
Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

Faculty of Engineering and Computer Science
Department of Computer Science

Fakultät Technik und Informatik
Studiendepartment Informatik

Bachelorarbeit

Alexander Knauf

Scalable, Distributed Conference Control in Tightly Coupled
SIP Scenarios



Alexander Knauf
Scalable, Distributed Conference Control in Tightly Coupled

SIP Scenarios

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung

im Studiengang Technische Informatik
am Studiendepartment Informatik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Thomas Schmidt
Zweitgutachter: Prof. Dr. Franz Korf

Abgegeben am August 25, 2009



Alexander Knauf

Thema der Bachelorarbeit
Scalable, Distributed Conference Control in Tightly Coupled SIP Scenarios
Stichworte
SIP, Gruppenkonferenzen, Verteilte Konferenzkontrolle, Peer-to-Peer Systeme, Konferenzs-
tatus Ereignisse
Zusammenfassung
Mit dem Session Initiation Protocol ist es möglich spontane Gruppenkonferenzen zu erzeu-
gen. Um solche Konferenzen zu koordinieren wird eine kontrollierende Instanz benötigt,
Focus genannt, die bestimmt nach welchen Parametern die Medienströme übertragen
werden sollen und welche Geräte für das Verteilen der Medienströme zuständig sind.
Solche Focus Instanzen können bei steigender Anzahl an Konferenzteilnehmern über-
lastet werden und schlechte Antwortzeiten erbringen. Ein Lösungsansatz für das Problem
der Lastkonzentration besteht darin, die kontrollierende Instanz auf mehrere unabhängige
Systeme zu verteilen, dabei jedoch keine externen Protokolle zu verwenden und das
Verteilungsproblem für die Konferenzteilnehmer transparent zu gestalten. Diese Arbeit
verfolgt den Ansatz durch Aufteilung der Rollen zwischen Identifier und Locator einer SIP
Konferenz URI, sowie einer Erweiterung des Conference Event Packages zur Sicherstellung
der Konsistenz des Status der verschiedenen Focus Instanzen, ein Basisprotokollschema
für verteilte Konferenzkontrolle zu liefern.

Alexander Knauf

Title of the paper
Scalable, Distributed Conference Control in Tightly Coupled SIP Scenarios
Keywords
SIP, Tightly Coupled Conference, Distributed Conferencing, Peer-to-Peer Systems, Confer-
ence Event States
Abstract
Tightly coupled group conferences created with the help of the Session Initiation Protocol
need to be controlled by an entity called focus which accepts and handles SIP calls and
controls the media mixers. Such Focus entities are challenged by an increasing number
of conference participants, causing a possible decline in signaling performance. A solution
for this problem is to distribute the controlling instance on multiple independent systems.
It is desirable to achieve this without using external protocols and to keep the distributed
conference control transparent to clients. This work elaborates on the concept of splitting
the role of identifier and locator of the conference URI and by extending the SIP conference
event state package to ensure a uniformly consistent view at all conference members.



CONTENTS i

Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Organization of the Report . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Group Conferencing 4
2.1 History and Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Conferencing with SIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Joining a Conference . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Conference Initiation . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Approaches to Conferencing . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Centralized Conferencing . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Peer-to-Peer SIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Related Work on Decentralized Conferencing . . . . . . . . . . . . . 20

3 Distributed Conference Control 23
3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 A Concept for Scalable Distributed Conferencing . . . . . . . . . . . . . . . 23
3.3 Challenges to SDCON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Globally Routable User Agent URI . . . . . . . . . . . . . . . . . . . 24
3.3.2 Maintaining Consistence of Conference States . . . . . . . . . . . . 25

3.4 A SIP-based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.1 Discovery of an additional Focus . . . . . . . . . . . . . . . . . . . . 26
3.4.2 Call delegation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.3 Routing to a distributed Focus . . . . . . . . . . . . . . . . . . . . . 30
3.4.4 Resilience Against Focus Failure & Leave . . . . . . . . . . . . . . . 32
3.4.5 Consistency in a distributed Conference . . . . . . . . . . . . . . . . 32

4 Consistent Conference State Information 34
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Event Package for Conference State . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Multifocus Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Implementation and Techniques 41
5.1 Language and Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.1 JAIN-SIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.2 JAXB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Software Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3 Implementation Progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



CONTENTS ii

5.3.1 Call Delegation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3.2 Creating Focus States . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.3 Updating Focus States . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3.4 Application appearance . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Measurements and Evaluation 53
6.1 Dial-In Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1.1 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.1.2 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Dial-Out Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2.1 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2.2 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7 Conclusions and Outlook 64

A Appendix 66

References 68

List of Figures 72

List of Abbreviations 73

List of Source Code Snippets 75

List of Tables 76



1 INTRODUCTION 1

1 Introduction

1.1 Motivation

An increasing number of broadband Internet connections with flat rates offer an alternative
to traditional telephony and create a market for network conferences. These techniques
known as Voice over IP (VoIP) or Video and Voice over IP (VVoIP) allow general costumers
calling friends and family, arranging business meetings via the Internet or offering a so called
"Teamspeak" service for multiuser online gaming.

Some of these conferencing applications are based on closed, proprietary protocols and
are not applicable to large size conferences. The voice and video quality of Instant Messen-
ger (IM) applications is often rather limited. These applications are frequently only able to
establish simple point-to-point communications. Skype [1], a popular multi-point IM client, al-
lows users to establish voice and video calls to other users running Skype, or enable dial-out
to traditional telephones in good quality. Skype is able to create two-point video conferences
for up to 25 participants in a voice multiparty [43]. Its disadvantages are due to the closed
Skype protocol [4] and limitation of conference members size. Other applications are using
open communication protocols like the Session Initiation Protocol (SIP) [39] or H.323 [18].
Various organizations support video conferencing using these open protocols by providing a
Multipoint Control Unit (MCU) to distribute the media streams to all joining conference mem-
bers. In those scenarios, an organization offers a reliable service for media conferencing to
its clients, but has to be pay for the infrastructure. Because of the high complexity of process-
ing multiple streams at the media level and distributing them in transport layer, these MCU
systems are of limited scalability. In particular an increasing number of participants and main-
taining multiple simultaneous conferences may case overloading of an MCU causing worse
voice and video quality at the endpoints. For a lightweight ad hoc conferencing solution it
is desirable to remain independent of expensive hardware or restrictive infrastructure, but
nevertheless, providing a viable conferencing service.

To approach this challenge, various peer-to-peer deployments show how an overlay net-
work can handle millions of joining members at low cost of memory per node and keep short
routing distances. Concepts like Skype or Peer-to-Peer SIP (P2PSIP) [5] already use an
overlay network for data storage and resource location, independent of central servers. Only
some login servers or bootstrap nodes are needed to establish such an overlay. Both sys-
tems have resolved the location discovery using their overlays, but comply to the traditional
conferencing concept of using a single node, which is responsible for controlling the media
session and distributing the media streams simultaneous.

The distribution of conference control and media mixing is already a working area in the
Internet Engineering Task Force (IETF). Those approaches concentrate on creating addi-
tional protocols for communication among conference controllers sharing conference spe-



1 INTRODUCTION 2

cific informations, but maintaining transparency of the distributed conference content to their
clients.

The motivation for this work is to present a solution for a hardware structure independent
conference scenario, by creating a base protocol schema for distributed conference control.
This will be achieved by using an open and extensible protocol in a Peer-to-Peer environment
and thereby providing a viable scalable service.

1.2 Overview of this Work

Establishing spontaneous network conferences is now a common method for communication
throughout the Internet. It extends the options to stay in contact with other persons and
bridge the distance to them. A traditional intercontinental phone call can be very expensive,
why general costumers are searching for alternative ways. The success of IM like ICQ, Yahoo
Messenger or Skype demonstrates the demand of this growing market. Conference systems
deployed within professional organizations save costs of frequent business trips and allow
for meetings on demand.

This work targets at multimedia conferences that may reach large size and operate with-
out an MCU. It illustrates the concept of distributing conference control among a set of equal
nodes within the conference members provide a module for Scalable Distributed Conferenc-
ing (SDCON) [24] in a transparent fashion to SDCON-unaware participants. This approach
is based on SIP as an open signaling protocol and does not need additional protocols for
synchronizing conference information among the controlling entities.

It adapts automatically to the number of participants joining the conference, and achives
constant delay times to participate a multiparty session. SDCON provides mechanisms to
delegate incoming SIP calls to previous discovered conference controllers in reason to bal-
ance the management effort among them. A synchronization mechanism for these control-
ling entities is achieved by an extension of the conference event package, making every
SDCON node aware of the current state of the conference.

Splitting the conference control in a SIP-based approach produces the conflict that multi-
ple controlling entities have to appear as one single, logical entity to the participating clients.
This work solves this conflict in a SIP-conform manner, so that standard compliant parties
are not exposed to change requirements.

1.3 Organization of the Report

This work is organized as follows.
Chapter 2 begins with an historical overview of the development of video conferencing

systems in the past followed by a short presentation of modern network conferencing. It
will be presented a general introduction to conferencing with the Session Initiation Protocol.
Starting with a basic introduction to the Session Initiation Protocol, common approaches to



1 INTRODUCTION 3

conferencing in so called tightly coupled scenarios will be explained by summarizing related
work in this area.

After the introduction, this work presents the problem statement and concept of scalable
distributed conference control in section 3. The challenges for such a distributed scenario
will be explained and the solution elaborated in this work will be presented.

Chapter 4 engages with the subject of the so called ’Event Packages’ and their design in
XML format. It presents a document schema for conference state information and will extend
this schema by adding multifocus issues.

Having summarized the theoretical base of the functionalities for conferencing with SIP, it
will lay out the implementation of the proposed scheme in chapter 5. It shortly introduces the
programming languages and libraries used, followed by the design of the framework behind
this work explain the detailed implementation by providing some source code snippets.

The next chapter 6 is dedicated to measurements and evaluations. Setups and results
that verify the concept of scalable distributed conferencing is operational are outlined along
with performance results obtained from emulations that have been performed in practice.

A conclusion and outlook chapter 7 will conclude this report, summarize results and show
directions for future work in this area.



2 GROUP CONFERENCING 4

2 Group Conferencing

This chapter introduces general group conferencing, and in particular discusses conferencing
in SIP Scenarios.

2.1 History and Introduction

The possibility to communicate per voice and video via the Internet is not matter of course.
Every analogue voice and video signal recorded by cameras or microphones will be con-
verted to digital signals, encapsulated in datagrams and routed throughout the Internet to
a destination where it may be decoded and rendered to the end user. However, this whole
process poses high requirements onto the end systems and appropriate network quality to
perform the video call in soft realtime.

The first analogue video call presented at the Internationale Funkausstellung (IFA) 1929
in Berlin. It consisted of two closed-circuit television systems connected via cable and were
used in some German Reich Postamt (Post Office) in Berlin from 1930 - 1934 [30]. In the
1960s the AT&T started expensive research to develop a videophone for replacing traditional
telephony. The result was a video telephone named ’Picturephone’ [14] which used an ana-
logue signal at 1 MHz Bandwidth and had a 5∗51

2 inch screen size. Due to very low demand
of this product, the service faded away in the middle of the 1970s and was a commercial fail-
ure. One of the first digital video telephony solutions was made possible by the development
of Integrated Services Digital Network (ISDN) with compressed video and audio transmis-
sion in the 1980s. Another approach of the year 1981 was the Packet Video Protocol (PVP)
as an extension for the Network Voice Protocol (NVP-II) [10] that consisted in a data protocol
for transmission of video data. An promising protocol was developed in the Internet Stream
Protocol (ST/ST2) [44, 12] at the IP layer. It intended to provide more end-to-end real-time
guarantees over the Internet that would have make media streaming more effective. ST/ST2
were already reserved the for name ’IPv5’ at the IANA, but the deployment of this protocol
would have produced such high costs,that it has been declined for economic reasons. In the
1990s IP based video conferencing became possible by new compression technologies and
using personal computers (PC) as communication medium.

Since the turn of the millennium hardware capacities, a wide availability of high bandwidth
connectivities and the development of highly efficient video compression techniques [17]
facilitate video conferences that allow multiparty conversations accessible for everyone. The
continuous development of mobile devices with powerful processors and integrated cameras
allows video conferencing in transit and presents the state of the day of ubiquitous digital
voice and video interaction [11, 29].

Today conferencing scenarios exist in three types of models, Fully Distributed, Loosely
Coupled and Tightly Coupled conferences. In fully distributed multiparty conferences, all par-
ticipants have a pairwise relationship in signaling and media mixing to every other participant



2 GROUP CONFERENCING 5

may in a full mesh topology. There is no central point of control to which the conference
members could synchronize and no possibility to retrieve conference information. This ar-
chitecture implies a limited scaling behavior, because N participants require signaling and
mixing in the order of O(N2) complexity.

Loosely coupled scenarios also not require a central point of control and all signaling is
handled by the conference members. It is realized with lightweight sessions that do not ex-
plicit indicate a conference membership [28]. This approach differs from the fully distributed
model by using multicast media groups for media stream publishing and may offer additional
services like automatic source selection or lip synchronization to the conference end sys-
tems. Many routers in the Internet do not support multicast groups, so that loosely coupled
conferences are hardly practicable on a global scale.

The tightly coupled conference model consists of one or several conference controlling
entities to which the end systems can explicitly apply for membership. The conference con-
troller is the central point of control for all signaling messages to its participants and may
perform media mixing as well. It should negotiate the capabilities by gathering the prop-
erties of the end systems including their supported media types and codecs. Commonly it
performs a negotiation phase before starting a conference. Open standards that support
media negotiations are H.264 [17] or the Session Description Protocol (SDP) [16], exchang-
ing information of each joining end system in an offer/answer model [38]. The conference
controller processes these information to reach an agreement and informs every participant
about the conferences media properties. Another challenge to a conference controller may
results from floor control at a running conference. It may be responsible to decide which end
system is allowed to send media data at a given time.

Shown below are some general requirements for group conferences [28]:

• Reliability: detect failures and fix them if possible

• Scalability: sustain quality with increasing members sizes

• Security: provide authentication and encryption

• Efficiency: keep overhead small latency low

• Simplicity: allow for easy implementation

This work approach attempts to design a solution for scalable distributed conference control.
It aims to meet most of these requirements by using SIP [39] as a lightweight signaling
protocol in tightly coupled scenarios.

2.2 Conferencing with SIP

The Session Initiation Protocol (SIP) is an application layer control and signaling protocol
for establishing, modifying or terminating sessions for point-to-point or multi-point commu-



2 GROUP CONFERENCING 6

nication. SIP messages can be used to carry session description information which allow
participants to agree on a set of compatible media types. It is independent of the lower
transport layer protocol types and can be extended to meet additional requirements.

Application

Transport

Internet

Link

SIP

UDP TCP

IP (IPv4, IPv6)

Ethernet ...FDDI

Figure 1: SIP with the DoD Reference Model

SIP supports five functionalities for multimedia communication [39]:

• User location:

To locate an endpoint system, called User Agent (UA), SIP enables an infrastructure
of network hosts to which the UA can register. These hosts, called proxies, will route
further SIP Requests to their destination by for example DNS lookup.

• User availability :

The Session Initiation Protocol offers multiple types of response messages to indicate
the willingness of the called party endpoint to engage in communication.

• User capabilities:

SIP Messages can carry application information about supported media types and
media parameters.

• Session Setup:

Caller and callee are enabled to establish a media session after parameters have been
exchanged.

