
Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

Faculty of Engineering and Computer Science
Department of Computer Science

Fakultät Technik und Informatik
Studiendepartment Informatik

Master Thesis

Dominik Charousset

libcppa – An actor library for C++ with transparent and
extensible group semantic

Dominik Charousset

libcppa – An actor library for C++ with transparent and
extensible group semantic

im Studiengang Informatik
am Studiendepartment Informatik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. rer. nat. Thomas C. Schmidt
Zweitgutachter: Prof. Dr. rer. nat. Friedrich Esser

Abgegeben am 16.01.2012

Dominik Charousset

Thema der Masterarbeit
libcppa – An actor library for C++ with transparent and extensible group semantic
Stichworte
Aktormodell, C++, Publish/Subscribe, Nebenläufigkeit, Verteilte Systeme
Kurzzusammenfassung
Eine effiziente Nutzung paralleler Hardware setzt eine nebenläufige Ausführbarkeit von
Programmen zwingend voraus. Nebenläufige Software mit Hardware-nahen Primitiven wie
Threads und Mutexen zu implementieren ist komplex und fehleranfällig. Das Aktormod-
ell ersetzt solche Kommunikation, die von Shared Memory Segmenten manipuliert durch
explizite, nachrichtenbasierte Kommunikation. Dabei eignet es sich sowohl zur Imple-
mentierung nebenläufiger, als auch verteilter Software. Eine leichtgewichtige Aktormodell-
Implementierung, die alle Aktoren in einem ausreichend dimensionierten Thread-Pool
ausführt, kann dabei deutlich effizienter sein als eine äquivalente, Thread-basierte Anwen-
dungen. Wir präsentieren in dieser Arbeit libcppa, eine Aktormodell-Implentierung für
C++, die das Aktormodell um eine Semantik für Publish/Subscribe orientierte Gruppenkom-
munikation erweitert und damit die Entwicklung nebenläufiger und verteilter Anwendungen
auf einem hohen Abstraktionslevel unterstützt. Unsere Ergebnisse zeigen, dass das
Skalierungsverhalten von libcppa vergleichbar mit etablierten Implementierungen des
Aktormodells ist.

Dominik Charousset

Title of Master Thesis
libcppa – An actor library for C++ with transparent and extensible group semantic
Keywords
C++, actor model, publish/subscribe, concurrency, distributed systems
Abstract
Parallel hardware makes concurrency mandatory for efficient program execution. However,
writing concurrent software is challenging, especially with low-level synchronization primi-
tives such as threads and locks in shared memory environments. The actor model replaces
implicit communication by sharing with an explicit message passing mechanism. It applies
to concurrency as well as distribution, and a lightweight actor model implementation that
schedules all actors in a properly pre-dimensioned thread pool can outperform equivalent
thread-based approaches. We build libcppa, an actor library with modular support for
group semantics that is compliant to the new C++ standard. By adding a publish/subscribe
oriented group communication to the actor model, we support the development of scalable
and efficient concurrent as well as distributed systems at a very high level of abstraction.
Results indicate that libcppa competes mature implementations of the actor model.

Contents

1 Introduction 1
1.1 The Actor Model . 3
1.2 Overview of this Work . 3
1.3 Organization of the Thesis . 4

2 Message-Oriented Programming 5
2.1 Message Passing . 5

2.1.1 Synchronous Message Passing 5
2.1.2 Asynchronous Message Passing 6
2.1.3 Inversion of Control . 6

2.2 Publish/Subscribe . 6
2.2.1 Related Software Patterns . 7
2.2.2 IP Multicast . 7

2.3 Messages and Patterns . 8
2.4 Actor Systems . 9

2.4.1 Message Processing . 10
2.4.2 Behavior of Actors . 10
2.4.3 Monitoring of Actors and Fault Propagation 10
2.4.4 Group Communication . 11

3 Related Work 13
3.1 Erlang . 13

3.1.1 Actor Creation . 13
3.1.2 Message Processing . 14
3.1.3 Name Service for Actors . 14
3.1.4 Fault Tolerance and Process Management 15

3.2 Scala . 16
3.2.1 Scala Actors Library . 17
3.2.2 Akka . 18

3.3 Kilim . 18
3.4 Retlang . 19
3.5 Theron . 19

4 Design of libcppa 20
4.1 Design Goals . 20

4.1.1 Ease of Use . 20
4.1.2 Scalability . 20
4.1.3 Distribution Transparency . 21

4.2 Reference Counting Garbage Collection Using Smart Pointers 21
4.2.1 Base Class for Reference Counted Objects 23
4.2.2 Copy-On-Write . 23

