes. An

attacker that propagates an honest rank and uses a forged one in its data traXc is thus detected.

However, a chain of k collaborating attackers that are directly connected may circumvent

this detection technique as follows. Assume two malicious nodesM1 andM2 within direct

communication range of each other. M1 has an honest parent P of rank j and chooses an

honest rank j + 1. M2 is located one step down in the topology and receives the rank hash

element for rank j by M1 and replays this rank instead its honest rank j + 2. All upward

traXc of M2 is tunneled to M1 that uses its honest rank to forward the traXc to P . The

challenge-response is not initiated becauseM1 uses its honest rank and forwards all traXc

from its accompliceM2. Such an attacker constellation circumvents the challenge-response

and allows replay of the rank of the Vrst honest parent on the upward path.

4.5 Discussion

The VeRA approach prevents a version number attack in which an adversary illegally initiates

a global repair. A rank spooVng is prevented by a rank hash chain for each version number.

However, the protection against rank spooVng is circumvented by an attacker that postpones

a version update. He thus obtains the required key in the next update and forges a rank

hash chain to claim any possible rank. The proposed encryption chain defends against this

attack by creating a correlation between all rank hash chains. With this modiVcation VeRA

4 Topology Protection in RPL: VeRA 61

is secured against rank hash chain forgery when considering multiple non-collaborating or

partly-collaborating attackers.

VeRA is also vulnerable to rank replay attacks. A parent must provide its rank hash element

to prove its rank. An attacker simply forwards this hash element to his children and claims the

rank of his parent. The proposed challenge-response detects this attack by verifying if a node

owns the rank hash element that is required for the creation of the propagated rank hash.

The challenge-response is initiated upon an inconsistency of the priorly announced rank

and the rank used for data traXc. An attacker that uses a diUerent rank than advertised

or uses the rank of his parent for upward traXc is detected by a parent node. Therefore

this approach locates partly-collaborating attackers that are not directly connected. Two

collaborating attackers with a direct connection circumvent this rank announcement and are

able to launch a rank replay attack.

The rank announcement thus increases the number of attackers required for rank replay

attacks from one to two or more. Furthermore, for a successful detection this approach requires

an attacker to actually forward data traXc. This requirement could be relaxed by a proactive

approach in which all nodes challenge all neighboring nodes. Hereby even a silent attacker is

detected, but at the cost of an increased communication overhead.

A rank replay attack is detected by nodes of equal rank. To reliably isolate the attacker and

to mitigate the impact of the attack, the sub-DODAG of the attacker needs to be informed. The

root is therefore included in the validation process. Two approaches have been presented for

the isolation: Black- and whitelisting and sending an alert message. Black- and whitelisting

results in constant overhead for the entire network, so that an approach is desired that only

involves the aUected nodes. The proposed local Wooding of an alert message denotes such an

approach, but cannot guarantee to reliably inform all aUected nodes.

In conclusion, the modiVed VeRA approach prevents version number attacks and arbitrary

rank spooVng by multiple attackers that may even partly collaborate. For non-collaborating

attackers, this approach can detect a rank replay attack. However, the isolation of the attacker

remains a challenging task. A solution to this problem is introduced in the next chapter

by TRAIL, in which children test their parents independently, so that an attacker is reliably

detected and isolated without straining uninvolved nodes.

5 Topology Protection in RPL: TRAIL

This chapter introduces the rank and version number attestation scheme TRAIL (Trust Anchor

Interconnection Loop) [9]. TRAIL provides a lightweight and generic approach by which

children independently verify the rank of their parents. Hereby TRAIL does not rely on the

use of expensive cryptography and only resorts to a single signature per rank validation.

The key idea of TRAIL is to establish the root as trust anchor. A node therefore veriVes the

consistency of ranks on an upward path by sending an attestation message toward the root.

The message undergoes rank validations on every hop and is dropped upon a violation. If the

message successfully travels to the root, the node has a valid upward path based on consistent

ranks. A positive attestation is provided by a digital signature of the root.

The rank validation relies on the intrinsic routing behavior of RPL. Since nodes only verify

the signature, the major workload is shifted to the root node. As essential part of the LLN, the

root is typically equipped with suXcient resources that allow to carry out these more complex

tasks.

This chapter introduces the features and characteristics of TRAIL. Since the rank validation

requires each node to send a message to the root, an approach is proposed that aggregates

all validations and thus decreases the message overhead. An evaluation of TRAIL examines

its scalability and security properties. A discussion of TRAIL in comparison to the modiVed

VeRA approach concludes this chapter.

5.1 Concept of TRAIL

TRAIL provides a protection technique against version number attacks and rank spooVng

as well as rank replay protection. Rank spooVng is detected by an attestation message that

contains validation parameters such as ranks and nonces and is sent toward the root. Each

hop performs rank validations to ensure consistent upward progress of the message. The root

node takes on responsibility for providing the required trust and acknowledges the arrival

by a digital signature. The reception of the signed message provides proof for monotonically

increasing ranks on the upward path. By including the version number into the attestation

message, nodes verify the propagated version as well.

5 Topology Protection in RPL: TRAIL 63

(a) Successful Rank Validation (b) Failed Rank Validation

Figure 5.1: Principle of TRAIL Rank Validation – Node 3 sends a nonce, η3, toM for rank
validation. In a) M announces its true rank. The message is signed by the root
and thus validatesM ’s rank. In b)M spoofs its rank by ∆ ≥ 0. Since H ′s rank
jH ≤ jM , the message is dropped.

Rank replay protection is provided by the local rank announcement introduced in Chapter 4.

Each node therefore advertises its rank to all neighbors, so that an adversary that replays its

parent’s rank is detected. In the following both techniques are described in detail.

5.1.1 Rank SpooVng Protection

TRAIL provides rank spooVng protection by an attestation message that is sent toward the

root. The reception of the signed response aXrms consistent ranks on the upward path. To

outline the principle of TRAIL, Vrst the veriVcation of a single path is described.

Key concept – single path validation The basic idea of TRAIL is that each node sends an

individual attestation message to the root node. As depicted in Figure 5.1(a), assume that node

3 intends to selectM as parent: Before accepting it as parent, node 3 starts the validation

process by sending a random nonce η3 toM . NodeM creates an attestation message 〈η3, jM 〉,
containing the nonce and its rank jM which is sent to the root. On each hop, a node performs

5 Topology Protection in RPL: TRAIL 64

a rank validation by checking whether the rank in the attestation message is monotonically

increasing and therefore greater than its own.

M sends the attestation message upwards to its parent H . Before accepting the message,

H checks the rank in the message. If H detects a rank smaller or equal to its own rank, it

simply drops the message and thus ends the validation process. SinceH ’s rank j is lower than

rank j + 1 contained in the attestation message, H forwards it to its parent. On every hop

the message is subject to the same rank veriVcation until it eventually arrives at the root. The

root performs the rank validation one last time and upon success includes the current version

number V Ni and a signature of all values {η3, jM , Vi}sign. The signed message is sent back

to node 3.

On the way back, a receiving node forwards the signed attestation message only if the

contained rank is greater than its own to detect an attestation message that has been altered

at lower rank levels. Once node 3 receives the signed response, it veriVes the signature and

matches its nonce η3, rank jM and the version number. If all parameters are successfully

veriVed,M has proven a valid upward path with only consistent ranks and a valid version

number. Node 3 selectsM as parent.

Any node that discovers an inconsistent rank within the attestation message or the rank

announcement discards the message as depicted in Figure 5.1(b). A node that receives the

signed message and discovers that the rank in the attestation message is not the one claimed by

its parent or fails to match its nonce, continues by selecting a diUerent parent or disconnects

from the DODAG.

All nodes test their parent and thus recursively check for inconsistent ranks on the entire

upward path. However, this single path validation requires all nodes in the network to send

at least one attestation message as well as forward all messages from their sub-DODAG.

Hence, this approach scales linearly with the number of nodes in the network. To optimize

the scalability of this procedure, it is turned into a scalable path validation in which rank

validations are aggregated.