• Session management :

Established sessions can be modified, transfered to other endpoints or terminated.

A SIP dialog is a peer-to-peer relationship between two user agents that persists for some
time. A set of SIP requests generate a SIP dialog by receiving a positive response from the
called UA. The most typically dialog occurs from a SIP INVITE request which initiates a SIP



2 GROUP CONFERENCING 7

call. Figure 2 shows an example of a SIP call between two user agents (Piggy and Kermit)
routed through SIP their proxies. Piggy is registered at the registrar server muppets.com.
Her SIP identity is a composition of her user name and the domain both form a SIP Uniform
Resource Identifier (URI). In this case, it is sip:piggy@muppets.com. Piggy sends a
SIP INVITE to Kermit via her outbound proxy. This proxy has the responsibility to discover
the location of the callee sip:kermit@sesamestreet.com by resolving the domain
and to route the message to the inbound proxy at the destination of sesamestreet.com.
The inbound proxy at sesamestreet.com forwards the INVITE to Kermit. Kermit, willing
to accepted the call, sends confirmative responses. Responses of type 1xx and 2xx change
the dialog state to an ’early’ dialog. To confirm the dialog (and change state to ’confirmed’),
Piggy sends an ACK Message. The session will be terminated by sending a SIP Bye request.

Piggy muppets.com sesamestreet.com Kermit

SIP Proxies

INVITE sip:Kermit

INVITE sip:Kermit

INVITE sip:Kermit100 Trying

100 Trying

180 Ringing

180 Ringing

180 Ringing 200 OK

200 OK

200 OK

ACK

Media Streams

BYE

200 OK

Figure 2: Call setup with SIP trapezoid



2 GROUP CONFERENCING 8

The SIP invite request shown in figure 2 could look like this:

INVITE sip:kermit@sesamestreet.com SIP/2.0
Call-ID: 0815@141.22.26.6
CSeq: 1 INVITE
From: "Piggy" <sip:piggy@muppets.com>;tag=134652
To: "Kermit" <sip:kermit@sesamestreet.com>
Via: SIP/2.0/UDP 141.22.26.6:5060;branch=z9hG4bKf1
Max-Forwards: 70
Contact: <sip:piggy@141.22.26.6>
Content-Length: 159

A tightly coupled SIP conference with multiple participants is an association of SIP user
agents with one central point [25]. The central point of a conference is the focus [35]. The
focus is a SIP user agent that can be addressed by a unique SIP URI exclusively foreseen
for a specific conference. Figure 3 shows the functionalities provided by a SIP conference
application and shows the focus as a component of it. It has direct relationships to all par-
ticipants, maintaining every single SIP dialog to them, and can be implemented either by
a conference participant or a separate application server. The focus is responsible for all
the media receipting members be to served by using one or more media mixers. Mixers
combines incoming streams to one or more outgoing media streams. Each conference may
have a conference policy that describes how a conference should operate, e.g. which user
agents are allowed to join the conference. The policy could be set up by a participant using
non-SIP mechanisms. The focus has access to this policy and needs to enforce it. Another
duty of the conference controller is to handle and publish the current conference state to its
participants. This includes user agents’ join or leave of the conference. Such event state
mechanisms are achieved by sending notifications the to participants which subscribed the
notification service [31].



2 GROUP CONFERENCING 9

Conference Functions

Conference Notification Service

Focus

Conference 

Policy

Conference Policy Service

Participant

Non-SIP

SIP Dialog

Subscription

Figure 3: Overview of conference functionalities

2.2.1 Joining a Conference

There are multiple methods to join a SIP conference that are published in extensions RFCs
to SIP [39]. The addition of new participants can be controlled by first party (a user agent
adds himself) or third party (a user agent adds another user agent). The most common
way of joining is done by sending a SIP INVITE request to the conference URI (first party)
[35]. The URI could be learned through many mechanisms, for example via e-mail, instant
messenger or published on a web page. If the conference policy allows the request, the
focus will send a 200 OK response and includes the user into the conference. To end the
conference membership, the participant sends a SIP BYE request, as if it were a normal call.

It is also possible to ask the focus for inviting a user agent into an existing conference by
sending a SIP REFER request extension [41] (third party). A SIP REFER request includes a
Refer-To header field carrying a SIP URI of the user agent to be invited. If the focus accepts,
it will send a SIP INVITE to the requested UA indicating its role by an isfocus parameter
in the Contact header field. A REFER request implies a subscription to the refer event.
For example, a focus may has to notify the requester of a pending invitation or whether the
invitation was successful. The REFER request can be sent outside of a SIP dialog created
by an INVITE request and generates a new dialog between the two endpoints. This request
can be also sent directly to the party that is pleased to join the conference. The Refer-To
header then refers to the conference URI the participant is asked to join to. This assumes



2 GROUP CONFERENCING 10

that the requested peer is able to understand the REFER method. It would produce a failure
response otherwise.

Another method to join a conference or a two-party conversation is defined by the SIP
extension SIP Join Header [26]. A SIP INVITE request, addressing one of the conference
endpoints, includes a join header which contains the call-id for the existing SIP dialog the
new participant wants to join. The use cases of a join header to enter a conference instead
of sending an INVITE request to the conference URI are as follows:

• The INVITE request is trying to join a two-party conversation. In this case, a new
conference must be initiated.

• The calling user agent is unaware of joining a conference instead of a dialog.

• The new participant may not know the conference URI but the call-id

A sample call flow is shown in figure 4. Piggy is in a SIP conversation with Kermit with the
call-id 4711@kw. Elmo decides to join the conversation by sending a SIP INVITE to Kermit.
The request includes a join header field with the call-id information for the established dialog.
Elmo obtained the information by non-SIP-mechanisms. Kermit accepts the call and issues
a re-INVITE to Piggy. Now the two-party call has change to a multiparty conference. A
more detailed explanation about re-INVITE and conference initiation is presented in the next
section.

Elmo Kermit Piggy

call-id: 4711@kw

INVITE join: 4711@kw

reINVITE

200 OK

200 OK

ACK
ACK

Figure 4: SIP join header example



2 GROUP CONFERENCING 11

2.2.2 Conference Initiation

The instantiation of SIP conferences need to distinguish in two typical scenarios:

1. The conference focus is deployed on an application server:

Some organizations are providing a dedicated server infrastructure to offer SIP confer-
ences (controlling and media mixing) to its clients.

2. Conferences are realized in peer-to-peer scenarios:

A user agent has implemented a module for focus capabilities to establish ad hoc
conferences.

In both scenarios, a focus endpoint has to identify itself as a conference controller by adding
the isfocus tag in the contact header field, unless it explicitly wants to hide 1 its focus
abilities [22]. To a participant that understands the isfocus addition is called a conference
aware user agent. It can use this to setup call control conventions to the multiparty session
or subscribe to notifications services to receive conference specific informations [31]. Par-
ticipants which do not understand the isfocus tag may simply ignore it and just dial into a
conference as if it were a normal call. These UA are called conference-unaware.

It is fundamental that a conference focus is identified by a Globaly Routable User agent
Uniform resource identifier (GRUU) [36]. A conference URI is always a SIP or SIPS [2, 13]
URI and might be opaque to any participants using it. Only from the looked at the URI, a
participant cannot decide whether it belongs to a conference or any other service. This goes
in concordance with general usage of URIs as described in [7]. Conference URIs can be
long-lived to represent interest groups with a focus always available to manage conference
issues to participants currently joining or short-lived for ad hoc multiparty conversations.

For conferences controlled by a dedicated server, RFC 4579 [22] presents some call flow
examples that are used, lightly modified, for ad hoc multiparty sessions for the framework
beyond this work. The original call flow examples will not be discussed in this work.

In the SIP community exists a great interest in peer-to-peer call mechanisms to create
ad hoc multiparty conferences. The RFC 5359 [23] gives example Call flows to create a
multimedia session.

3-Way conferences:

• Third party is added to the conference:

Figure 5 displays a call scenario, in which Piggy invites Kermit to a session.First Ker-
mit, who is capable of media mixing and multiparty call control, wishes to add Elmo
to the conversation. The corresponding INVITE request from Kermit to Piggy is also
called a re-INVITE because it is issued within an existing session. It is used to setup

1Hiding focus abilities is no aspired behavior in conferencing, but possible



2 GROUP CONFERENCING 12

an existing session and may include new descriptions for multiparty use. The re-
INVITE includes a new Contact header carrying a conference-specific URI, in this
example puppets@sesamestreet.com, and indicating the conference content
by the isfocus tag. After Piggy confirmed the re-INVITE, Kermit invites Elmo to join
the multimedia session by sending an INVITE including the same modified information
to the conference.

The re-INVITE to Piggy may look like this:

INVITE sip:piggy@muppets.com SIP/2.0
Call-ID: 0815@141.22.26.6
CSeq: 1 INVITE
From: "Kermit" <sip:kermit@sesamestreet.com>;tag=134652
To: "Piggy" <sip:piggy@muppets.com>;tag=654131
Via: SIP/2.0/UDP 141.22.26.6:5060;branch=z9hG4bKf1
Max-Forwards: 70
Contact: <sip:puppets@sesamestreet.com>;isfocus
Content-Length: 167
...

• Third party initiated using Join header:

A point-to-point session may change to a multiparty conversation by a third party call
arriving at one of the endpoints. The INVITE received could carry a Join header cor-
responding to figure 4. As callee provides the capabilities to serve as a focus, it firstly
accepts the call by responding with 180 Ringing and re-invites the user agent that it
was already in the dialog by sending an INVITE request including a the new confer-
ence contact URI plus isfocus tag. Finally the called user agent confirms the dialog
to the third party.

• Alternative third party initiated invite:

An alternative variant to handle a third party initiated multiparty conversation arises
from avoiding the Join header field. SIP implementations may not support this header
e.g. like the NIST JAIN SIP [19] stack used by the framework behind this work. It fully
comprises to SIP standards presented in RFC 4579 [22].



2 GROUP CONFERENCING 13

ElmoKermitPiggy

INVITE sip:Kermit

180 Ringing

200 OK

ACK

Media Streams

INVITE contact:isfocus

180 Ringing

200 OK

ACK

INVITE contact:isfocus

180 Ringing

OK 200

Media Streams

ACK

Figure 5: 3rd party is added

Like in the previous example a single conversation between the two user agents Elmo
and Kermit already exits. Oscar, unaware that Kermit is in a call, invites him to create a
new session. Kermit decides not to decline the call, but to initiate multiparty conversa-
tion. Therefore, he responds with the redirection class message 302 Moved including
a newly generated conference URI and isfocus tag in the contact header. Such a
SIP response could look like this:

SIP/2.0 302 Moved Temporarily
Call-ID: 0816@141.22.26.221
CSeq: 1 INVITE
From: "Oscar" <sip:oscar@sesamestreet.com>;tag=134652
To: "Kermit" <sip:kermit@sesamestreet.com>;tag=764684
Via: SIP/2.0/UDP 141.22.26.221:5060;branch=42
Via: SIP/2.0/UDP 141.22.26.117:5060;branch=23
Contact: <sip:puppets@sesamestreet.com>;isfocus
Expires: 3600
Content-Length: 0

Thereafter, Oscar sends a new INVITE to the conference URI and will be accepted



2 GROUP CONFERENCING 14

receiving the 200 OK response. Finally, Kermit re-invites Elmo to join the multiparty
conversation. The call flow for this scenario is shown in figure 6. The advantage of this
solution is the compatibility to every SIP stack implementing only the basic standard of
RFC 3261 .

KermitElmo

INVITE sip:Kermit

200 OK

ACK

Oscar

INVITE sip:Kermit

302 Moved contact: conf-id;isfocus

ACK

INVITE sip:conf-id

200 OK

ACK

INVITE contact:conf-id;isfocus

200 OK

ACK

Media Streams

Media Streams

Media Streams

Figure 6: Third party initiated conference (alternative)

Such ad hoc created conferences can by joined by multiple participants like described in
2.2.1.

2.3 Approaches to Conferencing

This section presents related work about conferencing with the Session Initiation Protocol.



2 GROUP CONFERENCING 15

2.3.1 Centralized Conferencing

The idea of using a central point of control for multimedia conversations with SIP is a thor-
oughly discussed working area. In the Internet Engineering Task Force (IETF), especially
two Working Groups (WG), the concluded Session Initiation Proposal Investigation WG
(SIPPING) and the Centralized Conferencing WG (XCON), have established standards and
frameworks for centralized conferencing. This section gives a short overview of the related
work of both WGs. First, there have to be defined some high-level requirements for tightly
coupled conferences with the Session Initiation Protocol [25].

• Discovery Phase:

In a conference discovery phase, new participants must be enabled to locate an arbi-
trary SIP conferencing entity, and for a given SIP Address-of-Record (AOR), to resolve
whether this entity have focus capabilities. It must be able to locate a conferences
focus given a global identifier of the conference, and to obtain conference properties
and state information. In cases, some of these requirements are may not fully imple-
mented at the client side. For example in a ad hoc conference a participant may not
subscribes for a notifications service retrieving conference information because it is
unaware of the multiparty session.

• Conference Creation:

As an entity with focus capabilities is available, operations must be defined for inter-
ested user agents to initiate an ad hoc or reserved conference identifier with specified
properties. The difference between ad hoc and reserved identifier comprises from
the expected duration for a specific conference. Reserved identifiers should be per-
manently accessible on a dedicated server in contradiction to ad hoc identifiers thats
duration may as long as the conference is active.

• Participation of conference-unaware UA:

A focus must be able to invite a SIP UA to a conference that is only compliant to minimal
SIP implementations and likewise to accept a dial-in of such a UA. Such conference-
unaware UA does not support for example the REFER method, Join header and ig-
nores the isfocus tag, which are extensions to the SIP standard. This backwards
compatibility assures that older implementations are able to participate in a confer-
ence.

• Dial-In, Dial-Out, Third-Party Invitation:

Participation in a multiparty session can be achieved in three different ways. Dial-in,
where the new member calls the focus, dial-out, where the focus invites the new par-
ticipant, and third-party invite, where a conference member invites another UA to join a



2 GROUP CONFERENCING 16

multiparty by transmitting the conference identifier. The dial-in method is applicable for
example to conference-unaware UAs described above. In a dial-out scenario, a partic-
ipant may instructs a focus entity, to invite a list of user agents to the conference. To
do so, it only sends one message to the focus instead of N messages for every party.
That also remains compliant with standard SIP, because the focus will send INVITE
requests. A third-party initiated invite goes the other way around. It request directly
the expected user agent to enter into the conference. Because the required method
REFER is no default implementation in SIP, the callee may decline the request and
responds with a 501 NOT_IMPLEMENTED.

The SIPPING working group created a framework for conferencing with SIP and pre-
sented it in the RFC 4353 as informational work on how to establish a multiparty session
with a protocol that normally is used for two-party sessions [35]. It shows an architectural
model for conferences 3 and relies on the terminology already discuss above, e.g. focus,
conference URI, conference policy etc. The requirements for tightly coupled conferences
are realized in this framework. Required functions are distributed on different components
that act as focus, as conference policy server, media mixers and as conference notifications
server.

• Centralized Server:

The most simple realization for a conferencing system is to place all component in one
single physical server [35] including the media mixers as well. It can be foreseen that
such "one box" solution does not scale well, because it has to handle signaling and
media distribution simultaneous.