4.3 Designing an Actor Semantic for C++ . 25
4.3.1 Keywords and Operators . 25
4.3.2 Syntax Extension . 26
4.3.3 Semantic of Send and Receive Statements 27

4.4 Unified Messaging for Groups and Actors 29
4.5 Actors . 30

4.5.1 actor Interface . 31
4.5.2 local_actor Interface . 32
4.5.3 Implicit Conversion of Threads to Actors 33
4.5.4 Cooperative Scheduling of Actors 33

4.6 Event-Based Actors . 34
4.6.1 Stacked and Non-Stacked Actor Behavior 34
4.6.2 Actors as Finite-State Machines 35

4.7 Messages . 36
4.7.1 Copy-On-Write Tuples . 37
4.7.2 Atoms . 38

4.8 Group Interface . 40
4.9 Serialization . 41

4.9.1 Uniform Type Information . 41
4.9.2 Announcing User-Defined Types 42

4.10 Network Transparency . 43
4.10.1 Actor Addressing . 43
4.10.2 Middle Men and Actor Proxies . 43
4.10.3 Publishing Actors and Connect to Remote Actors 45

5 Implementation of libcppa 46
5.1 Actor Semantic as Internal Domain-Specific Language for C++ 46

5.1.1 Atoms . 46
5.1.2 Receive Statement and Pattern Matching 47
5.1.3 Receive Loops . 58
5.1.4 Send Statement . 59
5.1.5 Emulating The Keyword self . 60

5.2 Mailbox Implementation . 62
5.2.1 Spinlock Queue . 63
5.2.2 Lock-Free Queue . 64
5.2.3 Cached Stack . 65
5.2.4 Choosing an Algorithm . 66

5.3 Actors . 67
5.3.1 Spawning Actors . 67
5.3.2 Abstract Actor . 67
5.3.3 Thread-Mapped Actors . 70
5.3.4 Cooperatively Scheduled Actors 70
5.3.5 Event-Based Actors . 72

5.4 Groups . 74
5.4.1 Local Group Module . 74
5.4.2 A Use Case Example . 76

5.5 Serialization . 77
5.5.1 Uniform Type Name . 77
5.5.2 Announcement of User-Defined Types 78

5.6 Middle Man . 81
5.6.1 Addresses of Middle Men . 81
5.6.2 Post Office . 81
5.6.3 Mailman . 81

6 Measurements and Evaluation 83
6.1 Measuring the Overhead of Actor Creation 84
6.2 Measuring Mailbox Performance in N:1 Communication Scenario 86
6.3 Measuring Performance in a Mixed Scenario 88
6.4 Measurement Summary . 90

7 Conclusion & Outlook 91

1 INTRODUCTION 1

1 Introduction

Sequential programming languages such as C, C++ or Java do not provide concurrency se-
mantics. They were developed before the "Multi-Core Revolution" started and thus originally
aimed at single-core processor machines. Because all mainstream operating system allow
starting multiple threads of execution within a process, threading libraries were developed
on top of existing languages. One motivation to implement threading was to keep user in-
terfaces responsive at ongoing background work, another to implement multi-client servers
without starting multiple processes with fork. Real hardware concurrency makes threading
mandatory: “(...) multi-core processors make concurrency an essential ingredient of efficient
program execution” (Haller and Odersky, 2009).

Dealing with concurrency is challenging, especially in shared memory environments, where
all threads share the same process-wide memory. This easily leads to race conditions, if
two or more threads access a memory location in parallel. The performance and scalabil-
ity of hand-written synchronization to avoid race conditions depends on the implementation
strategy; coarse-grained locking is simple, but could lead to queuing and scalability issues,
whereas fine-grained locking increases scalability but also complexity and error-proneness
(e.g., due to lock order1). Furthermore, increased complexity and the many sources of errors
in multithreaded applications increase the complexity of testing as well: “The main difficulty
of multiprogramming is that concurrent activities can interact in a time-dependent manner
which makes it practically impossible to locate programming errors by systematic testing”
(Hansen, 1973).

Referential transparency, pure functions and immutable values ease parallelization, because
race conditions cannot occur and isolated computations can be freely spread among pro-
cessors to scale in a multi-core environment. Pure functions that do not have internal state
increase locality of data, because such functions primarily accesses their own stack and lo-
cal, temporary objects. Locality of data increases the possibility of cache hits because the
accessed data is not spread among many memory locations. Sharing immutable data only
reduces the possibility of “false sharing” and uses system resources more efficiently. Pro-
cessors always fetch a cache line, e.g., 64 byte on an Intel i7 processor, to minimize access
to the RAM module since such access is time-expensive compared to access a local cache.
This optimization strategy yields good performance results as long as a program iterates over
a memory location or accesses memory locations within a certain range. But this also can

1Lock order is a mutex-based synchronization protocol for a Fine-Grained Locking strategy. Assuming a
program has two shared objects A and B, each guarded by its own mutex. If a thread wants to atomically
modify both of them, it has to acquire both locks. This locking order must be equal for all threads. A deadlock
occurs, if any thread locks B before A, while other threads lock A first. This is simple in examples with only a
few shared objects, but easily leads to complex source code that is hard to maintain.