Scalable path validation To decrease the number of messages during the validation process,

all nonces can be aggregated in one message. This scalable path validation is initiated by the

leaf nodes. The validation process includes an attestation message that travels upwards toward

the root. To enable each node to match its nonce and thus to verify the rank of its parent,

a monotonic rank order within the attestation message is required. This is done by storing

all nonces in an array at a speciVc index. The index represents the rank of the parent. Each

node therefore writes all received nonces in the array at the lowest index. It then sends the

5 Topology Protection in RPL: TRAIL 65

Figure 5.2: Merging of Nonces inside a Node – In a) the received Bloom Vlter arrays
A1 . . . Ak of nodes Nj,1 . . . Nj,k of rank j are united into the new array B starting
at its 2nd index position. B(1) holds the united received nonces ηj,1ηj,k in a
newly created Vlter v.

aggregated nonces as well as an own nonce to its parent, which proceeds in the same way.

Hence, when the array arrives at the root, nonces at a speciVc index of the array verify nodes

of same rank.

In detail, each node Nl,k that discovers that it has no children, sends a random nonce ηl,k
to its parent. Once the parent has received all nonces {ηl,k}k of all children, it aggregates

them in a single array element. The index of the array element will later denote the rank of

the parent. To minimize storage and transmission requirements, the nonces are inserted in a

Bloom Vlter before writing them into the array element. Further, the parent creates a single

nonce to verify its own parent. Both, nonce and array, are stored for later comparison and

forwarded to the grandparent.

The grandparent receives a single nonce and an array from each immediate child. Since

the tree may be unbalanced, the received arrays do not necessarily have the same length.

Therefore, the grandparent aligns the received arrays at the lowest index and aggregates

the containing Bloom Vlters, as depicted in Figure 5.2. All Bloom Vlters at index Ai(1) are

aggregated and written into a new array B at index 2. All further indices Ai(k) for i = 1 . . . k

are merged into B(k + 1). Lastly, an empty Bloom Vlter is inserted at B(1) in which all single

5 Topology Protection in RPL: TRAIL 66

...

5
5

3

5 5

5

5

4

4

4

4

5
4 4 4

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

rank:1

rank: 4

rank: 5

rank: 6

R

H

1

3 4

M 2

(a) Successful Validation

...

3
4

4

4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

3' 3' 3'

3'

3'

3'

3'

3'

3'3'

3'

3'

3'
3'

3'

3' rank:1

rank: 4

rank: 5

rank: 6

R

H

1

3 4

M 2rank: 3

(b) Failed Validation

Figure 5.3: Principle of Nonce Aggregation in TRAIL – In a) nonces (circle) and arrays
(square) are aggregated in the DODAG. The number denotes the index of the array
and thus the rank of the parent. Nodes match their signed nonce at the index that
denotes the parent’s rank. In b)M propagates a false rank of 3, so that nodes 1
and 2 selectM as parent. The veriVcation fails, because nodes cannot match their
nonces as they move to the wrong index.

nonces are aggregated. The grandparent creates a single nonce and stores it along with the

array for later comparison. The grandparent then sends both array and nonce to its parent.

The message travels hop-by-hop toward the root node. Once the attestation message arrives

at the root, it includes the version number and a signature of the entire message. The signed

attestation message is propagated to all nodes in the network. On reception, a node veriVes

the version number and the rank of its parent by checking the array at the corresponding

index and by matching its nonce in the Bloom Vlter. Further, it checks that no second array

element contains the same nonce and that no nonces have been removed by comparing the

signed array with the priorly stored array that it has forwarded. If all of these veriVcations

are successful, the nonces and array elements have not been manipulated or reordered and

the ranks on the upward path monotonically decrease toward the root. Figure 5.3 shows a

successful rank validation and details how the veriVcation fails when an attacker claims a false

rank.

5 Topology Protection in RPL: TRAIL 67

If any of the veriVcations fail, the node discards the message and chooses an alternative

parent if available. If it has no optional parents, it disconnects from the DODAG. In this way

an arbitrary rank spooVng is detected by each node independently, so that the attacker can be

completely isolated. However, this approach by itself is susceptible to rank replay attacks and

requires further protection as depicted in the next section.

5.1.2 Rank Replay Protection

In a rank replay attack, an adversary claims the rank of its parent. In TRAIL the adversary

replays the parent’s rank simply by replaying the attestation request of its children. Each

node receives a nonce from its children. An adversary that claims his parent’s rank does not

include the received nonces in the attestation message, but replays the nonce to its parent. The

parent, unwitting of an attack, authenticates its rank to the attacker. Once the attacker obtains

a signed attestation message, he replays this message to its children. Child nodes do not detect

that the message originates from the attacker’s parent and thus validate the replayed rank of

the attacker.

To detect such an attack, TRAIL uses the local rank announcement introduced in Chapter 4.

The rank announcement requires all nodes to transparently advertise their ranks to all neigh-

bors. Neighboring nodes store the rank for later comparison and to decide whether to forward

an attestation message or not. Figure 5.4(a) shows the principle of this technique to validate

a single path: AttackerM has claimed rank j. Child node 3 sends its nonce to attackerM .

However,M does not create an attestation message and replays the nonce to its parent H

which assumes that it is being tested byM . Before forwarding an attestation message 〈η3, j〉,
H checks whether the priorly advertised rank ofM is greater than its own. Since jM ≤ j, H
drops the nonce. AttackerM is thus unable to provide a signed attestation message containing

η3 and rank j to 3. Hence, node 3 ignoresM for parent selection. The same principle applies

to the scalable approach as illustrated in Figure 5.4(b). Malicious nodeM replays the nonces

of its children to H . The nonces are dropped by parent H due to the equal rank inM ’s rank

announcement.

The rank replay protection scheme prevents an attestation message from being forwarded

once the rank announcement of a child node has revealed a rank violation. As described

in Section 4.4.3 and further discussed in the next section, the rank announcement does not

protect against directly connected attackers.

5 Topology Protection in RPL: TRAIL 68

rank: 1
...

rank: j+2

R

H

M

4

1

2

3

rank: j

rank: j+1

(a) Single Path Validation

j j j j

j

j

j
j

j j j j

...

R

H

1

3 4

M 2

rank:1

rank: j

rank: j+1

rank: j+2

(b) Scalable Path Validation

Figure 5.4: Rank Replay Protection in TRAIL – In a)M claims the rank of H and replays
the nonce η3 of node 3. H drops the replayed nonce because jM = j. In b) children
ofM send nonces (circles) to validateM ’s rank j. M replays all nonces to H . H
drops the nonces due to the equal rank inM rank announcement.

5.2 Evaluation of TRAIL

This section evaluates the security properties of TRAIL as well as the message sizes as a result

of the use of Bloom Vlters.

5.2.1 Security Evaluation

TRAIL provides two defense techniques: an attestation message against arbitrary rank spooVng

and the local rank announcement to protect against rank replay. The attestation message

contains nonces and the ranks of tested parents. The nonces are created by each node to

ensure freshness of the message. The rank is represented by the index of a particular array

element and ensures strict upward progress within the entire path. The rank announcement

detects a parent that replays the nonces of its children to verify a replayed rank. Table 5.1

gives an overview of the properties of both techniques.

5 Topology Protection in RPL: TRAIL 69

AttestationMessage Rank Announcement
Nonce Rank Rank

scope: within node scope: entire path scope: one-hop

binds message to node validates rank ensures single rank per node

prevents rank spooVng (≥ 1 attacker) prevents rank spooVng/replay (1 attacker)

allows rank replay (≥ 1 attacker) allows rank spooVng/replay (≥ 2 attacker)

Table 5.1: Properties Rank Validation Techniques in TRAIL

In the following the security of both approaches are evaluated. The attacker model is taken

from Section 4.4.1 and thus considers one or multiple non-collaborating attackers and one or

multiple partly-collaborating attackers.

Rank announcement The rank replay protection of TRAIL is provided by a local rank

announcement of all nodes. The rank announcement successfully detects a single attacker

or multiple non-collaborating attackers that replay the rank of their parents. However, two

partly-collaborating attackers that are directly connected circumvent the rank announcement

and are thus able to replay the rank of the Vrst honest parent.

Assume two directly connected malicious nodesM1 andM2. M1 is located closer to the

root and has an honest parent P , whileM2 is located directly belowM1. M1 propagates an

honest rank whileM2 replays the rank of honest parent P . HerebyM1 hides the illegal rank

decrease ofM2 by creating a communication barrier between P andM2. The attackers are

able to replay the rank of the parent ofM1. Nonetheless, the attestation message prevents an

arbitrary rank spooVng as described next.

Attestation message TRAIL requires each node to maintain a valid upward path to the root.