• Endpoint Server:

This model aims at ad hoc and locally mixed conferences, after a two-party session
changed to a multiparty session. The initializing user agent with focus capabilities
serves as conference policy, conference notifications and media mixing server like in
the centralized model above.

• Media Server Component:

A more complex media server component model is shown in Figure 7. There are two
servers for each conference. First, the application server that owns and manages the
policies, memberships and maintains all dialogs with its participants. It appears as
the central focus to the multiparty session, so that is handles all signaling. To perform
the media mixing functions, it makes use of the second server called "mixer server".
The mixer server implements a focus and a conference policy, as well, but its policy
tells it to accept only invitations from the top-level application server. To inter-connect
participants to the media streams, the application server uses third party call control



2 GROUP CONFERENCING 17

[37] for instructing the second server setting, thereby configuring at the mixers. If a
participant sends a policy command to the focus in the application server, the focus
delegates it to the media server by sending the same command.

This model has the advantage that the application server may controls more then one
media server and counterwise, that a media server can be used for more than one
conference application. The media servers are unaware of the conference policy and
merely act as "slaves" to the application server. Note that for this model more than
one physical machine can utilized. It is thus hardly applicable to ad hoc multimedia
sessions.

App. Server

Focus

Conf. Policy

Notifications

Mixer Server

Focus

Conf. Policy

Mixer

Participant Participant

non-SIP

RTP
RTP

SIP
SIP

SIP

Figure 7: Media Server Component Model

• Distributed Mixing:

The distributed mixing model is built on a delegation of media mixers. There is one
endpoint that serves as conference server with focus, policy and notification capabili-
ties. The media distribution is placed at conference members along with a conference
policy as shown in figure 8. The media distribution is handled by the focus using third
party call control and connects the media streams to each participants. Therefore, the
focus holds a dialog with all participants to negotiate the sessions descriptions.

The application of this model distributes the mixing among participants and may bal-
ance the load of every endpoint. However, it assumes that every UA in the multiparty
session has enough hardware requirements to do so. In the case that an endpoint is
a mobile device, this assumption may fail.



2 GROUP CONFERENCING 18

Conf. Server

Participant

ParticipantParticipant

Focus

Conf. Policy

Notifications

Mixer

Conf. Policy

Mixer

Conf. Policy

Mixer

Conf. Policy

SIP

SIPSIP

Media
Media

Media

Figure 8: Distributed mixing model

• Cascaded Mixers:

In a very large conference, it is impossible for one single media mixer to handle and
distribute all media streams. In the architecture of cascaded mixers, there is one single
focus endpoint that controls a set of mixers, typically implemented at multiple physical
servers. The focus must use some control protocol to interconnect the mixers, so that
all conference members receive the complete multimedia stream.

In this model, an additional protocol is needed to assure the interoperability of the
multiple media mixers. A large message overhead could be produced by synchronizing
and controlling mixers with increasing size of the conference.

To standardize a notification service to the conference participants, the SIPPING WG
created the "Event Package for Conference State" as defined in RFC 4575 [40]. It is build
upon the "SIP-Specific Event Notification" [31] SIP extension. An UA can subscribe to the
event package by sending a SIP SUBSCRIBE to conference URI. Notifications inform about
changes of membership and optionally about changes in the conference state, like user
counts or information about active users of a conference. Notification are performed by
sending a SIP NOTIFY requests that carry an Extensible Markup Language (XML) content
that updates the conference state at each endpoint. SDCON extends this event package for
inter-focus communication and synchronization as described in section 4.



2 GROUP CONFERENCING 19

The Centralized Conferencing working group (XCON) at the IETF is developing a stan-
dardized suite of protocols for tightly-coupled multimedia conferences. They pay special
attention to strong security and authorization requirements using the focus as central point
of control as well. It picks up the central declarations of the SIPPING framework and adds
additional services, e.g. floor control or sidebar conferences that may exist within the context
of parent conferences. This framework offers richer functionalities, by including dedicated
conference applications with explicitly defined capabilities located in the infrastructure. In
most cases this stays in contradiction to ad hoc multiparty sessions.

2.3.2 Peer-to-Peer SIP

The dependency of traditional SIP on a proxy-registrar structure for message routing func-
tions created the idea to replace this infrastructure by a peer-to-peer environment using a
Distributed Hash Table (DHT) [6, 47] mechanism. The P2PSIP working group is develop-
ing a DHT based overlay network for REsource LOcation And Discovery (RELOAD) [21]. It
specifies a couple of operations to join the overlay, putting resources into it (like the loca-
tion of an UA) and fetching informations from the overlay network. In P2PSIP, there exists
the possibility to add new services in the overlay like gateways or proxies to other networks
with several protocols as shown in Figure 9. Each node named as "peer" in this figure
is participating the P2P overlay network. They communicate between each other with a
P2P Peer Protocol and are offering different services to the overlay. Peers can act as
gateways to other networks or as proxy for standard SIP UA applications that are unaware
to the usage of an overlay. The redirector peer will serve as an adapter towards incoming
SIP calls from out the overlay to an P2PSIP-unaware user agent by responding the SIP URI
of the requested callee. The "Client UA" on the right side, is not participating the overlay but
can use its functions by using a P2P Client Protocol.

P2PSIP has not explicitly addressed the application area of group conferencing, but its
adoption as "proxy and registrar" can be used to locate SIP UAs and to establish standard
SIP dialogs and initiate conferences between them afterwards. Another advantage of us-
ing P2PSIP arises from its functionality supporting Network Address Translation (NAT) and
firewall traversal. Many SIP endpoints are located behind NATs and firewalls that are hid-
ing their IPs and blocking traffic. The P2PSIP WG is approaching this using protocol like
Session Traversal Utilities for NAT (STUN) or Interactive Connectivity Establishment (ICE) to
solve that issue.



2 GROUP CONFERENCING 20

UA Peer

UA PeerUA Peer

Proxy Peer

Gateway Peer

Redirector Peer

SIP UA

Client UA

SIP

Peer Protocol

Client

Protocol

P
S
TN

Figure 9: Overview of the P2PSIP Architecture

2.3.3 Related Work on Decentralized Conferencing

One example in the IETF for Distributed Conferencing (DCON) is published by a group from
the University of Napoli [33, 32]. They define the requirements and created a framework for
distributing Centralized Conferencing (XCON) [3] information on multiple XCON Servers. In
order to do so, each XCON node is associated to a DCON module using a XCON-DCON
Synchronization Protocol (XDSP) [34]. This tuple is called conferencing cloud like shown in
figure 10. The DCON modules create an overlay network by interconnecting every conferenc-
ing cloud. The information shared within the overlay regards to currently active conferences
provided at each conferencing cloud. An UA connected to an XCON application can retrieve
all currently established multimedia session by using e.g., the Binary Floor Control Protocol
(BFCP) [8]. The XCON server requests its DCON module to retrieve all conference states in
the overlay and responds to the UA by giving it all conference information from the XCON and
the DCON overlay. If the UA wishes to join a conference outside its own conferencing cloud
(note, it is unaware of this fact) it sends a SIP INVITE to its XCON application. The XCON
server is now responsible to place its client into the remote multiparty session, by performing



2 GROUP CONFERENCING 21

an AddUser operation to the DCON, that forwards the request to the remote conferencing
cloud. If the remote XCON cloud accepts, it responds with an UserAdded operation. Fi-
nally the UAs XCON server issues a re-INVITE, revising the session descriptions. Following
media streams are routed among the XCON servers to the client.

This DCON approach focuses on distributing conference information among dedicated
conferencing servers and may not to be applicable to ad hoc conferences. To include a
SIP UA into a remote conference, eight routing steps have to be performed. This seems to
cause a long delay time, which is not desirable for conference applications. Performance
measurements are not available at the time of elaboration.

XCON Server

DCON Modul

DCON Modul

XCON Server

XCON Server DCON Modul

Conferencing Cloud

Conferencing Cloud

Conferencing Cloud

Figure 10: DCON architecture

A group from the Kyungpook National University in Korea designed a policy-based dis-
tributed management architecture for a large scale enterprise conferencing service using
SIP [9]. In this approach dedicated conference applications including policy server, mixer
management, notification service and focus capabilities can be divided on multiple physical
servers in a hierarchical manner. They define two different kind of conference servers named
by the focus functionalities "primary focus" and "regional focus". The primary focus repre-
sents the conference application in the way that its URI is used as the conference URI. Each
participant must first obtain permission from the primary focus to enter a specific multiparty
session. Each focus node controls a set of mixers. The primary focus is responsible to con-



2 GROUP CONFERENCING 22

figure and setup these mixers at different servers by creating a Conference Mixer Network
(CMN) either in a star or tree topology. A regional focus is responsible for media mixing to
its regional clients, that are assigned to it by the primary focus. The mixers of the regional
focus are composed to a Local Mixer Network (LMN), distributing the media and taking care
of participants assigned to it. A message flow displaying signaling and policy messages is
shown in figure 11.

Like the DCON approach, this architecture needs an existing server infrastructure with
dedicated conference applications. Measurements are displayed in the later section 6.

Primary 

Focus
Participants Participants

Regional

Focus

SIP Message

Mixer

Participant Status
Join/Leave

Notifications

SIP Signaling

CMN Creation

Policy Inform/Setup

M
ix

e
r 

S
e

tu
p

S
IP

 S
ig

n
a

lin
g

M
ix

e
r 

S
ta

tu
s

Join/Leave

Notifications

Conference Setup

Policy, Floor Control

Authorizations

Policy, Floor Control

Authorizations

Policy Setup

Policy 

enforcement

Figure 11: Message flow for the policy-based conference service as Cho et all [9]



3 DISTRIBUTED CONFERENCE CONTROL 23

3 Distributed Conference Control

This section presents the problem statement for a distributed conference control and a solu-
tion using the session initiation protocol.

3.1 Problem Statement

In a peer-to-peer scenario, a conferencing application faces the challenge to assure a stable
communication platform among the peers, without assistance of a dedicated server infras-
tructure. In a case, where a single node becomes the central point of control and may
simultaneous serves as multimedia distributor, its capabilities may be quickly exhausted. An
example for this is a Skype video conference, which is limited to two participants. The cen-
tral point of control concept in traditional tightly coupled conferences, implies the possibility of
conference breakdown as the controlling entity leaves or crashes. To approach this problem,
a distribution of the conference logic among multiple peers allows to compensate a departure
of an controlling peer and sustain the multiparty service. Such a distributed solution can be
adaptive of load peers must issue, to avoid that they will be requested to serve above their
capacities. This dissociation of the focus role is not a standard behavior in SIP scenarios
and needs some customization to be transparently conform and to SIP protocol operations.
The distribution of an entity that still needs to appear as one location causes synchronization
issues to keep a consistence view at all peers. The SDCON approach attempts to address
these challenges in a SIP conformal manner, limiting extensions to the minimal.

3.2 A Concept for Scalable Distributed Conferencing

In an ad hoc environment, a two-party dialog that switches to a multiparty session forces
one of the endpoints into the role of the focus of the conference. If willing, the focus can
add or respectively accept new participants and increase the conference size. In SDCON
we assume that a conference controller is aware of its own capacity limits for serving its
client UAs. The participant which initiated the multiparty session is called "primary focus".
When reaching its limits, the primary focus will require assistance by a so called "secondary
focus". It will provide means to discover potential focus candidates among other conference
parties. Such user agents need to implement the SDCON module, as well. A secondary
focus is not functionally different to the primary focus. It will add, accept and manage calls
from new participations and is able to discover other secondary focuses as well. Each focus
is maintaining the set of SIP dialogs for participants directly connected to it. As shown in
figure 12, each focus holds an SIP dialog to other focuses to facilitate status synchronization
and state consistency. A specific topology of these inter-focus connections has purposefully
not defined by SDCON, but is left to the individual conference instance. Participants are
unaware whether they are connected to a primary focus or a secondary focus. Calls that



3 DISTRIBUTED CONFERENCE CONTROL 24

are addressed to the conference URI will normally routed to the primary focus. If this is
fully booked, the primary focus will delegate these calls to remote secondary focus peers.
Dial-out operations from conferences members to invite new participants will be routed to the
focus whose they are connected to. The logical split of the focus role could be an alternative
to the central point of control principle and the base for improved load balance in large-scale
conferencing using SIP.

Primay Focus

Secondary 

Focus

Secondary 

Focus

SIP

SIP SIP

SDCON SDCON

SDCON

Figure 12: SDCON distributed session control

3.3 Challenges to SDCON

The concept of SDCON requires solutions to some challenges which will be described in the
following section.

3.3.1 Globally Routable User Agent URI

Traditional solutions for tightly coupled conferences using SIP are commonly based on a
central point of control that manages all conference functions and is addressable by a globally
routable conference URI like explained the previous section 2.2. This URI identifies the



3 DISTRIBUTED CONFERENCE CONTROL 25

multiparty session and at the same time denotes the location of its focus. In SDCON, the
functions of identifier and locator of a conference URI requires splitting, as there can be
multiple points of control listening for requests under the same conference. Consequentially,
the question arises on how can a SIP UA communicate with its corresponding focus entity
(see figure 13) without a routing through the conference URI holder?

sip:puppets sip:puppets sip:puppets sip:puppets

Which is my focus?

Figure 13: The multiple locator one identifier problem

3.3.2 Maintaining Consistence of Conference States

A distributed system is a combination of multiple independent computers that appear for a
user as one coherent system [42]. To keep this fundamental requirement alive, there must be
some kind of synchronization mechanisms between the various focus entities. Each focus
entity adds or removes participants from the conference independently, so that the other
focuses including the primary focus do not notice these changes. Without synchronization
every focus peer would just know its own clients and remains blind with respect to the overall
conference. This would smash the concept of a distributed conference control into multiple
smaller centralized conferences without coherence.

It is also desirable to exchange information about the current state or capacities of the
controlling peers i.e., the maximum size of accepting clients or references to other focuses
for provide optimization proposes. In order to keep this synchronization simple, a SIP-based
approach is desirable.

3.4 A SIP-based Approach

As described in the previews sections, the distribution of the conference controlling entity
involves a coupled of problems that have to be fixed. In the following, this work presents



3 DISTRIBUTED CONFERENCE CONTROL 26

SIP-based techniques to distribute the focus entity among a couple of peers, transparent to
the participant with common a consistent states.

An overall view of the message flows used in SDCON are shown in Figure 14. Between
focus entities there are two main flows: the synchronization messages shown as "focus
states" and the call delegation flows. Call delegations happen when a focus is fully booked
and needs to refer additional calls to less loaded peers. Because calls to the conference
URI will be routed to the primary focus, call delegations are mainly done from there to a
secondary focus. Synchronization messages will be sent on every change of state in a
single focus entity, e.g., announcing the arrival of a new participant. These messages have to
reach every controller to keep a consistent view to the conference. Participants can join and
leave a conference either by the primary or a secondary focus and may retrieve conference
notifications by subscribing to these services. Another basic function consists in the ability
to discover potential focuses with SDCON capabilities among peers intra-conference.