1 INTRODUCTION 2

lead to so-called “false sharing” whenever two threads are accessing memory that fits into
one cache line. The cache must be updated every time another processor modified data in
the cached memory region. Thus, two threads running on separate cores mutually invalidate
their cache on each single write operation, even if both threads access distinct data. Such
false sharing causes a serious performance impact, because a processor has to frequently
access the RAM rather than its local cache.

Still, concurrent software components often need to share (or exchange) information, resp.
data. In shared memory environments, this communication is implicit (shared states) and im-
plemented with low-level primitives (locks, threads, condition variables, etc.), which is error-
prone and requires expert knowledge. One needs to know about compiler and processor
reordering as well as language internals to implement efficient concurrency with low-level
synchronization primitives. Optimization strategies such as double-checked locking can lead
to memory corruptions, if one does not have the required expert knowledge for a correct im-
plementation (Meyers and Alexandrescu, 2004). If information needs to be shared among a
group of participants, it is even more difficult to implement a solution that is both thread-safe
and scalable. There are basically two approaches to raise the level of abstraction to hide
unsafe, shared memory: Make shared memory transactional, either in software (like in the
Clojure programming language (Hickey, 2011)) or hardware, or use explicit communica-
tion facilities, such as message passing instead of shared memory.

Independent of the selected approach, we need high-level concepts and libraries to describe
concurrency and to enable average programmers to write both safe2 and scalable code.
Functional programming languages always propagated stateless functions, free of side ef-
fects, operating on immutable data structures. Thus, functional programming languages are
easier to execute in parallel. However, the five most popular programming languages in
practice are the imperative programming languages Java, C, C++, C# and Objective-C
(TIOBE software, 2012). The problem these languages face to make use of hardware con-
currency, we believe, is not the imperative programming style. It is the wrong level of abstrac-
tion and sharing of mutable stateful objects. In this work, we address the C++ programming
language. It is one of the most relevant languages, especially in the UNIX and open source
communities, with large available code bases, but lacks a sufficient level of abstraction for
concurrency and distribution.

2Free of race conditions, deadlocks and lifelocks.

1 INTRODUCTION 3

1.1 The Actor Model

The Actor model is a formalism describing concurrent entities, “actors”, that communicate
by asynchronous message passing (Hewitt et al., 1973). An actor can send messages to
addresses of other actors it knows and can create new actors. Actors do not share state and
are executed concurrently.

Because Actors are self-contained and do not rely on shared resources, race conditions
are avoided by design. The message passing communication style also allows network
transparency and thus applies to both concurrency, if actors run on the same host on different
cores/processors, and distribution, if actors run on different hosts, connected via the network.

The traditional actor model does not address group communication. However, it seems natu-
ral to combine the actor model with publish/subscribe-based group communication. Allowing
actors to join and leave groups allows an extensible and technology-transparent group com-
munication semantic. A group can be implemented as a local list of actors to generalize
in-process event handling, or as distributed system using a network layer transport technol-
ogy such as IP multicast.

1.2 Overview of this Work

The Actor model inspired several implementations in computer science, either as basis for
languages, e.g., Erlang, or as libraries/frameworks, e.g., Scala Actor Library, to ease devel-
opment of concurrent software. However, low-level primitives are still widely used in C++ and
other mainstream languages because there are no implementations of a high-level concur-
rency abstraction available. In C++, the standardization committee added threading facilities
and synchronization primitives to the next standard (ISO, 2011), but did neither address the
general issues of multiprogramming, nor distribution, nor message-oriented group communi-
cation mechanisms.

This work targets at concurrency, distribution and message-oriented group communication in
C++. We design and implement a library for C++, called libcppa, with an internal Domain-
Specific Language (DSL) approach to provide high-level abstraction. This library is bench-
mark tested against other implementations and offers an extensible group communication
API. Results show, that we are able to compete established actor model implementations.