The aggregated attestation message provides the monotonically increasing rank order from the

root toward the leaves by an array that stores all nonces. Since the array is created hop-by-hop,

a rank spooVng is detected when a node cannot match its nonce at the expected array index.

One or multiple non-collaborating attackers may launch the following attacks:

• deny forwarding the attestation data

• rearrange or insert bogus attestation data

• deny sending a nonce

5 Topology Protection in RPL: TRAIL 70

A node receives k nonces and arrays of already merged nonces A1...k from its children. An

attacker may deny forwarding the attestation data. Hence, he only forwards the array without

merging the nonces or does not forward the array at all. If the attacker does not forward

the array or does not merge the nonces, the aUected nodes are excluded from the validation

process, so that they cannot match their nonce. Consequently, they will ignore the attacker

who is thus isolated from the DODAG.

The same holds for an adversary that rearranges the attestation data. If he inserts the nonces

of his children at the wrong index or shifts the array elements, nonces move to a higher rank.

AUected nodes thus cannot match their nonce at the expected array position and ignore the

adversary. Alternatively, he may insert bogus attestation data. Each new array element will,

however, move higher indices to higher ranks and prevent aUected nodes from matching their

nonce correctly. Note that the attacker cannot move or insert nonces at a lower rank, since he

cannot inWuence the array creation after forwarding it.

The adversary may deny sending a nonce. He merges all k nonces at the correct array

position. He only forwards the aggregated array and does not include his own nonce in the

attestation message. However, such an attack has no eUect since the parent will insert an

empty Bloom Vlter for all single nonces which is either Vlled with nonces of other nodes or

remains empty. The TRAIL validation proceeds without the attacker who cannot verify his

parent. Children of the attacker will be able to Vnd their nonce, since they have been correctly

merged.

Hence, TRAIL reliably protects against one or multiple non-collaborating adversaries.

However, once attackers are able to agree upon their action prior to deployment, they can

plan attacks and thus aid each other in circumventing the security. Such partly-collaborating

attackers can launch the following attacks:

• rearrange attestation data

• remove attestation data

An attacker that moves the attestation data of child nodes can only move their nonces to

a higher rank, since the remainder of the array is created after forwarding. However, three

collaborating attackersM1,M2 andM3 on the same upward path can rearrange attestation

data. As illustrated in Figure 5.5(a),M3 claims a false rank of 3. Children in its vicinity forward

their nonces which are correctly merged byM3. M3 tunnels the attestation data toM2 that

forwards it upwards using a consistent rank. OnceM1 receives the attestation message, it

predicts the real rank ofM3 and merges all nonces at index 5 to index 3.1 Hereby the array

1To predict the correct array position, the attackers estimate the location in advance at which they will attack.

5 Topology Protection in RPL: TRAIL 71

...

rank:1

rank: 4

rank: 5

rank: 6

rank:2

3
4

4

1
2
3
4

3' 3' 3'

3'

3'3'

3'

3'

3'
3'

3'

3'

3'
2

4
3
4

2
3, 3'

3'3'

1

3'
2

4
3,

3'

1

1

3'
2

4
3,

3'

1

3'
2

4
3,

3'

1

3'
2

4
3,

3'

R

H

1

3 4

M
2

M1

2

M3rank: 3

rank: 5

(a) Detection of Duplicate Nonces

...

rank:1

rank: 4

rank: 5

rank: 6

rank:2

R

H

1

3 4

M
2

M1

2

M3rank: 3

rank: 5

3
4 4

1
2
3
4

3' 3' 3'

3'

3'3'

3'

3'

3'
3'

3'

3'
2

4
3
4

2
3, 3'

x

1

3'
2

4
3,

1

1

3'
2

4
3,

1

3'
2

4
3,

x

x x

x

x
4
3'

4

3

(b) Detection of Removed Nonces

Figure 5.5: Nonce Duplicate and Removal Detection – Squares denote array elements,
circles denote single nonces. AttackerM1 copies the nonces from the correct array
element to the index of the spoofed rank ofM3. In a) Nodes check for duplicates
and detect the modiVcation. In b)M1 removes the duplicate nonces. Honest node
H detects missing nonces and drops the message.

element at the index ofM3’s real rank is moved to the index of the spoofed rank. In addition,

M1 merges all array elements according to TRAIL. The forged attestation message is sent to

the root which signs it.

Once a child ofM3 receives the signed array, it successfully matches its nonce at rank 3.

Since each of the copied nonces is now included twice in the array, a node detects a duplicate

of its own nonce. Such a duplicate either denotes a false positive of the Bloom Vlter or an

attack. Since the false positive rate f can be chosen arbitrarily small when conVguring the

Bloom Vlter, an attack is detected with the probability of 1− f . In Figure 5.5(a) nodes 1 to 4

are leaf nodes, so thatM1 only copies one array element. However, for larger treesM1 has

to copy all following elements as well, so that the sub-DODAG of nodes 1 to 4 match their

nonces.

This detection technique, however, is circumvented by removing attestation data from the

array. M1 therefore removes the duplicate nonces from the Bloom Vlter in the appropriate

5 Topology Protection in RPL: TRAIL 72

array element by setting all bits to zero, as seen in Figure 5.5(b). However, such a deletion of

the nonces is detected by the honest parent H on the upward path. H has priorly merged

all nonces, including the array ofM1, and holds the original array which must be a subset of

the signed array. By aligning both arrays at the index of its nonce, H detects that bits of the

Bloom Vlter in the signed array have been removed. NodeH detects the attack and does not

further propagate the array. Furthermore, H may select a diUerent parent, as it knows that a

malicious node on the upward path has illegally modiVed the Bloom Vlter.

These techniques mitigate multiple partly-collaborating attackers. Nonetheless, they cannot

prevent an attacker from obtaining the signed attestation message from a neighbor of an unre-

lated branch of the DODAG. Honest nodes on such a branch do not drop the forged message,

since the removed nonces have not been sent on their upward path. Their original array does

not contain the removed nonces. However,M3 spoofs its rank, so that all neighboring nodes

select it as parent. M3 thereby prunes unrelated branches and decreases the number of nodes

from which the other attacking nodes might receive the signed message. M2 is required to

have an additional honest parent which is located on an upward path diUerent from nodeH .

Furthermore, for a successful attack both upward paths must not meet at a common ancestor

that is betweenM1 andM2. Such a common ancestor would merge the arrays and detect any

removed nonces. Consequently, the probability of the attackers receiving a signed message

highly depends on the topological formation.

5.2.2 Scalability Evaluation

TRAIL uses Bloom Vlters to aggregate nonces of all nodes for space eXciency. Each nonce

is thus hashed k times with diUerent hash functions, and each hash value is mapped to one

bit of the Bloom Vlter. This technique reduces the size of each nonce to k bits. To minimize

the transmission size, a compressed Bloom Vlter is applied that is optimized for a certain false

positive rate. As demonstrated by Mitzenmacher [21], a compressed Bloom Vlter, in theory,

can be compressed to about 70 % of the size of the equivalent uncompressed Vlter with the

same false positive rate. Although not achievable in practice, it denotes the ideal case for the

minimum transmission size. Therefore in this work the ideal case is analyzed to identify the

constraints of TRAIL.

Figure 5.6 shows the growth of the Bloom Vlter array under the assumption of optimal

compression with respect to diUerent false positive rates. The size of the compressed Bloom

Vlter increases linearly with the number of nodes or number of stored nonces. For a maximum

array size of around 100 bytes, TRAIL supports a network of approximately 120 nodes while

maintaining a false positive rate of 1 % or around 60 nodes for 0.01 %. It is shown that even

5 Topology Protection in RPL: TRAIL 73

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

a
rr

a
y
 s

iz
e

 (
b

y
te

s
)

number of nodes

f = 0.01
f = 0.001

f = 0.0001

(a) Logarithmic y-Scale

 32

 64

 96

 128

 160

 192

 224

 256

 288

 320

 352

 384

 416

 448

 480

 512

 0 20 40 60 80 100 120 140 160 180 200 220 240 260

a
rr

a
y
 s

iz
e

 (
b

y
te

s
)

number of nodes

f = 0.01
f = 0.001

f = 0.0001

(b) Linear x/y-Scale

Figure 5.6: TRAIL Compressed Array Sizes for Different Error Rates

5 Topology Protection in RPL: TRAIL 74

under ideal conditions the array size grows fairly large, so that TRAIL is applicable for small

networks. Especially because the false positive rate denotes a parameter that is critical for the

security of TRAIL it should be kept as low as possible.