Primary 

Focus

Participants Participants

Secondary 

Focus

SIP 

Messages

Focus discovery Focus discovery

Focus states

Call delegation

N
o

ti
fi
c
a

ti
o

n
s

J
o

in
/L

e
a

v
e

N
o

ti
fi
c
a

ti
o

n
s

J
o

in
/L

e
a

v
e

Focus states/Call delegation

Figure 14: SDCON overall message flow

3.4.1 Discovery of an additional Focus

After a conference is created and the primary focus has reached its performance threshold
indicated by the maximal number of members it can serve, the primary focus has to discover
a new potential focus peer. A basic approach to detect another user agent which may oper-
ate as secondary focus is to consult the currently connected participants. As shown in figure



3 DISTRIBUTED CONFERENCE CONTROL 27

15, Kermit in the role of primary focus searches for a new secondary focus. He does so by
sending a SIP SUBSCRIBE request suppliant for the inet-multifocus-ci-ext+xml
event package embedded in the Event Header field. The name is composed by: "inet" for
Internet Technologies, which is the group where this framework was developed, "multifocus",
to indicate that the content is about multiple focus peers, "ci" for Conference Info, which is the
base Event Package for Conference State [40], "ext" for Extension, because this package ex-
tends [40], "+xml", to indicate that this content is written in XML. To limit message overhead,
the SUBSCRIBE request already carries a full XML conference state extension as described
in section 4.

Such a SUBSCRIBE could be look like following:

SUBSCRIBE sip:oscar@sesamestreet.com SIP/2.0
Call-ID: 0817@141.22.26.55
CSeq: 1 SUBSCRIBE
From: "Kermit" <sip:kermit@sesamestreet.com>;tag=134653
To: "Oscar" <sip:oscar@sesamestreet.com>
...
Contact: <sip:Kermit@sesamestreet.de>
Event: inet-ci-multifocus-ext+xml
Expires: 3600
...

However, Kermit subscribes at Oscar for the event package extension to test for Oscar’s
SDCON abilities. In this example Oscar is not SDCON capable and responds with a non-
affirmative 489 BAD EVENT response message. In this case, Kermit proceeds to the next
peer in its SIP dialog list until a peer that supports the package will be found. If no suitable
participant is around, incoming calls may be declined. Otherwise, a requested user agent
responds with a 200 OK and thus becomes a secondary focus for this conference. There-
after, Elmo subscribes to Kermit for the event package extension to retrieve event updates
of on Kermit’s state and to learn him about user capacities as encoded in XML format of the
content body. In this way, any overloaded focus is able to redirect further join requests for the
conference. A metric for the initiation of distributed conferencing can be individually defined
by each focus peer and is beyond the scope of this work.

3.4.2 Call delegation

After one or more secondary focuses are discovered, the conference controlling peers
are able to delegate incoming calls. Each focus peer can make the lookup operation
getDelegate() on its local conference state information retrieving a potential remote
focus willing to accept this call. An example for this behavior is displayed in figure 16. The
conference-aware participant Oscar would like to make a dial-out invitation to the UA Ernie



3 DISTRIBUTED CONFERENCE CONTROL 28

Kermit OscarElmo

Kermit capacities to

serve conference 

participants expires

SUBSCRIBE Event: SDCON

489 BAD EVENT

SUBSCRIBE Event: SDCON

200 OK

SUBSCRIBE Event: SDCON

200 OK

Elmo is able to serve

as secondary focus

Figure 15: Discovery of a Secondary Focus

by sending a SIP REFER request to its focus. Kermit is fully booked and will not accept
to manage this call, but he knows from his local conference state information, that the sec-
ondary focus Elmo is able to handle a new callee. Kermit then appears as it would accept
the dial-out operation by responding an 202 ACCEPTED message and a notification that he
is processing the REFER and forwards the call to Elmo. Elmo is now responsible for inviting
the user agent declared in the SIP Refer-To header field. If successful, he notifies the refer-
ring focus and spreads a conference event to all focus peers which have subscribed to his
notification service.

In another scenario shown in figure 17, the UA Grover has learned the conference URI
by non-SIP means. Grover calls the primary focus Kermit via a SIP INVITE request. Kermit
is fully occupied yet, but is aware that the remote secondary focus Elmo still has capacities



3 DISTRIBUTED CONFERENCE CONTROL 29

Kermit Oscar ErnieElmo

Elmo and Kermit

are focus entities

REFER ReferTo: sip:Ernie

202 ACCEPTED

Kermit is fully

booked and will

delegate the call

NOTIFY Subscription State: Pending

REFER ReferTo: Ernie

202 ACCEPTED

NOTIFY Pending

INVITE Contact: Conf-ID;isfocus Record Route: Elmo

200 OK

ACK

Kermit forwards the

refer to Elmo

NOTIFY Active

200 OK

NOTIFY Active

200 OK

Ernie is now in

Conference. Elmo

is his foucs

Figure 16: Delegation a call to a secondary focus



3 DISTRIBUTED CONFERENCE CONTROL 30

to accept calls. Kermit temporally accepts the request by responding 200 OK, but delegates
it via SIP REFER to Elmo, who has now to re-INVITE Ernie to the conference.

3.4.3 Routing to a distributed Focus

In both call flows explained above, the INVITE operation issued by a secondary focus con-
tains an additional Record-Route header field. The Record-Route header field is normally
used as instruction for strict source routing by SIP proxies to force further requests in a dialog
to be routed through the proxy [39]. This mechanism is used by SDCON to keep the appear-
ance of a single logical focus peer and solves the globally routable user agent URI problem
described in a previews section. Every secondary focus peer adds a Record-Route header
with its own URI into every message sent to connected participants, e.g., the re-INVITE from
Elmo to Ernie in figure 17 may look like following:

INVITE sip:ernie@sesamestreet.com SIP/2.0
Call-ID: 0818@141.22.26.55
CSeq: 1 INVITE
From: <sip:puppets@muppets.com>;tag=134652
To: "Ernie" <sip:ernie@sesamestreet.com>
...
Contact: <sip:puppets@muppets.com>;isfocus
Record-Route: <sip:elmo@sesamestreet.com>
...

The standard behavior of SIP implementations foresee that further requests within an
existing SIP dialog must be sent through the "route set" containing a list of SIP URIs. It
must be traversed when sending a particular request. A route set is a list of in reverse
order that can be learned through headers like the Record-Route header field. If for exam-
ple there is no other proxy between Elmo and Ernie, Ernie has to use the last entry of the
Record-Route header field sip:elmo@sesamestreet.com as Request URI and the
URI in the Contact header sip:puppets@muppets.com will be set as Route header.
A Route header is used to force the next SIP entity to route the request to the URI taken of
the Route header. Because Elmo is aware of the distributed focus mechanism and knows
which UAs are connected to him, he will intercept every message addressed to its URI
sip:elmo@sesamestreet.com and include the conference URI in the Route header
and process the SIP request accordingly.

Requests initially sent to the conference URI will still be routed to the focus peer, that
initiated the conference.



3 DISTRIBUTED CONFERENCE CONTROL 31

Kermit Elmo Grover

INVITE sip: Conf-ID

Kermit tmp.

accepts invite

200 OK

ACK

REFER ReferTo: sip:Grover

202 ACCEPTED

NOTIFY Pending

200 OK

Grover knows the

Conf-ID from non-

SIP meanings

INVITE Contact: Conf-ID;isfocus Record Route: Elmo

200 OK

ACK

NOTIFY Active

200 OK

Kermit refers the

session to Elmo

Elmo re-invites

Grover to Conf-ID

Figure 17: Call delegation in a dial-in scenario



3 DISTRIBUTED CONFERENCE CONTROL 32

3.4.4 Resilience Against Focus Failure & Leave

In contrast to centralized solutions, distributed conferencing operates without an single in-
frastructure component that guarantees a stable and always available management service.
The scenario presented in this work targets at spontaneously created conferences between
consumer computers or mobile devices. In such scenarios, leaves or failures of a focus
device require fixing at low complexity.

At a graceful leave, the focus must delegate its established SIP dialogs to other, poten-
tially available devices by sending SIP REFER requests for each of its peers. Subsequently,
the leaving focus needs to terminate its event subscriptions by refreshing the SIP SUB-
SCRIBE requests with expiration headers set to zero. All focus entities are now aware of the
focus departure and must no longer delegate SIP calls to it.

If a focus detects the failure of another focus, it could re-INVITE all conference partici-
pants connected to the absent controller or alternatively, try dial-out operations to other focus
peers. These focuses then re-INVITE the participants to the conference again. Note that par-
ticipants and their corresponding controllers are known from the distributed conference event
package explained in chapter 4.

3.4.5 Consistency in a distributed Conference

As denoted in the previews sections, the local conference state information at every focus
peers may change frequently on every join/leave operation or following newer focus discov-
ery. The synchronization mechanism to keep a coherent and consistent state throughout
the conference is done by subscriptions to the inet-multifocus-ci-ext+xml event
state package extension. On every adoption of a new focus a bidirectional subscription will
be established. Because SDCON does not force the conference controllers to arrange in a
specific topology, a wild mesh of relationships between the various focus peers is possible.
They may even arrange in a chain. In such a case, the focus states event information, i.e. the
arrival of a new participant, has to traverse the complete chain of focus peers. This causes
a long delay time to have a coherent state in the allover conference again. SDCON there-
fore just makes the requirement to avoid chaining by creating new subscriptions to remote
focuses, which are in a "far" hop distance. A metric that define an adequate hop distance is
not in scope of this work. The information whether a focus peer is "far" away can be obtained
by the local multifocus conference state info.

The behavior of focus with SDCON capabilities at changes of states is simply to notify
every other focus that is subscribed to the multifocus conference info event package.

The behavior of an SDCON focus on reception is as follows:

• Forward the notify to every focus subscribed to it, with the excepting of the originator

• Memorize which focuses have notify this peer, to prevent duplicate messages



3 DISTRIBUTED CONFERENCE CONTROL 33

Nevertheless, duplicate messages can not be complete prevented in arbitrary structures,
but guarantee that every multiparty controller is informed about every change of state of the
hole conference.



4 CONSISTENT CONFERENCE STATE INFORMATION 34

4 Consistent Conference State Information

This chapter introduces the use of the event package for conference states and presents an
extension elaborated by this work.

4.1 Introduction

The SIP-Specific Event Notification [31] defines a subscription/notification mechanism for
receiving events in SIP networks. These asynchronous notifications are useful for many
SIP services as they enable a better communication between endpoints. Such services are,
e.g., automatic call backs, buddy lists and presence informations or mailbox indications. All
information distributed in this way are called ’Event Packages’ anyone can be understood
as an extension to the SIP-specific Event Notification. Event packages define a set of state
information that the notifier reports to its subscribers. Subscriptions are soft states with a
maximal duration that is defined in a SIP SUBSCRIBE request in the Expires header. To
unsubscribe, a client sends a SUBSCRIBE request with expiration timer set to zero. To
identify the event or class of events a user wants to be notified of, a SUBSCRIBE request
must include exactly one Event header containing a token for identifying the subscription. A
basic sample message flow of SIP-specific event notifications in shown in figure 18.

Ernie Bert

SUBSCRIBE Event:party

202 ACCEPTED

NOTIFY Content:party over

200 OK

NOTIFY Content:party begins

200 OK

Figure 18: Subscribe/Notify call flow example



4 CONSISTENT CONFERENCE STATE INFORMATION 35

4.2 Event Package for Conference State

A conference focus in tightly coupled multiparty sessions is the only entity with sufficient
information about the allover state and can offer a notification service to its participants. An
event package has been defined by the SIPPING WG in A Session Initiation Protocol Event
Package for Conference State [40].

The event package is defined in an XML schema and its name is registered at the Internet
Assigned Number Authority (IANA) as conference. Its Multipurpose Internet Mail Exten-
sion (MIME) [15] type is application with subtype name conference-info+xml.
An endpoint which wants to use this service subscribes for conference in the Event
header field and must support the application/conference-info+xml data for-
mat that should be indicated in the Accept header field. If no such Accept header is present,
it has the default value application/conference-info+xml.

Notifications are sent on every change of state in the conference and normally contain
only the state that has change. This partial notification mechanism avoids redundant con-
tent replications and decrease the message sizes. Sub-elements from the XML root element
<conference-info> use a ’state’ attribute to indicate whether they are using this partial
notification mechanism or not. Elements that are subject to frequently changes are permis-
sible to attach the ’state’ attribute with 3 the different values: ’full’, ’partial’ or ’delete’. An
element with a ’full’ state within a notification indicates that this element and all its child-
elements have to be exchanged by this new state information. A ’partial’ state only updates
the state for a specific element and a ’delete’ state forces to remove the complete content of
the specific element. The following elements are permissible for partial notification mecha-
nism:

• <conference-info>

• <users>

• <user>

• <endpoint>

• <sidebars-by-val>

• <sidebars-by-ref>

The conference XML schema provides a unique identification property among sub-
elements of a common parent in a key-to-sub-element relationship. This makes it possible to
use the partial notification mechanism as described above. A subscriber can discover which
sub-element it has to update by using the key identifier. A replication of information in a doc-
ument can also be prevented by using the key in a sub-element instead of repeating the hole



4 CONSISTENT CONFERENCE STATE INFORMATION 36

information again. Two type of keys are defined: ’entity’ and ’id’ of type xs:anyURI [46] in
UTF-8 encoding. A list of elements using the key property is shown below:

• <user> with key ’entity’

• <endpoint> with key ’entity’

• <media> with key ’id’

• <entry> with key ’entity’

An example for the usage of keys and ’state’ attribute could be look like this:

<conference-info>
...

<!-- sub-elements -->
<user entity="sip:oscar@sesamestreet.com" state="partial">
...

<!--more sub-elements -->
...
</user>

...
</conference-info>

A subscriber receiving this content has to change the data in its local document only for a
user element identified by sip:oscar@sesamestreet.com.

An partial overview of the XML schema for the conference event package is shown in
figure 19 with a short description of the elements:

• <conference-info>: Is the root element of the XML document.

• <conference-description>: A whole description of the multiparty like descriptive text or
subject.

• <host-info>: Information about the entity hosting the conference.

• <conference-state>: This element gives an overview of the conference state like user
count or if this multiparty is currently active.

• <users>/<user>: The <users> element serves as container for the <user> sub-
element, each describing a single participant in the conference.

• <endpoint>: This element with parent-element <user> is used to provide signaling
for sessions for a user’s multiple devices.



4 CONSISTENT CONFERENCE STATE INFORMATION 37

• <media>: Information about a single media stream between the focus and the end-
point, e.g. the SDP negotiation.

• <sidebars-by-ref>/<sidebars-by-val> and <entry>: The event package foresees the
possibility for cascading conferences inside a conference. The sidebar elements rep-
resent this feature using the <entry> element containing the sidebars conference
URI. Subscribers for a conference state information may request to an additional sub-
scription for a sidebar conference.

conference-info

conference-discription

conference-state

host-info

users

user

endpoint

media

sidebars-by-ref

sidebars-by-val

entry

entry

Figure 19: Conference event package overview



4 CONSISTENT CONFERENCE STATE INFORMATION 38

4.3 Multifocus Extensions

In contrast to traditional conferences in tightly coupled scenarios, the whole conference state
information in SDCON is spread over the focus entities. This circumstance requires a syn-
chronization among the focus peers.

The first step to approach this problem could be to distribute the conference event state
information between the various focus peers. Therefore some semantics of the conference
info XML event package needs to be changed in the application. In the case of a ’full state’
reception for example, the new element should not override the locally established state, but
rather should add this information to the available document. In this manner, all focuses
envision at least a coherent state of the conference.

The challenge for a distributed conference control, however, lies in the knowledge about
the splitting into multiple focus entities, in available background knowledge for load balancing,
scalability enhancements and node leave/failure remediation. SDCON therefore provides in
the second step corresponding information in the form of multifocus extension of the event
package for conference states. By this extension, the distributed focus peers acquire an
overview of the allocation of conference participants, their affiliation to their individual con-
trollers, the willingness of a focus to service new participants and to display the established
SIP subscription routes within the conference topology.