When applying Bloom Vlters the size of the Vlter has to be known in advance. Consequently,

nodes that typically have only limited knowledge of the topology, have to conVgure a Bloom

Vlter that holds all nonces of a corresponding rank. If chosen too small the Vlter may exceed

its capacity before all nonces are aggregated. To allude this risk the uncompressed Vlter is

chosen arbitrarily large. Let’s assume a large set of n elements of which only ∆ elements are

inserted into the (large) uncompressed Vlter where ∆ � n. This Vlter is compressed with

a high compression rate, because many bits are still set to zero. With each element that is

inserted more bits are set, so that the resulting compressed Bloom Vlter grows while the size

of the uncompressed Vlter remains the same. Nodes lower in the hierarchy therefore only send

small messages, and the message size increases with each hop.

Table 5.2 shows the average and maximum transmission sizes of the Bloom Vlter array with

diUerent conVgurations of a balanced k-ary tree and diUerent false positive rates f . It can be

observed that for a balanced tree of two children per node and a height of 7, the maximum

transmission size for 127 nodes results in about 105 bytes and an overall average message size

of about 39 bytes.

To analyze the growth of message sizes in TRAIL, one has to consider how the nonces are

sent and aggregated in the network. For simplicity it is assumed that leaf nodes include their

nonce in a Bloom Vlter before forwarding, so that they send a Bloom Vlter containing only

one element. Each parent on the next rank level forwards all nonces of its children and its

own nonce and so on. However, since the number of nodes toward higher ranks increases

for each level, the number of nodes that send small messages is relatively large as opposed

to the number of nodes that send large messages. The average upward message size is thus

kept relatively small. The completely aggregated message sent by the root has the maximum

message size. This message is forwarded by all nodes but the leaves. Leaf nodes only receive

this message. The overall average message size is moderate and roughly half of the maximum

message size. These values are based on the ideal assumption that a compressed Bloom Vlter

has a size of z = m ∗ ln(2) [21], where m is the size of the equivalent uncompressed Vlter.

Hence, for a compressed Bloom Vlter with a false positive rate of 1 % each element requires

≈ 6.64 bits.

In practice, the achieved transmission size is constrained by the compression rate and

overhead of the applied compression function, computational overhead that results from

5 Topology Protection in RPL: TRAIL 75

Configuration Message Sizes in Bytes

f # Children h # Nodes Avg. upwards Overall Avg. Max. Size

0.0100 2 4 15 2.91 6.09 12.46
0.0100 2 6 63 4.30 20.31 52.32
0.0100 2 7 127 5.07 38.54 105.47
0.0100 2 8 255 5.86 74.50 211.77
0.0100 4 4 85 3.09 32.02 70.59
0.0100 4 5 341 3.89 123.59 283.19
0.0100 4 6 1365 4.71 488.52 1133.61
0.0010 2 4 15 4.36 9.14 18.69
0.0010 2 6 63 6.45 30.46 78.48
0.0010 2 8 255 8.79 111.75 317.66
0.0010 4 4 85 4.64 48.03 105.89
0.0010 4 5 341 5.84 185.39 424.79
0.0010 4 6 1365 7.07 732.79 1700.41
0.0001 2 4 15 5.81 12.18 24.91
0.0001 2 6 63 8.60 40.61 104.64
0.0001 2 8 255 11.72 149.00 423.55
0.0001 4 4 85 6.19 64.04 141.18
0.0001 4 5 341 7.78 247.18 566.39
0.0001 4 6 1365 9.42 977.05 2267.22

Table 5.2: TRAIL Average and Maximum Message Sizes – Table shows the average and
maximum message overhead in TRAIL for diUerent false positive rates f and a
balanced k-ary tree of diUerent heights h.

compression and hashing as well as memory constrains for the size of the uncompressed

Vlter [21].

As an alternative to compressed Bloom Vlters, scalable Vlters proposed by Almeida et al. [22]

can be used. When applied to TRAIL, the total number of nonces per Vlter does not have to

be known in advance, as the scalable Bloom Vlter grows dynamically. Lower nodes therefore

conVgure a small Vlter that only holds a few nonces. On each hop, a node adds a new Bloom

Vlter if necessary that is conVgured with a tighter false positive rate.

When a node aggregates the Bloom Vlters it receives from its children, it may have to

reorganize these Vlters before adding them to a single scalable Bloom Vlter. A parent node

may receive Bloom Vlters with equal false positive rates from its children. If simply added to

a single scalable Vlter, the overall false positive rate will not converge to the desired value.

The reason for this is that a scalable Bloom Vlter comprises of one or more independent

5 Topology Protection in RPL: TRAIL 76

Bloom Vlters which are sequentially queried when checking for an element. To achieve a

false positive rate that converges to a speciVc value each new Bloom Vlter must have a tighter

false positive rate. Hence, for use of scalable Bloom Vlters in TRAIL, conVguration details still

require further research.

5.3 Discussion

TRAIL uses an attestation message and the rank announcement to validate the version number

and ranks on the upward paths. Each node sends a nonce to the root which is returned with

the digital signature and that provides the required trust for a positive attestation. The rank

that is to be veriVed is represented by the array index at which the nonce is stored. When

a node receives the signed attestation message it checks for its nonce at the corresponding

array index. If the node cannot match its nonce, it has detected a parent that has illegally

lowered its rank. Since the version number is included in the signed message, the node veriVes

the version number as well. TRAIL provides protection against arbitrary rank spooVng by

multiple non-collaborating attackers and two or more directly connected attackers that partly

collaborate. Rank replay protection is provided by the rank announcement and only protects

against attackers that are not directly connected.

TRAIL also protects against three partly-collaborating attackers and detects the later removal

or copying of nonces. However, if the attackers receive the signed attestation message from

neighboring nodes of an unrelated branch of the tree, they can deliver a forged and signed

message to their children and claim an arbitrary low rank. Although such an attack is highly

dependent on the topology formation, it denotes a threat to TRAIL that requires further

attention.

The modiVed VeRA approach follows the same goals by applying hash chains as well as an

encryption chain by which nodes successively validate the version number and the rank of

their parents. A single digital signature achieves a secured hash chain for version updates and

rank validations. Under the assumption that attackers cannot communicate after deployment,

the encryption and rank hash chain provide suXcient protection.

Both approaches are susceptible to rank replay attacks by multiple partly-collaborating

attackers within direct communication range. Such a constellation circumvents the rank

announcement and allows the attackers to replay their parent’s rank. In the modiVed VeRA

approach the honest parent does not challenge the attacker, since it only communicates with

the one that advertises a consistent rank. In TRAIL the parent node accepts the single nonces

that have been replayed by the attacker.

5 Topology Protection in RPL: TRAIL 77

Hence, under the assumption that none of the attackers are directly connected, both the

modiVed VeRA approach and TRAIL reliably detect a rank replay attack. In the modiVed

VeRA approach the detecting parent can simply ignore the attacker. The eXcient isolation

of the attacker by his sub-DODAG proves to be a diXcult task. In TRAIL on the other hand,

child nodes verify the consistency of their parent’s rank independently and are able to isolate

a present attacker. However, while denoting a conceptually sound approach, the resulting

message sizes of TRAIL restrict its application domain to small networks, so that future

research is required to extend its applicability.

6 Practical Evaluation of TRAIL

The goal of TRAIL is to allow every node to validate the rank of its parent and the version

number propagated by the root. TRAIL hereby relies on the exchange of an attestation message

which is sent to the root and subject to rank validations on each hop. The root signs the

message and sends it back to the validating nodes. The main overhead in TRAIL therefore lies

in the transmission of such validation messages. Since each node has to wait for the signed

attestation message, the usual operation of the network is postponed.

To evaluate the impact of this delay and to study other characteristics, a proof-of-concept

prototype implementation has been developed. Using a small setup of sensor nodes, two

experiments have been performed to measure the time it takes to send the attestation message

to the root and back to the sender.

This chapter describes the prototype and the experiments in detail and concludes with a

discussion of the results.

6.1 Implementation Prerequisites

The goal of the implementation is to obtain representative time measurements that illustrate the

delay when deploying TRAIL in an RPL network. The requirements for successful experiments

are categorized in requirements for the soft- and hardware and presented in the following.

6.1.1 Software Choices

Since the prototype is implemented to function in an RPL network, it requires an operating

system with an RPL implementation. Furthermore, to obtain representative results, the

physical and MAC (Media Access Control) layer protocol must be deployable for low-power

sensor nodes.