Figure 20 gives an overview of the additional multifocus conference information. An
explanation for each element follows below:

• <focus-states>: This element is placed directly as child of the <conference-info> root
element and serves as container for all following multifocus state information. Its XML
complex type [45] definition is focus-states-type and it is permissible for the partial
notification mechanism using the ’state’ attribute. At the first subscription, it must carry
a ’full’ state information so that the corresponding endpoint can add the conference
states information to its document. Thereafter, it is desirable to send only ’partial’
focus states information on change.

• <focus>: Each <focus> element of type focus-type represent exactly one conference
controlling peer to the conference. Because every focus in a SDCON environment is
an participant, as well, this element uses the key ’entity’ to reference to a <user>
respective <endpoint> element from the base conference info document.

• <conf-id-holder>: This boolean element indicates whether this focus entity was the
initial primary focus and is the owner of the conference URI.

• <focus-capacity>: This complex element has child elements <max-participants>
and <max-focus-references>, both of type int, describes the capacities of this
focus to avoid unsuccessful requests that could overload this peer. First, it informs



4 CONSISTENT CONFERENCE STATE INFORMATION 39

about the maximal number of participants it is willing to serve. Second, it indicates
how many direct subscriptions of remote focus peers it will accept.

• <participant>: This element represents the list of SIP user agents which are connected
to this specific focus peer. It uses the key attribute ’entity’ to reference to a <user> re-
spective <endpoint> element from the base conference info document and has no
other child elements. Because every focus peer knows at which focus all participants
are attached, this information can be used to reintegrate participants whose individual
controller had left the conference by node leave or failure.

• <next-hops>: This element serves as container for the <ref-to-focus> of type
xs:anyURI and displays to which other remote conference controllers this focus
maintains a direct subscription for the conference event package extension. Using
this information, each focus peer is able to comprehend the currently existing focus
topology and to establish a new subscription on demand to avoid a ’far’ hop distance
to the other multiparty controlling peers.

conference-info

...

focus-states

focus

conf-id-holder

focus-capacity

participant

max-participants

max-focus-references

next-hops

ref-to-focus

Figure 20: Extension for the conference event package



4 CONSISTENT CONFERENCE STATE INFORMATION 40

This extension to the conference event package is not built on the claim to be exhaustive
and the XML schema annexed A at the end of this work foresees extendability for future
requirements.



5 IMPLEMENTATION AND TECHNIQUES 41

5 Implementation and Techniques

This chapter presents an overview of the implementation for the for distributed conference
control framework designed in this work.

5.1 Language and Libraries

For the implementation of this framework, the programming language Java is used. The
characteristic not to run native one the surrounding systems, but to be executed on the Java
Virtual Machine (JVM) instead, permits the deployment on every operating system that has
a virtual machine available. For this framework, the Java Development Kit 6 (JDK) and Java
SE Runtime Environment version 1.6. is used and have been developed with the Eclipse IDE
Version 3.4.1.

For testing and measurements, this work used the scripting language Python. It provides
a comprehensive standard library, a simple and easy to understand syntax and is an ob-
ject orientated programming language which uses an interpreter to execute a pre-compiled
Python source code. An easy installation on various operating systems and the ability, that
the same source code will run across these platforms without changes, makes it a useful
tool for testing and measurements throughout this work. At state of elaboration, the Python
version 2.6.2 has been used developed in Notepad++ text editor version 4.6.

5.1.1 JAIN-SIP

The Session Initiation Protocol Java APIs for Integrated Network (JAIN) work group solution
is used in this framework as the base protocol implementation [19]. JAIN SIP is an open
source standard-conformal Java interface to SIP for desktops and server applications [27].
It fully supports the protocol requirements for standard SIP implementations defined in [39]
and includes some extensions, e.g., SIP-specific notification mechanisms or the SIP REFER
method. JAIN SIP provides methods to format and parse SIP messages, send and receive
messages, and provides an SIP transaction and dialog support. An overview of the JAIN SIP
architecture is shown in figure 21 and a code snipped for stack instantiation follows below:

1 SipFactory sipFactory = SipFactory .getInstance ( ) ;
2 sipFactory .setPathName( " gov . n i s t " ) ;
3 Properties properties = new Properties ( ) ;
4 properties .setProperty( " javax . s ip .STACK_NAME" , " Astack " ) ;
5 properties .setProperty( " javax . s ip . IP_ADDRESS" , " 127 .0 .0 .1 " ) ;
6 SipStack sipStack = sipFactory .createSipStack(properties) ;

Listing 1: JAIN SIP Stack creation



5 IMPLEMENTATION AND TECHNIQUES 42

Setup Function

SIP Listener

SIP StackSIP Privoder

createProvider()addSipListener()

createListener()
SIP Factory

getInstance()

createStack()

Figure 21: JAIN SIP architecture

The SipStack interface manages the listening endpoints and provides this associated
with one single IP address. It is instantiated by the SipFactory passing stack proper-
ties via a java.util.Properties object. The SipProvider notifies the listeners
about incoming requests and response messages, handles the SIP transactions statefully
and creates call-Ids. The SipListener is the interface for the application logic and will be
implemented by the developer.

In JAIN SIP, every message has to be created manually using header, address and mes-
sages factories prior to sending. This causes a high coding effort which makes the source
code long , but has the advantage to allow for easy protocol modifications as they are used in
SDCON. Its disadvantage derives from many unsupported SIP standard elements, e.g., no
explicit support for the isfocus tag or the Join header is implemented. During our testing
phase, it was figured out that this SIP stack sometimes did not follow the order of messages
sending requests and elongated the implementation process.

5.1.2 JAXB

For creating and parsing XML documents as needed in the event package of conference
state extensions presented earlier in this work, a Java Architecture for XML Binding (JAXB)
reference implementation was used [20]. JAXB constitutes of a framework for processing
XML document by providing a parser that creates a DOM tree of objects representing the
content and structure of a given XML. Additionally, it can marshal a variety of objects into
XML documents. For the latter task, the parser needs a list of classes for references of the
Java object representations. With the XML Java Compiler (XJC), an XML schema can be



5 IMPLEMENTATION AND TECHNIQUES 43

1 /∗
2 ∗ c lass i n s t a n t i a t i o n s and proper ty set
3 ∗ FocusStatesType . c lass i s the generated by XJC
4 ∗ /
5 ctx = JAXBContext .newInstance(FocusStatesType . class ) ;
6 marshaller = ctx .createMarshaller ( ) ;
7 marshaller .setProperty(Marshaller .JAXB_FORMATTED_OUTPUT,Boolean .TRUE) ; ←↩

marshaller .setProperty(Marshaller . ←↩

JAXB_NO_NAMESPACE_SCHEMA_LOCATION,SCHEMA_LOCATION) ;
8 unmarshaller = ctx .createUnmarshaller ( ) ;
9 /∗

10 ∗ (Un) Marsha l l i ng from stream to Object , from Object to Stream
11 ∗ /
12 fst = (FocusStatesType)unmarshaller .unmarshal(xmlStream) ;
13 marshaller .marshal(fst, statesFile) ; / / s t a t e s F i l e = XML document

Listing 2: Usage of JAXB

compiled into Java classes, where each XML element and XML type will produce one single
Java Bean. The following code snippet shows its source code of its use.

Since Java version 6, developers have to take an eye on the XJC version when compiling
the XML schema to get Java classes. The newer DOM parsers in Java standard library need
’annunciations’ at Java Beans that defines which Java class is used as root element. Two
solutions are possible, first, using a JAXB implementation version 2.0 or higher, second, add
@XmlRootElement annunciations to the Java Bean representation of the root element.
In this work, the second variate is used.

5.2 Software Design

The application implemented for this work is a hybrid of three functionalities. It can act as
a simple SIP user agent initiating calls, refer other endpoints to a multiparty and request
a notification service. If a secondary call arrives during an established two-point session,
the application could make the decision to become the focus to this multiparty session and
uses therefore its focus component as shown in figure 22. From now on, every signaling
is handled by the focus component achieving the multiparty issues. If the conference re-
mains in the limits preassigned in the ’capacity sheet’, the application continues this mode.
The capability sheet provides a coupled of values which will be queried by all application
components to decide whether they have to change their executing mode. The focus com-
ponent, e.g, queries on every incoming call the MIN_NUM_FOR_DISTRIBUTION value
which is the indicator whether it has to create a multifocus environment. This value is ≤ to



5 IMPLEMENTATION AND TECHNIQUES 44

SDCON Peer

SIP UA

Focus

SDCON 

Modul

Focus States XML

delegates

Is SDCON?

queries

lookup

SIP

Capacity sheet

Figure 22: SDCON Peer components

the MAX_PARTICIPANTS value that defines the maximum number of participants this fo-
cus wants to service. On matching the MIN_NUM_FOR_DISTRIBUTION, the focus com-
ponent will instantiate the SDCON module that immediately creates a multifocus states XML
document using the values from the capacity sheet. The SDCON module has access to
the list of SIP dialogs maintained from the focus and uses it to retrieve candidates to be
requested for multifocus capabilities. Until reaching the MAX_PARTICIPANTS value, the
primary focus peer still accepts calls and will notify its secondary focus about these events.
On reaching the MAX_PARTICIPANTS value, all incoming calls be delegated to secondary
focuses by making a lookup in the local focus states XML document to retrieve a less loaded
node in the distributed environment.

A SDCON peer executing in SIP user agent mode will query its capability sheet on every
incoming SIP SUBSCRIBE whether this request demands to change into multifocus mode.
If true, the SIP user agent becomes a focus, will instantiate the SDCON module and uses
the content of the subscription to create its focus states document. Thereafter, it generates a
partial <focus-states> element including the values from the capacity sheet, adds this
to its own states document and signals it to the originator focus peer via SIP SUBSCRIBE.

To represent this component architecture in source code, the SIP user agent component
implements the JAIN SIP SipListener interface and registers at the SIP stack to retrieve
SIP events. These events are thrown by the stack by incoming requests, responses, on dialog
or transaction terminations and on I/O exceptions. When a the user agent has to convert to
a focus, it instantiates a SipFocus object and delegates all further SIP messages to it.
The SipFocus class also also implements the SipListener interface. Once, to have
an similar source code structure for event handling, twice, because a user can choose start
this application already in focus mode.

Displayed below in listing 3 is a sample method that has to be implemented by develop-



5 IMPLEMENTATION AND TECHNIQUES 45

ers using SipListener interface. This method taken from the SipClient Java class,
dispatches incoming SIP requests for further processing. Line 6 shows the delegation of
messages when this peer act in focus mode. Line 11 displays the query that decides whether
this peer has to change to a conference controller by looking up the capacity sheet.

1 @Override
2 public void processRequest(RequestEvent evt) {
3 Request req = evt .getRequest ( ) ;
4 String method = req .getMethod ( ) ;
5 ServerTransaction st = evt .getServerTransaction ( ) ;
6 i f (isFocus) { / / a l l requests w i l l be delegated to the focus
7 focus .processRequest(evt) ;
8 return ;
9 }

10 i f (method .equals(Request .INVITE) ) {
11 i f (CapacitySheet .makeConference ( ) &&!isFocusRequest(evt) ) {
12 processConferenceInitiation(evt) ;
13 } else {
14 processInvite(req, st) ;
15 }
16 }
17 else i f (method .equals(Request .ACK) ) {
18 processAck(req,st) ;
19 }
20 else i f (method .equals(Request .NOTIFY) ) {
21 processNotify(req,st) ;
22 }
23 else i f (method .equals(Request .REFER) ) {
24 processRefer(req,st) ;
25 }
26 else i f (method .equals(Request .SUBSCRIBE) ) {
27 processSubscribe(evt) ;
28 }
29 }

Listing 3: Request dispatching

Because every signaling between the focus peers is done via notifications and subscrip-
tions, the focus component uses the SDCON module only for messages of these types. An
example is shown in the following code snippet 4 out of the SipFocus implementation. On
receiving a SIP NOTIFY the SDCON module disFocus will be ask whether this request
belongs to multifocus issues, and if true, to handle these requests like shown in lines 4,6 and
9.



5 IMPLEMENTATION AND TECHNIQUES 46

1 else i f (method .equals(Request .NOTIFY) ) {
2 SubscriptionStateHeader substate =(SubscriptionStateHeader)req . ←↩

getHeader(SubscriptionStateHeader .NAME) ;
3 i f (disFocus != nul l ) { / / a d i s t r i b u t e d conference?
4 i f (disFocus .isConferenceRequest(req) ) {
5 i f (substate .getState ( ) .equals(SubscriptionState .PENDING) ) {
6 disFocus .sendOK(req, st) ;
7 }
8 else i f (substate .getState ( ) .equals(SubscriptionState .ACTIVE) ←↩

) {
9 disFocus .processConfRequest(req, st) ;

10 }
11 }
12 else {
13 /∗ other case ∗ /
14 }
15 }
16 }

Listing 4: Processing notifications

A lookup in the focus states XML document by the SDCON module, retrieves the SIP
URI of a less loaded focus peer. The dialog management service class Sessions then
returns the corresponding SIP dialog to this URI as shown in the next code snippet 5. An
incoming request that would overload this peer will be delegated to the elected remote focus.
A Dialog object includes a data structure carrying all necessary information to create a
new SIP request and delegating the call.

1 Dialog delegatee = Sessions .getSDCONDialog(FocusStates .getDelegate ( ) ) ;

Listing 5: Focus States lookup operation

5.3 Implementation Progress

This section presents relevant excerpts of the implementation for distributed conference con-
trol.

5.3.1 Call Delegation

Within call delegation, there exit two different variants that have to be considered at the im-
plementation level. First, the delegating focus peer has a subscription dialog to the remote
focus, or, second, it knows the remote peer only from its local focus states document. This



5 IMPLEMENTATION AND TECHNIQUES 47

decision and the response operation for accepting a REFER request are shown in listing
6. This methods is used at the SDCON module which have obtained the Request and
the ServerTransaction objects from focus component. The method extracts the con-
ference URI from the request and afterwards, checks if this request was of type REFER
respectively INVITE. A REFER requests needs to be responded by 202 ACCEPTED mes-
sage and needs notification indicating, that this request is pending. Because request events
will be thrown asynchronous from the SIP stack, the application has to store the request and
transaction objects for later on usage. The statement FocusStates.getDelegate()
makes a lookup for a potential focus peer like explained in an anterior section. The Ses-
sion service class Session then tries to get a saved dialog for the result SIP URI from
the lookup. If successful, the delegation can be done within an existing subscription dialog,
otherwise a complete new request has to be created.