The standard IPv6 over Low-Power Wireless Personal Area Networks [62] (6LoWPAN), describes

how IPv6 packets are sent and received over a low-power link, using the IEEE 802.15.4 [63]

technology. 6LoWPAN is the state of the art transmission protocol for RPL, so that the

operating system for this work must provide a 6LoWPAN stack.

6 Practical Evaluation of TRAIL 79

CPU
Model: ARM7 TDMI

Word size: 32 bit
Frequency: up to 72MHz

Memory
RAM: 98 KB

Flash ROM: 512 KB

Transceiver
Model: Texas Instruments/Chipcon CC1100

Frequency: 863 – 870 MHz
receive/transmit FIFO: 64 byte

Table 6.1: Technical Details ofMSB-A2 Sensor Board [67, 68]

Two operating systems were considered for use in this work: Contiki OS [64] and RIOT

OS [65, 66]. Contiki is an operating system for sensor platforms and also provides simulation

tools. RIOT is a newly introduced operating system that is currently under development by an

open community. Both operating systems comprise an RPL and 6LoWPAN stack and are open

source, so that they were both candidates for this work. However, RIOT has been chosen as

operating system, since it works out-of-the-box with the hardware platform provided by the

Freie Universität Berlin (FU Berlin) and because of a close cooperation and Vrst hand support

from the developers of RIOT OS.

The development of RIOT directly evolved from the operating system µkleos. As to devel-

oping the TRAIL prototype, not all required functionality had been imported from µkleos to

RIOT, so that in this work RIOT’s predecessor µkleos is used. The source code of µkleos is

written in the programming language C . The TRAIL prototype is therefore also written in C

and adapted to already available functionality of the RPL implementation of µkleos.

6.1.2 Hardware Choices

The prototype is tested on the ScatterWeb MSB-A2 [67] hardware platform developed by

the FU Berlin. The MSB-A2 can be powered by USB port or an external power supply. The

hardware constraints of these boards are summarized in Table 6.1.

The transceiver of the MSB-A2 boards has a send/receive buUer of 64 bytes [68]. The

transceiver functions in the 868MHz ISM band [67] and is thus compatible with the IEEE

802.15.4 standard [63] and 6LoWPAN. Additionally, the boards are equipped with removable

antennas.

µkleos has been developed to run on the MSB-A2 boards, so that the compatibility of

µkleos and the boards is suXciently high. The MSB-A2 currently operates in the DES-Testbed

6 Practical Evaluation of TRAIL 80

(Distributed Embedded Systems)1 at the FU Berlin. It is thereby part of a multi-hop network

for long-term studies of various research projects.

6.2 Design of the Prototype

The prototype implements the basic features for single path validation in which all nodes send

an attestation message to the root and forward messages on behalf of other nodes. The goal

of the prototype is to analyze and evaluate the overhead in delays in a one-hop and two-hop

scenario respectively. To allow this evaluation, the TRAIL prototype must be able to send

and receive an attestation message and collect the required data for analysis. To describe the

design, Vrst a brief overview of the relevant functions of the RPL implementation in µkleos is

given into which TRAIL is integrated.

6.2.1 Integration in µkleos

The RPL implementation of µkleos comprises two parts that are relevant for the TRAIL

prototype: the main RPL process and the trickle timer. The main RPL process sends, receives

and processes RPL control messages that it has received. It determines the type of the message

such as DIO, DIS, DAO or DAO-ACK and calls the processing function which performs the

RPL operations. The send function for control messages creates an ICMPv6 packet for each

message type and passes it down to the link layer. The main functions for TRAIL are included

accordingly. A send and receive function is created for the TRAIL attestation message to allow

the required functionality.

The second part is the trickle timer which schedules the sending of DIO messages and

contains the timer thread for sending DAO acknowledgements. This timer is used by the

TRAIL prototype to allow the periodical sending of an attestation message for automated data

collection.

6.2.2 Functional Overview

The implementation of the TRAIL prototype follows the structure of µkleos for sending RPL

control messages. Hence, a send and process function is included in the RPL process. To

function correctly a new send and receive buUer and a structure for the attestation message is

deVned. The attestation message comprises the parameters required for validation, including

a nonce, a rank, the version number as well as parameters such as RPL instance ID and a

1www.des-testbed.net

www.des-testbed.net

6 Practical Evaluation of TRAIL 81

sequence number of the attestation message. For returning the message to the sender and to

allow the veriVcation of ranks, the source address and a signature are required.

The send function simply copies the parameters into the send buUer and creates an ICMPv6

message. The process-function performs the actual TRAIL logic as depicted in Figure 6.1. On

the upward paths the tested node adds its rank and forwards the message upwards. Each node

on the upward paths checks the rank and only forwards the message the root node, if the rank

is greater than the own rank. The root includes a signature and sends the message back to the

source. On the downward path each node checks the source address within the message. If a

node detects that it is the originator of the message, if veriVes the signature. The message is

accepted if the signature is valid, and dropped otherwise. Note that the in case of the prototype

the computation of the signature is not considered. Hence, an array of 32 bit integers that

sums up to 384 bits is sent to simulate a concise signature such as an elliptic curve signature.

To allow the root to send the response back to the source and to stay independent of the

creation of downward routes during the experiments, each node maintains its downward

routing table when receiving the attestation message on the upward path. This function does

the same as a DAO message, but allows to disable the sending of DAO messages and saves

required memory when disabling the DAO timer thread.

6.3 Measurements and Results

The prototype is tested in two experiments that measure the transmission time of the attesta-

tion message. The rank validation in TRAIL requires a certain communication overhead: A

node sends an attestation message to the root and completes the validation when it receives a

version of the message that has been signed by the root. The results of the experiments give an

impression of the practical implications of TRAIL in terms of delays due to rank validation. As

an exemplary reference value, the time to create the topology in µkleos without TRAIL is used.

The following gives an overview of the results of the experiments. Prior to the evaluation of

the actual test runs, the setup is described.

6.3.1 Preliminary Outline

Experimental setup The setup consists of MSB-A2 boards that are powered by the USB port

of the host system. All boards are Washed with the same version of µkleos that includes the

TRAIL prototype implementation.

The boards are connected to the same host system and each device is around half a meter

apart from the next device. For the two-hop experiment, the root and the source node are

6 Practical Evaluation of TRAIL 82

Figure 6.1: Processing of AttestationMessage in TRAIL Prototype

connected by the intermediate node. To prevent a parent-child relation between root and

source due to the short physical distance, the antennas of both root and source are removed.

To further reduce the transmission range, obstacles are placed between source and root. The

intermediate node uses the antenna to provide suXcient connectivity with the root and the

source node, respectively.

The scheduler for DAO messages has been disabled to prevent memory exhaustion of

the boards. The nodes maintain their downward routing table using the information in

the attestation message. This is required so that messages can travel back to the source.

Furthermore, the parent lifetime has been increased to the maximum value to prevent upward

routes from expiring during the experiments if DIO messages are not received frequently

enough.

The prototype can be conVgured so that the source node periodically sends attestation

messages. For the timing measurements, the nonce in the attestation message is used as times-

tamp which is set by the sending node. The timer in µkleos starts to count the microseconds

6 Practical Evaluation of TRAIL 83

after the booting. The boards are started sequentially, and the clocks are not automatically

synchronized. The delay that results from the sequential boot-up is subtracted from the

measurement.

Expected and reference values The goal of the conducted experiments is to determine the

time delay that results from deploying TRAIL. In each experiment a total number of 300

messages are transmitted. Each message is sent from a source node to the root and has a

payload size of 34 bytes, including ICMPv6 and IPv6 headers. The response from the root

contains additional 48 bytes for the signature-dummy leading to a total payload of 82 bytes.

Larger message size of the response will result in a higher transmission time. It is expected

that the transmission times will increase around a factor of 2 when the hop count is increased

by one.

As a reference value, an estimate of the network creation time without TRAIL in µkleos

is taken. The trickle timer schedules the sending of DIO messages and thus determines the

minimum delay for the creation of the topology. The DIO has a payload size of 44 bytes and its

transmission time has been found to be around 1 second.2 Therefore it takes the Vrst node at

least 1 second to select the root node as parent without considering message loss and assuming

that devices are started at the same time. The trickle parameters are equal in all nodes, so that

the DIO is propagated with a delay of around 1 second per hop.

6.3.2 Experiment 1: Single Hop

The Vrst experiment uses two nodes: a root and one immediate child node that is the source

of the attestation message. The child sends the periodic attestation message every 5 seconds

to allow the root node to receive the response before sending the next message. Figure 6.2(a)

shows the absolute delays in milliseconds. The crosses (+) indicate the time it took the request

from the source node to reach the root. The triangles show the transmission time of the

responds containing the signature-dummy from the root to the source. The squares denote the

round-trip time of the message and depict the sum of each corresponding cross and triangle.3

It can be seen that the time for a message from the source to the root (crosses) is more than

factor 5 of the messages back (triangles). The message to the root takes an average of 262ms

with a standard deviation of σ = 9ms. The response takes 1804ms with a σ of 177ms. The

shorter time for the message to the root can be explained by the smaller message size of 34

bytes of the upward message. Furthermore, the 82 byte response is fragmented into 4 packets

2Based on exemplary time measurements of a single node sending DIO messages.
3Note that a slide deviation is caused by the manual time synchronization of the boards.

6 Practical Evaluation of TRAIL 84

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 3600

 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

tr
a
n
s
m

is
s
io

n
 t
im

e
 (

m
s
)

message number

round-trip
root to source
source to root

(a) Absolute Delays

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500 3000 3500

tr
a
n
s
m

is
s
io

n
 t
im

e
 (

m
s
)

message time intervals

Round-trip times
Gaussian fit

(b) Histogram: round-trip time

Figure 6.2: TRAIL Round-trip Time over One Hop

6 Practical Evaluation of TRAIL 85

which results in additional overhead. The fragmentation is a result of the buUer size of the

transceiver of the MSB-A2 board.

The round trip message takes an average of 2088ms with σ = 176ms. An overall of 9

messages where lost, so that the message loss rate for this experiment is 3 %. Message loss in

Figure 6.2(a) is represented by a disruption in the line as seen at message number 3 in the line

of triangles and squares. Figure 6.2(b) shows the frequency distribution of the round-trip times.

It can be seen that the distribution is approximately a Gaussian-shape around the mean value

of 2088ms.

Characteristic peaks in Figure 6.2(a), for instance at message numbers 9 or 37, are due to the

periodic sending and receiving of DIO or link layer messages. The noticeable sawtooth pattern

within the upper two curves (triangles and squares) suggests a characteristic behavior of the

6LoWPAN stack of µkleos. This may be the result of buUering or possibly a periodic event.

Although denoting an opportunity for optimizing the transmission time, a detailed evaluation

of this pattern is not within scope of this work.

Further delays are caused by beaconing messages. The nodes send regular beaconing

messages by which the signal strength of other nodes is determined and updated and thus

occupy the channel. By Carrier Sense Multiple Access (CSMA), a node senses whether the

channel is occupied before transmitting and delays sending a message until the channel is free.

Furthermore, MAC frames in µkleos are acknowledged which results in additional delays.4

6.3.3 Experiment 2: Two Hops

The second experiment uses three nodes: a root, an intermediate node and a source node.

The source periodically sends an attestation message every 8 seconds. The interval is chosen

larger than the interval in the Vrst experiment since the message travels two hops and thus

takes more time to return to the source. The absolute transmission times are illustrated in

Figure 6.3(a). The message to the root now takes an average of 734ms with σ = 160ms. The

downward path of the message including the signature-dummy takes 3659ms with σ = 203ms.

The average round-trip time over two hops is 4438ms with σ = 174ms. As expected, this is

a factor of two when comparing to the one-hop round-trip time. In this experiment only 8

messages were lost, so that message the loss rate is 2.6 %.

In Figure 6.3(a) a characteristic sawtooth pattern is visible as well. However, it shows more

irregularities than in Figure 6.2(a), so that the distribution seen in Figure 6.3(b) is closer to a

normal (Gaussian) distribution.

4As mentioned by a developer of RIOT OS / µkleos, 2013-08-08.

6 Practical Evaluation of TRAIL 86

 0

 350

 700

 1050

 1400

 1750

 2100

 2450

 2800

 3150

 3500

 3850

 4200

 4550

 4900

 5250

 5600

 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

tr
a
n
s
m

is
s
io

n
 t
im

e
 (

m
s
)

message number

round-trip
root to source
source to root

(a) Absolute Delays

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1000 2000 3000 4000 5000 6000

tr
a
n
s
m

is
s
io

n
 t
im

e
 (

m
s
)

message time intervals

Round-trip times
Gaussian fit

(b) Histogram: round-trip time

Figure 6.3: TRAIL Round-trip Time over Two Hops

6 Practical Evaluation of TRAIL 87

6.4 Discussion

This chapter gave a Vrst impression of the delays for rank validations when applying TRAIL.

In two experiments the delays of the attestation message have been measured. It was shown

that the delay can be estimated to 2 seconds per hop for each rank validation when deploying

the single path rank validation in µkleos. Considering the topology creation in µkleos the

joining process of a node is delayed by around 3 seconds. However, it is expected that this

outcome has some optimization potential due to µkleos speciVc behavior on lower layers.

Therefore an implementation of TRAIL in the latest version of RIOT OS could already show

shorter delays. Alternatively, diUerent studies that involve other hardware platforms with

larger buUers can also provide lower delays due to less fragmentation for the applied packet

sizes.

Consequently, this evaluation shows that TRAIL is well suitable for static networks where

rank changes occur infrequently and that tolerate this delay. The prototype demonstrates that

TRAIL can be implemented with relatively low eUort and is easily included into an existing

RPL implementation. The delay in the range of seconds per hop make it applicable in scenarios

that are not highly dependent on low delays during bootstrapping and in networks that do not

comprise of a great number of rank levels.

7 Conclusions & Outlook

This work concerned with the aspect of secure routing in low-power and lossy networks. The

focus was drawn to the case RPL, a newly standardized routing protocol. RPL is primarily

designed for convergecast in which a sink node collects the data from many sensor nodes.

While RPL is aiming at becoming the standard solution for various deployment scenarios

such as urban, industrial and home environments, each of these scenarios has special security

requirements. RPL therefore provides a basic security framework to protect against potential

threats and attacks, and requires external speciVcations for additional features such as an

automated key management.

RPL employs cryptographic protocols that protect against most attacks launched by an

outsider attacker. However, once an attacker has access to cryptographic keys he may launch

several topology attacks, such as rank spooVng and version number attacks. Rank spooVng

allows the adversary to create a sinkhole by propagating a false rank. In a version number

attack he initiates a global repair and thus disturbs the network. Two approaches that anticipate

these attacks were analyzed: VeRA and TRAIL.

VeRA authenticates ranks and the version number by use of one-way hash chains. While

VeRA hereby protects against version number attacks, it shows two vulnerabilities that enable

an attacker to circumvent the applied rank veriVcations. These vulnerabilities allow an attacker

to decrease his rank to an arbitrary value or replay the rank of his parent. To counter these

attacks, two defense techniques have been proposed: An encryption chain that prevents rank

spooVng and a challenge-response procedure to detect rank replay attacks.

TRAIL inverts the validation process, so that children independently verify the rank of their

parents by sending a validation message to the root. The root functions as trust anchor and

thus acknowledges the rank validations of child nodes. TRAIL detects rank spooVng and rank

replay attacks and requires each node to send only two messages. A disadvantage of TRAIL is

the message size that increases with the number of nodes.

A practical evaluation for the operating system µkleos gave a Vrst impression on the delays

that result from the rank validation of single nodes in TRAIL. The delays for rank validation

7 Conclusions & Outlook 89

postpone the parent selection process for about 2 seconds per hop, and show that TRAIL is

well applicable in static networks where rank changes occur infrequently.

Future research will have to focus on reducing the message size of TRAIL to make it

applicable on a larger scale. Furthermore, the work on TRAIL should be continued with the

aim of extending the concept to other routing protocols. Regarding the security of TRAIL and

VeRA, further attention is required to defend multiple collaborating attackers with respect to

rank replay attacks.

It would be worthwhile to extend the TRAIL prototype with the required features for the

scalable rank veriVcation with Bloom Vlters to investigate its feasibility in real life scenarios.

The implementation should be integrated into RIOT OS and thus take advantage of new features

and recent developments. Such an integration is very promising in terms of optimization

possibilities. Further evaluations may also consider the energy consumption of TRAIL and

analyze the overall delay for large-scale networks. The DES-Testbed at the FU Berlin may

provide a good opportunity to perform these studies.