1 public void delegateToNext(Request req, ServerTransaction st) {
2 t ry {
3 SipURI conferenceURI = (SipURI) ( (ToHeader)req .getHeader(ToHeader ←↩

.NAME) ) .getAddress ( ) .getURI ( ) ;
4 i f (st == nul l )
5 st = sipProvider .getNewServerTransaction(req) ;
6 / / ACCEPT and N o t i f y r e f e r Request
7 i f (req .getMethod ( ) .equals(Request .REFER) )
8 acceptedNotify(req, st) ;
9 / / s to re o r i g i n a l Request and Transact ion

10 originalRequestQueue .offer(req) ;
11 originalServTransQueue .offer(st) ;
12 Dialog subscribeDialog = Sessions .getDCONDialog(FocusStates . ←↩

getDelegate ( ) ) ;
13 i f (subscribeDialog != nul l ) {
14 Address conferenceAddress = addressFactory .createAddress( ←↩

conferenceURI) ;
15 delegateInnerDialog(req, st , subscribeDialog, ←↩

conferenceAddress) ;
16 }
17 else { / / I know the Focus but got no SDCON Dialog to him
18 delegateOuterDialog(req, st , FocusStates .getDelegate ( ) , ←↩

conferenceURI) ;
19 }
20 } catch (Exception e ) {
21 e .printStackTrace ( ) ;
22 }
23 }

Listing 6: Delegation dispatching



5 IMPLEMENTATION AND TECHNIQUES 48

Listing 7 shows the creation of a REFER request, that will delegate a call to a re-
mote focus peer and takes an example how a request is build in JAIN SIP with an exist-
ing dialog object. This code snipped could be executed as a direct result from the pre-
views example 6 as the Session service object returned a Dialog object for the SIP
URI obtained by the lookup operation. To create a new REFER message, the application
again has to ascertain whether the original request was a dial-in operation or if a dial-out
was foreseen to set the correct SIP URI into the Refer-To header field. The statement
subscribeDialog.createRequest(Request.REFER); creates a new request
using the existing Dialog object. Only the Refer-To header field as to be added manually
to accomplish the new request sent the remote focus peer. Finally, the local data structure
for this subscription dialog has to be updated as shown in line 16.

1 private void delegateInnerDialog(Request req, ServerTransaction st , ←↩

Dialog subscribeDialog, Address conferenceAddress) {
2 t ry {
3 / / BEGIN a new Refer
4 ToHeader refToHeader = headerFactory .createToHeader( ←↩

conferenceAddress, subscribeDialog .getRemoteTag ( ) ) ;
5 ReferToHeader referToHeader = nul l ;
6 i f (req .getMethod ( ) .equals(Request .REFER) )
7 referToHeader = (ReferToHeader) req .getHeader(ReferToHeader . ←↩

NAME) ;
8 else i f (req .getMethod ( ) .equals(Request .INVITE) )
9 referToHeader = headerFactory .createReferToHeader ( ( (FromHeader ←↩

)req .getHeader(FromHeader .NAME) ) .getAddress ( ) ) ;
10 ContactHeader refContactHeader = headerFactory . ←↩

createContactHeader(hostNameAddress) ;
11 Request forwardsRefer = subscribeDialog .createRequest(Request . ←↩

REFER) ;
12 forwardsRefer .addHeader(referToHeader) ;
13 / / END c rea t i ng new Refer
14 ClientTransaction ct = sipProvider .getNewClientTransaction( ←↩

forwardsRefer) ;
15 ct .sendRequest ( ) ;
16 Sessions .updateSDCONDialog(subscribeDialog) ;
17 } catch (Exception e ) {
18 e .printStackTrace ( ) ;
19 }
20 }

Listing 7: Delegation to known focus



5 IMPLEMENTATION AND TECHNIQUES 49

5.3.2 Creating Focus States

The representation for XML documents in Java Bean objects gain more importance in the
Java community. In the areas of Interface Definition Language (IDL) and especially for Web
services often a source code representation in a neutral format is eligible. From out the
second area a coupled of libraries have been developed to serve this market. The sample
code snippet shown in listing 8 shows the usage of Java Beans created by the XJC tool from
the JAXB reference implementation. This method taken from the FocusStates service
object to creates a FocusStatesType object that reflects the <focus-states> root
element from the conference state extension. Because this object has Java Bean character,
it uses setter and getter methods to handle its values. For sub-elements that are defined for
a cardinality 0..*, there exists no setter method. To add new elements to such an element,
the getter methods returns a list implementing java.util.List which provides its own
add() method like shown in line 24.

1 private s t a t i c FocusStatesType createFocusStatesType(StateType state, ←↩

SipURI focusEntity,
2 Integer maxParti, Integer maxRef, SipURI [ ] participant,SipURI ←↩

refTo) throws XMLStateException {
3 FocusStatesType fst = new FocusStatesType ( ) ;
4 fst .setState(state) ;
5 i f (focusEntity == nul l )
6 throw new XMLStateException( " P a r t i a l s t a t e makes no sense ←↩

wi thou t FocusType " ) ;
7 FocusType ft = new FocusType ( ) ;
8 ft .setEntity(focusEntity .toString ( ) ) ;
9 ft .setState(state) ;

10 i f (maxParti != nul l | | maxRef != nul l ) {
11 FocusCapacityType fct = new FocusCapacityType ( ) ;
12 fct .setState(state) ;
13 i f (maxParti != nul l )
14 fct .setMaxParticipants(maxParti) ;
15 i f (maxRef != nul l )
16 fct .setMaxFocusReferences(maxRef) ;
17 ft .setFocusCapacity(fct) ;
18 }
19 i f (participant != nul l ) {
20 for ( i n t i = 0; i < participant .length ; i++) {
21 ParticipantsType pt = new ParticipantsType ( ) ;
22 pt .setEntity(participant [i ] .toString ( ) ) ;
23 pt .setState(state) ;
24 ft .getParticipants ( ) .add(pt) ;
25 }



5 IMPLEMENTATION AND TECHNIQUES 50

26 }
27 i f (refTo != nul l ) {
28 GraphType gt = new GraphType ( ) ;
29 gt .setRefToFocus(refTo .toString ( ) ) ;
30 gt .setState(state) ;
31 ft .getGraph ( ) .add(gt) ;
32 }
33 fst .getFocus ( ) .add(ft) ;
34 return fst ;
35 }

Listing 8: Creating of a focus states document

5.3.3 Updating Focus States

An imported aspect for distributed conferencing is to provide a consistent state to the overall
conference in the local focus states document at each peer. To achieve this issue on receiv-
ing an inet-multifocus-ci-ext+xml event, the method setPartial() from the
FocusStates service class, shown in listing 9, is responsible. In the simplest case, a new
focus states information is of type ’full’. It then can override the locally state information by the
newer one. If not, this method iterates over each element and its sub-elements comparing it
with the received states information and updates it on detecting differences. If an element is
of state ’delete’ it must remove this element for the document. Finally, the the focus state is
updated and a file copy will be created like shown in line 74.

1 public s t a t i c void setPartial(FocusStatesType partial) {
2 boolean isEstablishedFocus = fa lse ;
3 i f (partial .getState ( ) == StateType .FULL) {
4 t ry {
5 setFullStates(partial) ;
6 } catch (XMLStateException e) {
7 e .printStackTrace ( ) ;
8 }
9 return ;

10 }
11 FocusStatesType localStats = (FocusStatesType)partial .clone ( ) ;
12 FocusType newFocusState = localStates .getFocus ( ) .get( 0 ) ;
13 newFocusState .setState(StateType .FULL) ;
14 i f (focusStates != nul l ) {
15 for ( i n t i = 0; i < focusStates .getFocus ( ) .size ( ) ; i++) {
16 i f (newFocusState .getEntity ( ) .equals(
17 focusStates .getFocus ( ) .get(i ) .getEntity ( ) ) ) {



5 IMPLEMENTATION AND TECHNIQUES 51

18 isEstablishedFocus = true ;
19 FocusType oldFocusState = focusStates .getFocus ( ) .get(i ) ;
20 / / BEGIN ConfIDHolder Set
21 oldFocusState .setConfIdHolder(newFocusState
22 .isConfIdHolder ( ) ) ;
23 / / END ConfIDHolder Set
24 i f (newFocusState .getFocusCapacity ( ) != nul l ) {
25 oldFocusState .setFocusCapacity(newFocusState
26 .getFocusCapacity ( ) ) ;
27 } / / END IF Capaci ty check
28 i f (newFocusState .getGraph ( ) != nul l ) {
29 for (GraphType newGraph : newFocusState .getGraph ( ) ) {
30 i f (newGraph .getState ( ) .equals(StateType .DELETED) ) {
31 List<GraphType> oldGraphs = oldFocusState .getGraph ( ) ;
32 for ( i n t j = 0; j <= oldGraphs .size ( ) ; j++) {
33 i f (oldGraphs .get(j ) .getRefToFocus ( ) .
34 equals(newGraph .getRefToFocus ( ) ) ) {
35 oldFocusState .getGraph ( ) .remove(j ) ;
36 }
37 }
38 } else {
39 i f ( !oldFocusState .getGraph ( ) .contains(newGraph) &&
40 newGraph .getRefToFocus ( ) != nul l ) {
41 newGraph .setState(StateType .FULL) ;
42 oldFocusState .getGraph ( ) .add(newGraph) ;
43 }
44 }
45 }
46 } / / END IF Graph check
47 i f (newFocusState .getParticipants ( ) != nul l ) {
48 for (ParticipantsType newParticipant : newFocusState . ←↩

getParticipants ( ) ) {
49 i f (newParticipant .getState ( ) .equals(
50 StateType .DELETED) ) {
51 List<ParticipantsType> oldParticipants = oldFocusState
52 .getParticipants ( ) ;
53 for ( i n t j = 0; j < oldParticipants .size ( ) ; j++) {
54 i f (oldParticipants .get(j ) .getEntity ( )
55 .equals(newParticipant .getEntity ( ) ) ) {
56 oldParticipants .remove(j ) ;
57 }
58 }
59 } else {



5 IMPLEMENTATION AND TECHNIQUES 52

60 i f ( !oldFocusState .getParticipants ( ) .contains( ←↩

newParticipant) ) {
61 newParticipant .setState(StateType .FULL) ;
62 oldFocusState .getParticipants ( ) .add(newParticipant) ;
63 }
64 }
65 }
66 } / / END IF P a r t i c i p a n t s check
67 } / / END IF E n t i t y Check
68 } / / END FOR Focus s e l e c t
69 i f ( !isEstablishedFocus) {
70 focusStates .getFocus ( ) .add(newFocusState) ;
71 }
72 } / / END IF focus s ta tes
73 t ry {
74 marshaller .marshal(focusStates, statesFile) ;
75 } catch (Exception e ) {
76 e .printStackTrace ( ) ;
77 }
78 sortFocusStates ( ) ;
79 } / / END METHOD s e t P a r t i a l

Listing 9: Updating the focus states

5.3.4 Application appearance

At last, a simple graphical user interface (GUI) has been developed for testing, debugging
and representative purposes 23. It supports all functionalities shown in the previous section
and has been created with the Java widget toolkit Swing which makes it easy portable to
other systems without an installation.



6 MEASUREMENTS AND EVALUATION 53

Figure 23: SDCON Peer GUI

6 Measurements and Evaluation

This chapter demonstrates the attained functionalities as a proof of concept and presents two
measurements that display the base performance and scalability for distributed conference
control.

6.1 Dial-In Operation

6.1.1 Measurement Setup

The first presented measurement analyzes the signaling delay for callers willing to partici-
pate in a conference. This dial-in scenario operates by sending a SIP INVITE requests to
the conference URI. These measurements were performed in evaluation mode using three
physical endpoints that host multiple SDCON applications, each emulating a single partic-
ipant by using distinct ports. The schematic measurement setup is displayed in figure 24.
The primary focus node and a couple of participants connected to it are placed on a single
system. A number of secondary focus nodes and clients connected to them are placed on
other devices. In the real scenario, it have been instantiated 51 SDCON nodes divided onto
six peers running in focus mode and 45 executed as standard SIP UA. Every focus node was



6 MEASUREMENTS AND EVALUATION 54

parametrized to accept 10 incoming calls and to initiate a focus discovery operation after
accepting the 9th call.

The topology shown in figure 24 reflects the organic build-up during measurements. The
first two calls where sent to the user agent’s URI which then changes to focus execution
mode by creating the conference URI, and re-inviting the previously accepted user agent to
the multiparty session. Thereafter, every new instantiated UA calls the conference URI which
will be routed to the primary focus. As it reaches the MIN_NUM_FOR_DISTRIBUTION
threshold, it initiates a focus discovery among the currently connected participants. After
accepting another incoming call, it reached its predefined limit of service calls and delegates
all further calls to the secondary focus by sending SIP REFER requests as explained in
section 3.4.2. As soon as the secondary focus also reaches its maximum capacity, it likewise
performs a focus discovery. At this point, there are three controlling nodes, two of them fully
booked, and one willing to service 10 more participants. Note that the focus peers are aware
of this conference status by exchanging the synchronization messages displayed in figure 24
by the dashed lines. Consequently, further requests received at the conference URI will be
delegated directly to the recent discovered focus with free capacities. To avoid long routes
and synchronization overhead, the primary focus subscribes to the multifocus conference
event package extension at the recently discovered secondary focus. In this scenario, a star
topology for call delegations and a composition of ring and star topology for synchronization
messages is built.

6.1.2 Measurement Results

The measurement results displayed in table 1 represent the time for a single participant to
establish a SIP dialog with a controlling entity. The first column presents the measurements
for the distributed conferencing scenario as described above. The next two columns are
measurements extracted from the work of Cho et all [9]. The ’Centralized’ column shows
the signaling delay times for traditional tightly coupled conferences using a single point of
control. The ’Hierarchical’ column represent the measurements for the signaling delay in the
policy-based distributed management architecture for a large scale enterprise conferencing
elaborated by Cho et all.



6 MEASUREMENTS AND EVALUATION 55

Primary Focus

Secondary Focus

Secondary Focus

Secondary Focus

1..n

1..n

1..n

1..n

Incoming Calls

Call delegation

Synchronizing

Figure 24: Calling the conference URI

Because the conditions in terms of absolute performance delays, i.e., implementation
environment, processing time, network latencies etc., for both measurements were not the
same, the SDCON measurement results have been normalized to the Cho at all ratings.
The centralized measurement values were used as reference numbers for normalizing the
absolute end-to-end delays. A SDCON focus serves as central point of control, like in the
centralized architecture, until it reaches its limits. All SDCON absolute numbers are corre-
spondingly scaled by a coefficient

c =
∑

n
n=0

xci
xdi

n
c = 1,135

to achieve a realistic comparison. The SDCON emulation measurement results are showing
the average delay time obtained from 20 independent runs.



6 MEASUREMENTS AND EVALUATION 56

Participants # SDCON /ms Centralized/ms Hierarchical/ms
1 53 51 110
5 51 50 108
10 53 51 110
15 90 50 108
20 91 52 110
25 95 50 108
30 95 50 120
35 94 50 123
40 93 51 130
45 85 50 160
50 93 52 175

Table 1: Measurement results for SIP dialog establishment

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0
0

2 5
5 0
7 5

1 0 0
1 2 5
1 5 0
1 7 5
2 0 0
2 2 5
2 5 0

Av
era

ge
 Si

gn
alin

g D
ela

y [
ms

]

P a r t i c i p a n t s  [ # ]

 F u l l y  D i s t r i b u t e d
 H i e r a r c h i c a l
 C e n t r a l i z e d

C a p a c i t y  o f  a  s i n g l e  f o c u s

Figure 25: Signal Delay Average for SIP Invite Requests



6 MEASUREMENTS AND EVALUATION 57

6.1.3 Evaluation

These three measurement results are plotted in figure 25. As supposed, the test results
for the centralized conferencing model keep a stable amount around 50ms per dialog estab-
lishment. The hierarchical approach by Cho et all begins at an amout about 110ms, keeps
it stable until reaching 30 participants, and afterwards slightly increases to an amount of
170ms signaling delay. The SDCON ratings, denoted as ’Fully Distributed’, commence with
an amount about 52ms. The signal delays increase to an amount of 90ms for every new
INVITE request after the 10th participation and remain constant in this band.