Bibliography

[1] Stephen E. Deering and Robert M. Hinden. Internet Protocol, Version 6 (IPv6) SpeciVca-

tion. RFC 2460, IETF, December 1998.

[2] Arsalan Tavakoli, Stephen Dawson-Haggerty, and P Levis. Overview of Existing Routing

Protocols for Low Power and Lossy Networks. Internet-Draft – work in progress 07, IETF,

April 2009.

[3] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc On-Demand Distance Vector (AODV)

Routing. RFC 3561, IETF, July 2003.

[4] T. Clausen and P. Jacquet. Optimized Link State Routing Protocol (OLSR). RFC 3626, IETF,

October 2003.

[5] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik, JP. Vasseur,

and R. Alexander. RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks. RFC

6550, IETF, March 2012.

[6] A. Dvir, T. Holczer, and L. Buttyan. VeRA - Version Number and Rank Authentication in

RPL. In IEEE 8th International Conference on Mobile Adhoc and Sensor Systems (MASS),

pages 709–714, Oct. 2011.

[7] Amit Dvir, Laszlo Dora, Levente Buttyan, and Tamas Holczer. Version Number and Rank

Authentication. Internet-Draft – work in progress 01, IETF, January 2012.

[8] Martin Landsmann, Heiner Perrey, Osman Ugus, Matthias Wählisch, and Thomas C.

Schmidt. Topology Authentication in RPL. In Proc. of the 32nd IEEE INFOCOM. Poster,

Piscataway, NJ, USA, April 2013. IEEE Press.

[9] Heiner Perrey, Martin Landsmann, Osman Ugus, Matthias Wählisch, and Thomas C.

Schmidt. TRAIL: Topology Authentication in RPL. 2013. Submitted to 33rd IEEE

INFOCOM.

[10] R. Shirey. Internet Security Glossary, Version 2. RFC 4949, IETF, August 2007.

Bibliography 91

[11] Bruce Schneier. Applied Cryptography. Wiley & Sons, Hoboken, NJ., 2nd edition, 1995.

[12] Leslie Lamport. Password Authentication with Insecure Communication. Communications

of the ACM, 24(11):770–772, November 1981.

[13] D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC (CCM). RFC 3610,

IETF, September 2003.

[14] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-Hashing for Message

Authentication. RFC 2104, IETF, February 1997.

[15] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and

Public-key Cryptosystems. Commun. ACM, 21(2):120–126, Feb. 1978.

[16] S. Bellovin and R. Housley. Guidelines for Cryptographic Key Management. RFC 4107,

IETF, June 2005.

[17] Wade Trappe and Lawrence C. Washington. Introduction to Cryptography with Coding

Theory. Pearson Education, Inc., 1st edition, 2002.

[18] W. DiXe and M. Hellman. New Directions in Cryptography. IEEE Trans. Inf. Theor.,

22(6):644–654, Nov. 1976.

[19] Burton H. Bloom. Space/Time Trade-oUs in Hash Coding with Allowable Errors. Commun.

ACM, 13(7):422–426, July 1970.

[20] Andrei Broder and Michael Mitzenmacher. Network Applications of Bloom Vlters: A

Survey. Internet Mathematics, 1(4):485–509, 2004.

[21] Michael Mitzenmacher. Compressed Bloom Filters. IEEE/ACM Trans. Netw., 10(5):604–612,

October 2002.

[22] Paulo Sérgio Almeida, Carlos Baquero, Nuno Preguiça, and David Hutchison. Scalable

Bloom Filters. Inf. Process. Lett., 101(6):255–261, March 2007.

[23] M. Dohler, T. Watteyne, T. Winter, and D. Barthel. Routing Requirements for Urban

Low-Power and Lossy Networks. RFC 5548, IETF, May 2009.

[24] K. Pister, P. Thubert, S. Dwars, and T. Phinney. Industrial Routing Requirements in

Low-Power and Lossy Networks. RFC 5673, IETF, October 2009.

Bibliography 92

[25] A. Brandt, J. Buron, and G. Porcu. Home Automation Routing Requirements in Low-Power

and Lossy Networks. RFC 5826, IETF, April 2010.

[26] J. Martocci, P. De Mil, N. Riou, and W. Vermeylen. Building Automation Routing Require-

ments in Low-Power and Lossy Networks. RFC 5867, IETF, June 2010.

[27] A. Conta, S. Deering, and M. Gupta. Internet Control Message Protocol (ICMPv6) for the

Internet Protocol Version 6 (IPv6) SpeciVcation. RFC 4443, IETF, March 2006.

[28] Veronika Bauer. Routing in Wireless Sensor Networks: An Experimental Evaluation of

RPL. Masterthesis, École Polytechnique, Paris, France, December 2010.

[29] JP. Vasseur, M. Kim, K. Pister, N. Dejean, and D. Barthel. Routing Metrics Used for Path

Calculation in Low-Power and Lossy Networks. RFC 6551, IETF, March 2012.

[30] P. Levis, T. Clausen, J. Hui, O. Gnawali, and J. Ko. The Trickle Algorithm. RFC 6206, IETF,

March 2011.

[31] Philip Levis, Neil Patel, David Culler, and Scott Shenker. Trickle: A Self-Regulating

Algorithm for Code Propagation and Maintenance in Wireless Sensor Networks. In Proc.

of the 1st Symposium on Networked Systems Design and Implementation, pages 15–28, San

Francisco, USA, March 2004.

[32] J. Hui and JP. Vasseur. The Routing Protocol for Low-Power and Lossy Networks (RPL)

Option for Carrying RPL Information in Data-Plane Datagrams. RFC 6553, IETF, March

2012.

[33] Mukul Goyal, Jerry Martocci, Yusuf Bashir, Emmanuel Baccelli, and Ted Humpal. A

Performance Analysis of P2P Routing along a DAG in LLNs. Internet-Draft – work in

progress 00, IETF, March 2010.

[34] M. Goyal, E. Baccelli, M. Philipp, A. Brandt, and J. Martocci. Reactive Discovery of

Point-to-Point Routes in Low-Power and Lossy Networks. RFC 6997, IETF, August 2013.

[35] Jonathan Hui and Richard Kelsey. Multicast Protocol for Low power and Lossy Networks

(MPL). Internet-Draft – work in progress 04, IETF, February 2013.

[36] J. Jonsson and B. Kaliski. Public-Key Cryptography Standards (PKCS) #1: RSA Cryptogra-

phy SpeciVcations Version 2.1. RFC 3447, IETF, February 2003.

Bibliography 93

[37] D. Eastlake and T. Hansen. US Secure Hash Algorithms (SHA and SHA-based HMAC and

HKDF). RFC 6234, IETF, May 2011.

[38] Tzeta Tsao, Roger Alexander, Mischa Dohler, Vanesa Daza, and Angel Lozano. A Security

Threat Analysis for Routing over Low-Power and Lossy Networks. Internet-Draft – work

in progress 03, IETF, June 2013.

[39] Osman Ugus. Secure and Reliable Remote Programming in Wireless Sensor Networks. PhD

thesis, FernUniversität Hagen, 2012.

[40] Chris Karlof and David Wagner. Secure Routing in Wireless Sensor Networks: Attacks

and Countermeasures. Elsevier Ad Hoc Networks, 1(2–3):293–315, 2003.

[41] Roger Alexander and Tzeta Tsao. Adapted Multimedia Internet KEYing (AMIKEY): An ex-

tension of Multimedia Internet KEYing (MIKEY) Methods for Generic LLN Environments.

Internet-Draft – work in progress 04, IETF, September 2012.

[42] J. Arkko, E. Carrara, F. Lindholm, M. Naslund, and K. Norrman. MIKEY: Multimedia

Internet KEYing. RFC 3830, IETF, August 2004.

[43] Jakob Jonsson. On the Security of CTR + CBC-MAC. In Selected Areas in Cryptography,

pages 76–93. Springer, 2002.

[44] Alex Biryukov, Orr Dunkelman, Nathan Keller, Dmitry Khovratovich, and Adi Shamir.

Key Recovery Attacks of Practical Complexity on AES Variants With Up To 10 Rounds.

Cryptology ePrint Archive, Report 2009/374, 2009. http://eprint.iacr.org/.

[45] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique Cryptanaly-

sis of the Full AES. In Proc. of 17th ASIACRYPT, pages 344–371, December 2011.

[46] Mihir Bellare and Phillip Rogaway. The Exact Security of Digital Signatures–How to

Sign with RSA and Rabin. In Proceedings of the 15th EUROCRYPT, EUROCRYPT’96, pages

399–416, Berlin, Heidelberg, 1996. Springer-Verlag.

[47] Ronald L. Rivest and Burton S. Kaliski Jr. RSA Problem. In Encyclopedia of Cryptography

and Security. Springer-Verlag, 2005.

[48] Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K. Lenstra, Emmanuel Thomé,

Joppe W. Bos, Pierrick Gaudry, Alexander Kruppa, Peter L. Montgomery, Dag Arne Osvik,

Herman Te Riele, Andrey Timofeev, and Paul Zimmermann. Factorization of a 768-bit

http://eprint.iacr.org/

Bibliography 94

RSA modulus. In Proceedings of the 30th annual conference on Advances in cryptology,

CRYPTO’10, pages 333–350, Berlin, Heidelberg, 2010. Springer-Verlag.

[49] Krzysztof Piotrowski, Peter Langendoerfer, and SteUen Peter. How Public Key Cryp-

tography InWuences Wireless Sensor Node Lifetime. In Proceedings of the Fourth ACM

Workshop on Security of Ad Hoc and Sensor Networks, SASN ’06, pages 169–176, Alexandria,

Virginia, USA, 2006. ACM.

[50] A.S. Wander, N. Gura, H. Eberle, V. Gupta, and S.C. Shantz. Energy Analysis of Public-Key

Cryptography for Wireless Sensor Networks. In Third IEEE International Conference on

Pervasive Computing and Communications, pages 324–328, March 2005.

[51] N.R. Potlapally, S. Ravi, A. Raghunathan, and N.K. Jha. Analyzing the Energy Consump-

tion of Security Protocols. In Proceedings of the International Symposium on Low Power

Electronics and Design, pages 30–35, 2003.

[52] Victor S Miller. Use of Elliptic Curves in Cryptography. In Lecture Notes in Computer

Sciences – Advances in Cryptology, pages 417–426, New York, NY, USA, 1986. Springer.

[53] Neal Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation, 48(177):203–209,

January 1987.

[54] T. Aura. Cryptographically Generated Addresses (CGA). RFC 3972, IETF, March 2005.

[55] Behcet Sarikaya, Frank Xia, and Greg Zaverucha. Lightweight Secure Neighbor Discovery

for Low-power and Lossy Networks. Internet-Draft – work in progress 03, IETF, April

2012.

[56] John R. Douceur. The Sybil Attack. In Revised Papers from the First International Workshop

on Peer-to-Peer Systems, pages 251–260, London, UK, 2002. Springer-Verlag.

[57] A. Le, J. Loo, Yuan Luo, and A. Lasebae. SpeciVcation-based IDS for securing RPL from

topology attacks. In IFIP Wireless Days (WD), pages 1–3, October 2011.

[58] Linus Wallgren, Shahid Raza, and Thiemo Voigt. Routing Attacks and Countermeasures

in the RPL-based Internet of Things. International Journal of Distributed Sensor Networks,

2013. to be published – downloads.hindawi.com/journals/ijdsn/aip/794326.pdf.

[59] Wenyuan Xu, Ke Ma, Wade Trappe, and Yanyong Zhang. Jamming Sensor Networks:

Attack and Defense Strategies. Network, IEEE, 20(3):41–47, may-june 2006.

downloads.hindawi.com/journals/ijdsn/aip/794326.pdf

Bibliography 95

[60] Anthony D.Wood and John A. Stankovic. Denial of Service in Sensor Networks. Computer,

35(10):54–62, October 2002.

[61] Kevin Weekly and Kristofer Pister. Evaluating Sinkhole Defense Techniques in RPL

Networks. In Network Protocols (ICNP), 2012 20th IEEE International Conference on, pages

1–6, November 2012.

[62] N. Kushalnagar, G. Montenegro, and C. Schumacher. IPv6 over Low-Power Wireless

Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and

Goals. RFC 4919, IETF, August 2007.

[63] IEEE Computer Society. IEEE Std. 802.15.4™-2003 – Wireless Medium Access Control

(MAC) and Physical Layer (PHY) SpeciVcations for Low-Rate Wireless Personal Area

Networks (LR-WPANs), Oct. 2003.

[64] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - A Lightweight and Flexible Operating

System for Tiny Networked Sensors. In 29th IEEE Local Computer Networks, pages 455–462,

Tampa, FL, USA, November 2004.

[65] Oliver Hahm, Emmanuel Baccelli, Mesut Günes, Matthias Wählisch, and Thomas C.

Schmidt. RIOT OS: Towards an OS for the Internet of Things. In Proc. of the 32nd IEEE

INFOCOM. Poster, Piscataway, NJ, USA, 2013. IEEE Press.

[66] Emmanuel Baccelli, Oliver Hahm, Matthias Wählisch, Mesut Günes, and Thomas C.

Schmidt. RIOT: One OS to Rule Them All in the IoT. Research Report RR–8176, INRIA,

Dec. 2012.

[67] M. Baar, H. Will, B. Blywis, T. Hillebrandt, A. Liers, G. Wittenburg, and J. Schiller. The

ScatterWeb MSB-A2 Platform for Wireless Sensor Networks. Technical report, Freie

Universität Berlin, September 2008. [Online]. Available: ftp://ftp.inf.fu-berlin.

de/pub/reports/tr-b-08-15.pdf.

[68] Chipcon / Texas Instruments. CC1100 – Low-Power Sub-1 GHz RF Transceiver,

May 2009. http://www.ti.com/general/docs/lit/getliterature.tsp?

literatureNumber=swrs038d&fileType=pdf.

ftp://ftp.inf.fu-berlin.de/ pub/reports/tr-b-08-15.pdf
ftp://ftp.inf.fu-berlin.de/ pub/reports/tr-b-08-15.pdf
http://www.ti.com/general/docs/lit/getliterature.tsp?literatureNumber=swrs038d&fileType=pdf
http://www.ti.com/general/docs/lit/getliterature.tsp?literatureNumber=swrs038d&fileType=pdf

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig verfasst und

nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, August 20, 2013 Heiner Perrey

	List of Tables
	List of Figures
	1 Introduction
	2 Background
	2.1 Basic Terms of Information Security
	2.1.1 Security Objectives
	2.1.2 Cryptographic Tools
	2.1.3 Key Management

	2.2 Bloom Filters
	2.3 Design Concept of RPL
	2.3.1 Architecture of RPL
	2.3.2 Topology Creation and Maintenance
	2.3.3 Communication in RPL
	2.3.4 Security of RPL

	3 Security Analysis of RPL
	3.1 Threat and Attacker Model
	3.1.1 Identification of Threats
	3.1.2 Attacker Model

	3.2 Security Objectives
	3.3 Security Evaluation of RPL
	3.3.1 Key Management
	3.3.2 Cryptographic Defenses
	3.3.3 Non-Cryptographic Defenses

	3.4 Attacks and Countermeasures
	3.5 Discussion

	4 Topology Protection in RPL: VeRA
	4.1 Overview of VeRA
	4.2 Attacks against VeRA
	4.2.1 Version Delay Attack
	4.2.2 Rank Replay Attack

	4.3 Defense Techniques
	4.3.1 Version Delay Countermeasure
	4.3.2 Rank Replay Countermeasure

	4.4 Security Evaluation
	4.4.1 Attacker Model
	4.4.2 Reversed Encryption Chain
	4.4.3 Challenge-Response Scheme

	4.5 Discussion

	5 Topology Protection in RPL: TRAIL
	5.1 Concept of TRAIL
	5.1.1 Rank Spoofing Protection
	5.1.2 Rank Replay Protection

	5.2 Evaluation of TRAIL
	5.2.1 Security Evaluation
	5.2.2 Scalability Evaluation

	5.3 Discussion

	6 Practical Evaluation of TRAIL
	6.1 Implementation Prerequisites
	6.1.1 Software Choices
	6.1.2 Hardware Choices

	6.2 Design of the Prototype
	6.2.1 Integration in kleos
	6.2.2 Functional Overview

	6.3 Measurements and Results
	6.3.1 Preliminary Outline
	6.3.2 Experiment 1: Single Hop
	6.3.3 Experiment 2: Two Hops

	6.4 Discussion

	7 Conclusions & Outlook
	Bibliography