• Centralized Conferencing:

The comparatively short measurement results for centralized conferencing originate
from the direct connectivity to the focus node. A SIP INVITE request will be directly
processed and responded. Because the amount for signaling do not require an high
processing effort for focus entities, the time delay will remain stable. The issue for a
centralized conference server arises by the costs for media mixing, that has to be pro-
vided simultaneous and the risk to be the single point of failure on server malfunction.

Taken all values from the centralized measurement an signaling delay average with:

x̄ =
n

∑
n=0

xi

n

x̄ = 50,58ms

will be calculated causing a variance with:

v = ∑
n
n=0(xi− x̄)2

n−1

v = 0,98

with standard deviation with:
σx =

√
Var(X)

σx = 0,99

These results illustrate the advantage of such a conferencing server model to serve a
stable signaling to its clients with short delay times.



6 MEASUREMENTS AND EVALUATION 58

• Hierarchical Conferencing:

Two different primary/regional focus topologies have been analyzed, a full mesh and a
tree built, merging the results into one graph. The ratings of delay time when partici-
pants join a conference in the ’Hierarchical’ are higher than in the centralized architec-
ture. The authors do not explicitly comment about this, but it can be supposed that the
higher effort of this architecture rely from the permission requests to the primary focus
before a participants can join a conference. The continuously increasing delay is pro-
duced from following the cascade of regional focuses and mixer administration, as well
as the participants reassignment to their regional focus in this distributed architecture
[9].

The signaling delay average for to join a conference in an hierarchical environment
with

x̄ = 123,04ms

is more than double to the centralized architecture. This disadvantage will be compen-
sated by a better scaling in media distribution to the conference members. Multiple
focuses control multiple mixer server that will balance the media distribution effort per
each mixing node. The average mixing count, a size to show how many media streams
per participants are needed in at a single media distributor, increases linearly in a cen-
tralized server. In contradiction the load at a single mixer in the hierarchical system
remains stable.

• Scalable Distributed Conferencing:

This measurement have to be split into two operating modes during the conferencing
process. First, the signaling delay while the conference where maintained by only one
primary focus, and second, as multiple conference controllers are incorporated. As
long as the number of members is≤ 10, only one single focus is needed and operates
as it would be a traditional centralized conference architecture. Hence, the measure-
ment ratings are corresponding to those of the centralized conferencing architecture
with an average:

x̄ = 49,54ms

with a variance of:
v = 3,35

and a standard deviation with:
σ = 1,83

The larger standard deviation in comparison to the centralized may result from fluctu-
ating laboratory conditions where these ratings were made. The data packages from a
participant are transmitted via a switch, that is frequently in use by other laboratories.



6 MEASUREMENTS AND EVALUATION 59

A second reason arises from the physical location of the focus peers to its correspond-
ing clients. In most cases, the focus and its clients are located at the same device, but
in some cases they are not because of the organic build of the conference topology.
This causes one more network routing step between those focuses and their client.

For the measurements in the distributed operating mode, the following calculation re-
sults were obtained: A signaling delay average with:

x̄ = 90,25ms

with a variance of:
v = 8,33

that due to a standard deviation of:

σ = 2,89

These calculations results that the signaling delay is higher than in the centralized
architecture. A lookup operation and one more routing step is needed to invite a new
participant to the multiparty session.

In contrast to the hierarchical architecture the average to participate a conference re-
mains constant. Independent from the underlying topology and conference size, a call
delegation will be performed directly to the focus peers of free capacities. In the ap-
proach by Cho at all, a call delegation will be routed throughout all intermediate focus
entities, e.g., in a tree topology lgN routing steps are needed, with N as the number of
focus peers. The effort for assure the consistent and coherent conference status that
offer the SDCON’s lookup mechanism, does not affect the participations because they
are achieved asynchronous. The high standard deviation can be caused by non-ideal
laboratory conditions as explained above.

6.2 Dial-Out Operation

6.2.1 Measurement Setup

The second measurements were performed to analyze the average signaling delay for the
dial-out operation. In detail, a time stamp was set whenever a conference member sends
a SIP REFER to its focus peer, and stops the time as the INVITE request reaches the re-
ferred callee. This measurement was emulated on a single physical machine performing 20
independent repetitions. The schematic measurement setup is shown in figure 26. For this
experiment 53 SDCON nodes have been instantiated, six as focus peers and 47 were run-
ning in standard SIP user agent mode. Like in the previous measurement, the focus capacity
for serving clients have been adjusted to 10 participants with the demand to achieve a focus



6 MEASUREMENTS AND EVALUATION 60

Primary Focus

Secondary Focus Secondary Focus

REFER

INVITE

First Dial-Out

Operation

Delegating 

Refer

Dial-Out

Request

Figure 26: Referring new Participants

discovery on accepting the 9th call. To approximate network routing steps, a delay of 10ms
per hop was added to the local measurements and like in the dial-in scenario, the measure-
ment results where normalized to the centralized results for have a better comparison.

The behavior of the SDCON node were the following:

• 1. Peer: Startup and registering at its URI at a registrar

• 2. Peer: as 1. Peer and sending SIP INVITE to the 1. peer

• 3. Peer: Startup and register, also inviting the 1. peer. Because this invite causes the
1. peer to initiate the conference like described in section 2.2.2, the 3. Peer will be
send a new INVITE towards the conference URI. Thereafter, it requests the focus peer
to enforce the first dial-out operation the 4. peer sending SIP REFER.

• 4.-52. Peer: Startup and register. These peers are waiting for the focus’s invitation to
the conference and as achieved, they request the focus to invite the next participant.

• Last Peer: Just startup/register and waiting to be invited.



6 MEASUREMENTS AND EVALUATION 61

Participants # Two-hop delay/ms
4 44,83
10 46,33
16 43,72
22 43,38
28 48,31
34 44,12
40 43,67
46 45,75
52 42,74

Table 2: Two hop dial-out Operation

Participants # Three-hop delay/ms
3 56,6
11 62,26
20 62,6
29 61,12
38 60,19
47 60,98

Table 3: Three hop dial-out Operation

6.2.2 Measurement Results

Any focus peer that has not reached its MAX_PARTICIPANTS value, will accept the dial-out
requests and directly invite the referee. Because this operation causes two routing steps it
will be called ’Two-hop dial-out’. These results are listed in table 2. After the requested focus
is fully booked, it will delegate the refers to a previews discovered focus with free capacity.
Because this operation has three routing steps. it will be called ’Three-hop dial-out’. The
measurements for this flows are shown in table 3.

In comparison to the previously demonstrated dial-in scenario, the advantage of dis-
tributed conference management becomes even more significant. A SIP REFER to a focus
will be sent along the dialog route to the individual focus peers in contrast to an INVITE
request to the conference URI, which always will firstly be routed through the primary fo-
cus. This behavior discharges the primary focus and for scenarios as described above. The
majority of dial-out requests will be performed immediately as a Two-hop dial-out by a con-
ference member’s corresponding focus peer.

6.2.3 Evaluation

The measurement results are plotted in figure 27 and show the signaling delay for two-hop
and three-hop dial-out. As expected, both scenarios exhibit a constant delay, whereas a two-
hop dial-out needs about 45ms and at every 10th dial-out a three-hop action needs about
61ms. An unexpected behavior is achieved by the 3rd participant’s dial-out operation, which’s
duration is about 10ms longer than the other two-hop dial-outs. It is the first time that the focus
receives a REFER request and because of this, it is expected that the underlying SIP stack
has to create data structures at the implementation level that elongate the processing time.
Another unexpected behavior can be noticed at the last two-hop result before a three-hop
dial-out. The delays are enhanced by an amount of 2ms as compared to the other immediate



6 MEASUREMENTS AND EVALUATION 62

5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0
0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

 

Av
era

ge
 Si

gn
alin

g D
ela

y [
ms

]

P a r t i c i p a n t [ # ]

 D i a l - o u t  D e l a y

Figure 27: Signaling Delay for Dial-out Operation

refer operations. This effect again can be accounted to an additional data structure creation.
At receiving the 9th REFER request, the focus has to memorize the corresponding refer
dialog and corresponding server transaction for later discovery operations. This operation
may cause this delay response behavior.

Taking these values and calculating them, the following results ensue for a two-hop dial-
out:

A signaling delay average with:

x̄ =
n

∑
n=0

xi

n

x̄ = 44,4ms

will be calculated causing a variance with:

v = ∑
n
n=0(xi− x̄)2

n−1

v = 1,42

with standard deviation with:
σx =

√
Var(X)

σx = 1,19



6 MEASUREMENTS AND EVALUATION 63

These result display the constant character of a dial-out operation and sign the thesis
of the previous measurement, which was executed on multiple physical devices, that the
variabilities of the laboratories network and the different focus-to-client locations are causing
a worse standard deviation.

Using the data values of the three-hop dial out, following results arise: A signaling delay
average with:

x̄ = 63,43ms

with a variance of:
v = 0,97

that due to a standard deviation of:
σ = 0,99

The signaling delay average with about are 20ms longer than in the two-hop scenario
originate from need of one more routing step and processing time at the remote focus peer.
The result of the standard deviation emphasizes the stable character of such dial-out sce-
narios provided by the SDCON architecture.

In summary, dial-out operations seem to have an constant character and need shorter
delay times, than dial-in requests to a distributed conference.



7 CONCLUSIONS AND OUTLOOK 64

7 Conclusions and Outlook

This work presented an approach for large scale, distributed conference control in an ad hoc
scenario using the Session Initiation Protocol in a peer-to-peer fashion. This approach re-
lies on splitting the role of identifier and locator of the conference URI in a transparent and
standard compliant fashion, and an extension for the event package for conference state at
the application layer. The developed protocol schema has designed call flows for conference
initiation, a way to discover potential controllers among conference members, and a call del-
egation mechanism that distributes conference management functions among the multiparty
controllers. Such a distributed architecture addresses two challenges in conferencing. First,
it establishes a base implementation for a distributed mixer topology, where the costs of
media processing can be balanced among multiple entities. Second, it eliminates the sin-
gle point of failure problem in traditional SIP conferencing by offering a coherent conference
state information at each focus peer that can be used to compensate node failures.

These protocol modifications and conference operations were tested by using the
standard-compliant SIP stack implementation JAIN SIP and provide a proof of concept for
the call flows presented during this work as well as of the protocol conformal properties.
The technique for conference control splitting was adopted by SIP user agents although they
were unaware of this distributed environment.

The performance measurements displayed the operational aspects of the distributed con-
ference management with about 50 participants by analyzing each in a dial-in and dial-out
scenario.The signaling delays tend to remain in constant character in both scenarios.These
results are in contrast to other distributed conferencing architectures that admit increasing
delay times with a growing number of joining participants.

In future work the analysis of the protocol scheme should be extended and optimiza-
tions for this distributed system should be designed. The coherence of the conference state
information at all controlling peers is a fundamental basis for performing distributed confer-
encing. Its carefully investigation and improvement will be a major task. An imported work to
make this schema serviceable for a general consumer which’s location often resides behind
Internet-provider-adjusted router, a method for Network Address Translation (NAT)-traversal
should be deployed. Therefore, it could be suggested to create a connectivity to the P2PSIP
overlay network to perform protocols like STUN or ICE to traverse NATs and firewalls.

To display the full function of SDCON schema, an adoption to a peer-to-peer media
streaming environment should be further designed. On may think of scenarios with multiple
heterogeneous devices like smartphones, consumer computers and server systems partici-
pating one conference, but controlled by and served with media streams by various distinct
endpoints. These roles in a conference could be adaptively chosen according to their capa-
bilities and may seamlessly serve the multiparty approach.

Scalable, distributed conference control in tightly coupled SIP scenarios is still an exper-



7 CONCLUSIONS AND OUTLOOK 65

imental work, but demonstrates the possibility to perform largely scaling conferences in an
infrastructure-independent architecture.



A APPENDIX 66

A Appendix

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema

targetNamespace="http://www.example.org/inet-ci-multifocus-ext"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.example.org/inet-ci-multifocus-ext"
elementFormDefault="qualified" >
<xs:element name="focus-states" type="focus-states-type"></xs:element>
<xs:complexType name="focus-states-type">

<xs:sequence>
<xs:element name="focus" type="focus-type"

maxOccurs="unbounded" minOccurs="0">
</xs:element>
<xs:any namespace="##other" processContents="lax"></xs:any>

</xs:sequence>
<xs:attribute name="state" type="state-type"></xs:attribute>
<xs:anyAttribute namespace="##other" processContents="lax"></xs:anyAttribute>

</xs:complexType>
<xs:complexType name="focus-type">

<xs:sequence>
<xs:element name="conf-id-holder" type="xs:boolean"

maxOccurs="1" minOccurs="0">
</xs:element>
<xs:element name="focus-capacity" type="focus-capacity-type"

maxOccurs="1" minOccurs="0">
</xs:element>
<xs:element name="participants" type="participants-type"

maxOccurs="unbounded" minOccurs="0">
</xs:element>
<xs:element name="graph" type="graph-type"

maxOccurs="unbounded" minOccurs="0">
</xs:element>
<xs:any namespace="##other" processContents="lax"></xs:any>

</xs:sequence>
<xs:attribute name="entity" type="xs:anyURI"></xs:attribute>
<xs:attribute name="state" type="state-type"></xs:attribute>
<xs:anyAttribute namespace="##other" processContents="lax"></xs:anyAttribute>

</xs:complexType>
<xs:complexType name="focus-capacity-type">

<xs:sequence>
<xs:element name="max-participants" type="xs:int"

maxOccurs="1" minOccurs="0">
</xs:element>
<xs:element name="max-focus-references" type="xs:int"

maxOccurs="1" minOccurs="0">
</xs:element>
<xs:any namespace="##other" processContents="lax"></xs:any>

</xs:sequence>
<xs:attribute name="state" type="state-type"></xs:attribute>
<xs:anyAttribute namespace="##other" processContents="lax"></xs:anyAttribute>

</xs:complexType>



A APPENDIX 67

<xs:complexType name="participants-type">
<xs:sequence>

<xs:any namespace="##other" processContents="lax"></xs:any>
</xs:sequence>
<xs:attribute name="entity" type="xs:anyURI"></xs:attribute>
<xs:attribute name="state" type="state-type"></xs:attribute>
<xs:anyAttribute namespace="##other" processContents="lax"></xs:anyAttribute>

</xs:complexType>
<xs:complexType name="graph-type">

<xs:sequence>
<xs:element name="ref-to-focus" type="xs:anyURI"

maxOccurs="1" minOccurs="0">
</xs:element>
<xs:any namespace="##other" processContents="lax"></xs:any>

</xs:sequence>
<xs:attribute name="state" type="state-type"></xs:attribute>
<xs:anyAttribute namespace="##other" processContents="lax"></xs:anyAttribute>

</xs:complexType>
</xs:schema>

Figure 28: Inet Multifocus Conference Information Extension XML Schema



REFERENCES 68

References

[1] The Skype homepage. http://www.skype.com, 2009.

[2] F. Audet. The use of the SIPS URI Scheme in the Session Initiation Protocol (SIP).
Internet Draft – work in progress 09, IETF, Nov. 2008.

[3] M. Barnes, C. Boulton, and O. Levin. A Framework for Centralized Conferencing. RFC
5239, IETF, June 2008.

[4] S. A. Baset and H. Schulzrinne. An analysis of the skype peer-to-peer internet telephony
protocol. Technical report, IETF, sep 2004.

[5] D. Bryan. Concepts and Terminology for Peer to Peer SIP. Internet Draft – work in
progress 00, IETF, July 2007.

[6] D. Bryan, P. Matthews, E. Shim, D. Willis, and S. Dawkins. Concepts and Terminology
for Peer to Peer SIP. Internet Draft – work in progress 02, IETF, July 2008.

[7] G. Camarillo. The Internet Assigned Number Authority (IANA) Header Field Parameter
Registry for the Session Initiation Protocol (SIP). RFC 3968, IETF, Dec. 2004.

[8] G. Camarillo, J. Ott, and K. Drage. The Binary Floor Control Protocol (BFCP). RFC
4582, IETF, Nov. 2006.

[9] Y.-H. Cho, M.-S. Jeong, J.-W. Nah, W.-H. Lee, and J.-T. Park. Policy-Based Distributed
Management Architecture for Large-Scale Enterprise Conferencing Service Using SIP.
Selected Areas in Communications, IEEE Journal on, 23(10):1934–1949, Oct. 2005.

[10] D. Cohen, S. Casner, and J. W. Forgie. A network voice protocol nvp-ii. Technical report,
U S C / I S I, apr 1981.

[11] H. L. Cycon, T. C. Schmidt, G. Hege, M. Wählisch, D. Marpe, and M. Palkow. Peer-to-
Peer Videoconferencing with H.264 Software Codec for Mobiles. In R. Jain and M. Ku-
mar, editors, WoWMoM08 – The 9th IEEE International Symposium on a World of Wire-
less, Mobile and Multimedia Networks – Workshop on Mobile Video Delivery (MoViD),
pages 1–6, Piscataway, NJ, USA, June 2008. IEEE, IEEE Press.

[12] L. Delgrossi and L. Berger. Internet Stream Protocol Version 2 (ST2) Protocol Specifi-
cation - Version ST2+. RFC 1819, IETF, Aug. 1995.

[13] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246, IETF, Aug. 2008.



REFERENCES 69

[14] I. Dorros. Picturephone. Bell Laboratories Records, 47, 1969.

[15] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part Five:
Conformance Criteria and Examples. RFC 2049, IETF, Nov. 1996.

[16] M. Handley and V. Jacobson. SDP: Session Description Protocol. RFC 2327, IETF, Apr.
1998. Obsoleted by RFC 4566, updated by RFC 3266.

[17] ITU-T Recommendation H.264 & ISO/IEC 14496-10 AVC. Advanced Video Coding for
Generic Audiovisual Services. Technical report, ITU, 2005. Draft Version 3.

[18] ITU-T Recommendation H.323. Infrastructure of audio-visual services - Systems and
terminal equipment for audio-visual services: Packet-based multimedia communica-
tions systems. Technical report, ITU, 2000. Draft Version 4.

[19] The NIST JAIN-SIP homepage. http://jain-sip.dev.java.net/, 2009.

[20] The JAXB Workshop homepage. https://jaxb-workshop.dev.java.net/, 2009.

[21] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset, and H. Schulzrinne. REsource LO-
cation And Discovery (RELOAD) Base Protocol. Internet Draft – work in progress 01,
IETF, Dec. 2008.

[22] A. Johnston and O. Levin. Session Initiation Protocol (SIP) Call Control - Conferencing
for User Agents. RFC 4579, IETF, Aug. 2006.

[23] A. Johnston, R. Sparks, C. Cunningham, S. Donovan, and K. Summers. Session Initia-
tion Protocol Service Examples. RFC 5359, IETF, Oct. 2008.

[24] A. Knauf, T. C. Schmidt, and M. Wählisch. Scalable, Distributed Conference Control in
Heterogeneous Peer-to-Peer Scenarios with SIP. In M. Younis and C. T. Chou, editors,
Proc. of the 5th International Mobile Multimedia Communications Conference (Mobi-
Media), Lecture Notes of ICST, Berlin, Heidelberg, September 2009. Springer Verlag.
Accepted for publication.

[25] O. Levin and R. Even. High-Level Requirements for Tightly Coupled SIP Conferencing.
RFC 4245, IETF, Nov. 2005.

[26] R. Mahy and D. Petrie. The Session Initiation Protocol (SIP) "Join" Header. RFC 3911,
IETF, Oct. 2004.

[27] P. O’Doherty and M. Ranganathan. Jain sip tutorial. serving the developer community.
http://snad.ncsl.nist.gov/proj/iptel/tutorial/JAIN-SIP-Tutorialv2.pdf, 2003.



REFERENCES 70

[28] J. Ott, C. Perkins, and D. Kutscher. Requirements for Local Conference Control. Internet
Draft – work in progress 00, IETF, Dec. 2000.

[29] M. Palkow. The daViKo homepage, 2009. http://www.daviko.com.

[30] C. B. Peters. Talks on ’see-phone’. The New York Times, September 18 1938.

[31] A. B. Roach. Session Initiation Protocol (SIP)-Specific Event Notification. RFC 3265,
IETF, June 2002. Updated by RFC 5367.

[32] S. Romano, A. Amirante, T. Castaldi, L. Miniero, and A. Buono. A Framework for Dis-
tributed Conferencing. Internet Draft – work in progress 04, IETF, Dec. 2008.

[33] S. Romano, A. Amirante, T. Castaldi, L. Miniero, and A. Buono. Requirements for Dis-
tributed Conferencing. Internet Draft – work in progress 04, IETF, Dec. 2008.

[34] S. Romano, A. Amirante, T. Castaldi, L. Miniero, and A. Buono. Requirements for the
XCON-DCON Synchronization Protocol. Internet Draft – work in progress 04, IETF,
Dec. 2008.

[35] J. Rosenberg. A Framework for Conferencing with the Session Initiation Protocol (SIP).
RFC 4353, IETF, Feb. 2006.

[36] J. Rosenberg. Obtaining and Using Globally Routable User Agent (UA) URIs (GRUU)
in the Session Initiation Protocol (SIP). Internet Draft – work in progress 15, IETF, Oct.
2007.

[37] J. Rosenberg, J. Peterson, H. Schulzrinne, and G. Camarillo. Best Current Practices for
Third Party Call Control (3pcc) in the Session Initiation Protocol (SIP). RFC 3725, IETF,
Apr. 2004.

[38] J. Rosenberg and H. Schulzrinne. An Offer/Answer Model with Session Description
Protocol (SDP). RFC 3264, IETF, June 2002.

[39] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler. SIP: Session Initiation Protocol. RFC 3261, IETF, June
2002. Updated by RFCs 3265, 3853, 4320, 4916, 5393.

[40] J. Rosenberg, H. Schulzrinne, and O. Levin. A Session Initiation Protocol (SIP) Event
Package for Conference State. RFC 4575, IETF, Aug. 2006.

[41] R. Sparks. The Session Initiation Protocol (SIP) Refer Method. RFC 3515, IETF, Apr.
2003.



REFERENCES 71

[42] A. S. Tanenbaum and M. van Steen. Distributed Systems: Principles and Paradigms
(2nd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006.

[43] S. S. Team. Skype support request: Maximum conference sizes in skype overlay.
https://support.skype.com/de/, July 2009.

[44] C. Topolcic. Experimental Internet Stream Protocol: Version 2 (ST-II). RFC 1190, IETF,
Oct. 1990. Obsoleted by RFC 1819.

[45] Xml schema part 1: Structures second edition. W3C Recommendation, World Wide
Web Consortium, October 2004.

[46] Xml schema part 2: Datatypes second edition. W3C Recommendation, World Wide
Web Consortium, October 2004.

[47] M. Zangrilli and D. Bryan. A Chord-based DHT for Resource Lookup in P2PSIP. Internet
Draft – work in progress 00, IETF, Feb. 2007.



LIST OF FIGURES 72

List of Figures

1 SIP with the DoD Reference Model . . . . . . . . . . . . . . . . . . . . . . 6
2 Call setup with SIP trapezoid . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Overview of conference functionalities . . . . . . . . . . . . . . . . . . . . . 9
4 SIP join header example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5 3rd party is added . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6 Third party initiated conference (alternative) . . . . . . . . . . . . . . . . . . 14
7 Media Server Component Model . . . . . . . . . . . . . . . . . . . . . . . . 17
8 Distributed mixing model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
9 Overview of the P2PSIP Architecture . . . . . . . . . . . . . . . . . . . . . 20
10 DCON architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
11 Message flow for the policy-based conference service as Cho et all [9] . . . . 22
12 SDCON distributed session control . . . . . . . . . . . . . . . . . . . . . . 24
13 The multiple locator one identifier problem . . . . . . . . . . . . . . . . . . . 25
14 SDCON overall message flow . . . . . . . . . . . . . . . . . . . . . . . . . 26
15 Discovery of a Secondary Focus . . . . . . . . . . . . . . . . . . . . . . . . 28
16 Delegation a call to a secondary focus . . . . . . . . . . . . . . . . . . . . . 29
17 Call delegation in a dial-in scenario . . . . . . . . . . . . . . . . . . . . . . 31
18 Subscribe/Notify call flow example . . . . . . . . . . . . . . . . . . . . . . . 34
19 Conference event package overview . . . . . . . . . . . . . . . . . . . . . . 37
20 Extension for the conference event package . . . . . . . . . . . . . . . . . . 39
21 JAIN SIP architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
22 SDCON Peer components . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
23 SDCON Peer GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
24 Calling the conference URI . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
25 Signal Delay Average for SIP Invite Requests . . . . . . . . . . . . . . . . . 56
26 Referring new Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
27 Signaling Delay for Dial-out Operation . . . . . . . . . . . . . . . . . . . . . 62
28 Inet Multifocus Conference Information Extension XML Schema . . . . . . . 67



Abbreviations

ACK . . . . . . . . . . . . . . . SIP Acknowledgment
AOR . . . . . . . . . . . . . . . Address-of-Record
BFCD . . . . . . . . . . . . . Binary Floor Control Protocol
DCON . . . . . . . . . . . . . Distributed Conferencing
DHT . . . . . . . . . . . . . . . Distributed Hash Table
DNS . . . . . . . . . . . . . . . Domain Name System
GRUU . . . . . . . . . . . . . Globally Routable User agent URI
GUI . . . . . . . . . . . . . . . Graphical User Interface
IANA . . . . . . . . . . . . . . Internet Assigned Number Authority
ICE . . . . . . . . . . . . . . . . Interactive Connectivity Establishment
IDL . . . . . . . . . . . . . . . . Interface Definition Language
IETF . . . . . . . . . . . . . . Internet Engineering Task Force
IFA . . . . . . . . . . . . . . . . Internationale Funkaustellung in Berlin
IM . . . . . . . . . . . . . . . . . Instant Messenger
IP . . . . . . . . . . . . . . . . . Internet Protocol
ISDN . . . . . . . . . . . . . . Integrated Services Digital Network
JAIN . . . . . . . . . . . . . . . Java APIs for Integrated Network
JAXB . . . . . . . . . . . . . . Java Architecture for XML Binding
MCU . . . . . . . . . . . . . . Multipoint Control Unit
MIME . . . . . . . . . . . . . Multipurpose Internet Mail Extensions
NAT . . . . . . . . . . . . . . . Network Address Translation
NVP-II . . . . . . . . . . . . . Network Voice Protocol
P2P . . . . . . . . . . . . . . . Peer-to-Peer
P2PSIP . . . . . . . . . . . Peer-to-Peer SIP
PVP . . . . . . . . . . . . . . . Packet Video Protocol
RELOAD . . . . . . . . . . REsource LOcation And Discovery
SDCON . . . . . . . . . . . Scalable Distributed Conferencing
SDP . . . . . . . . . . . . . . . Session Description Protocol
SIP . . . . . . . . . . . . . . . . Session Initiation Protocol
SIPPING . . . . . . . . . . Session Initiation Proposal Investigation WG
ST/ST2 . . . . . . . . . . . . Internet Stream Protocol
STUN . . . . . . . . . . . . . Session Traversal Utilities for NAT
UA . . . . . . . . . . . . . . . . User Agent
URI . . . . . . . . . . . . . . . Uniform Resource Identifier
VoIP . . . . . . . . . . . . . . . Voice over IP
VVoIP . . . . . . . . . . . . . Voice and Video over IP
WG . . . . . . . . . . . . . . . IETF Working Group
XCON . . . . . . . . . . . . . Centralized Conferencing



XDSP . . . . . . . . . . . . . XCON-DCON Synchronization Protocol
XJC . . . . . . . . . . . . . . . XML Java Compiler
XML . . . . . . . . . . . . . . . Extensible Markup Language



LISTINGS 75

Listings

1 JAIN SIP Stack creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2 Usage of JAXB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3 Request dispatching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4 Processing notifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5 Focus States lookup operation . . . . . . . . . . . . . . . . . . . . . . . . . 46
6 Delegation dispatching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7 Delegation to known focus . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8 Creating of a focus states document . . . . . . . . . . . . . . . . . . . . . . 49
9 Updating the focus states . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



LIST OF TABLES 76

List of Tables

1 Measurement results for SIP dialog establishment . . . . . . . . . . . . . . . 56
2 Two hop dial-out Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3 Three hop dial-out Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 61



Hiermit versichere ich, dass ich die vorliegende Arbeit im Sinne der Prüfungsordnung nach
§22(4) bzw.§24(4) ohne fremde Hilfe selbständig verfasst und nur die angegebenen Hilfsmit-
tel benutzt habe.

Hamburg, August 25, 2009 Alexander Knauf


	1 Introduction
	1.1 Motivation
	1.2 Overview of this Work
	1.3 Organization of the Report

	2 Group Conferencing
	2.1 History and Introduction
	2.2 Conferencing with SIP
	2.2.1 Joining a Conference
	2.2.2 Conference Initiation

	2.3 Approaches to Conferencing
	2.3.1 Centralized Conferencing
	2.3.2 Peer-to-Peer SIP
	2.3.3 Related Work on Decentralized Conferencing


	3 Distributed Conference Control
	3.1 Problem Statement
	3.2 A Concept for Scalable Distributed Conferencing
	3.3 Challenges to SDCON
	3.3.1 Globally Routable User Agent URI
	3.3.2 Maintaining Consistence of Conference States

	3.4 A SIP-based Approach
	3.4.1 Discovery of an additional Focus
	3.4.2 Call delegation
	3.4.3 Routing to a distributed Focus
	3.4.4 Resilience Against Focus Failure & Leave
	3.4.5 Consistency in a distributed Conference


	4 Consistent Conference State Information
	4.1 Introduction
	4.2 Event Package for Conference State
	4.3 Multifocus Extensions

	5 Implementation and Techniques
	5.1 Language and Libraries
	5.1.1 JAIN-SIP
	5.1.2 JAXB

	5.2 Software Design
	5.3 Implementation Progress
	5.3.1 Call Delegation
	5.3.2 Creating Focus States
	5.3.3 Updating Focus States
	5.3.4 Application appearance


	6 Measurements and Evaluation
	6.1 Dial-In Operation
	6.1.1 Measurement Setup
	6.1.2 Measurement Results
	6.1.3 Evaluation

	6.2 Dial-Out Operation
	6.2.1 Measurement Setup
	6.2.2 Measurement Results
	6.2.3 Evaluation


	7 Conclusions and Outlook
	A Appendix
	References
	List of Figures
	List of Abbreviations
	List of Source Code Snippets
	List of Tables