1 INTRODUCTION 4

1.3 Organization of the Thesis

This thesis is organized as follows. We will introduce message-oriented programming in gen-
eral, as well as publish/subscribe first. Then, we will give an introduction to actor systems and
definitions of essential features. The related work section will focus on other implementations
of the actor model, e.g., in the functional programming languages Erlang and Scala. Our de-
sign section will start with design goals and our approach to reference counting garbage
collection. Then, we will augment the C++ programming language with an abstract syntax
extension. We will use this syntax to specify the semantic and behavior of our actor model
implementation. This abstract syntax is used in our implementation section as reference for
our internal DSL. The implementation section is divided in subsections, one for each soft-
ware component of libcppa. We will further measure and evaluate our implementation
by comparing our implementation with other, matured actor model implementations. A con-
clusion section will summarize evaluation and implementation results and finally will give an
outlook on future work.

2 MESSAGE-ORIENTED PROGRAMMING 5

2 Message-Oriented Programming

Message-oriented programming emphasizes interaction between software components (ob-
jects) while object-oriented programming tends to focus on the objects themselves. Mutable
stateful objects accessed in parallel need to synchronize access to member functions and
internal state, causing serious issues and complexity in concurrent systems. By using mes-
saging rather than granting access to member functions, concurrency issues such as race
conditions are avoided by design since only the object itself has access to member function
implementations.

2.1 Message Passing

The message passing paradigm follows the assumption that software components are self-
consistent and isolated. The state of an independent software component cannot be manip-
ulated from the outside. It changes its state or behavior based on messages it receives and
it is free to ignore messages or to process other messages first. In this way, the message
passing paradigm leads to loosely coupled software systems.

The characteristics of message passing systems depend on the message transfer technol-
ogy in use and how messages are handled by receivers. Transfer technologies vary in relia-
bility and message ordering and could be synchronous or asynchronous. Receive methods
include blocking, non-blocking and callback-based approaches.

2.1.1 Synchronous Message Passing

Synchronous messaging is a joint process of sender and receiver. The sender of the mes-
sage is blocked until the receiver has processed the given message. Results can be passed
directly to the sender of a message, since there is a feedback channel between the two
peers.

Synchronous communication requires reliable transmission of messages, since an unde-
tected loss would always lead to a deadlock at the sender. A deadlock also occurs, if a
peer sends a message to itself if the communication uses a mutex-based synchronization
protocol, because a software component cannot call wait() and notify() at the same
time.

2 MESSAGE-ORIENTED PROGRAMMING 6

2.1.2 Asynchronous Message Passing

Asynchronous communication decouples senders and receivers and requires buffering. Usu-
ally, a FIFO ordered message queue is used. As there is no implicit feedback channel be-
tween sender and receiver, an answer by the receiver must be passed in an explicit response
message. Alternatively, synchronization primitives such as futures and promises could be
used in shared memory environment.

Asynchronous communication can be unreliable and messages might arrive out of order,
depending on the transport technology in use.

2.1.3 Inversion of Control

Callback-based message handling often has the issue of Inversion of Control (IoC). The
callback, a registered function or object that is called whenever a new message arrives, has
to implement all of the receiver’s functionality and the receiver is executed in the context of
the sender. Thus, the classical control flow of procedural programming is inverted from a
receiver’s point of view. IoC is common in event-driven software architectures such as GUI
frameworks.

2.2 Publish/Subscribe

The publish/subscribe paradigm describes message passing systems that decouple senders
and receivers. Messages are published to a channel rather than sent directly to receivers.
Thus, a sender (publisher) does not know addresses of receivers (subscribers). Subscribers
may be notified by the channel if a message was published.

channel
publish

subscribe

unsubscribe

subscriber 1
notify

subscriber M
notify

...

publisher 1

publisher N

...

Figure 1: Simple publish/subscribe system

Figure 1 illustrates a simple publish/subscribe system. The channel is an N:M group com-

2 MESSAGE-ORIENTED PROGRAMMING 7

munication interface between N publishers and M subscribers. Each published message is
replicated M times.

Many variants of the publish/subscribe paradigm exist, some allow subscribers to receive
only a pre-filtered subset of messages such as topic-based, content-based and type-based
publish/subscribe (Eugster et al., 2003).

2.2.1 Related Software Patterns

The publish/subscribe paradigm gave rise to software design patterns such as the observer
pattern (Gamma et al., 1995) and the signal/slot model provided by various C++ libraries,
e.g., Qt or boost.

subject

addObserver

deleteObserver

observer 1
notify

observer N
notify

...

Figure 2: Observer pattern

Figure 2 shows a software design based on the observer pattern. The subject merges the
role of publisher and channel. Thus, it models an 1:N communication. Illustrations of similar
patterns such as the signal/slot model are analogous.

2.2.2 IP Multicast

IP multicast is a real-world example for a fully distributed publish/subscribe system. There is
no well-known host serving as channel as in client/server based approaches. Instead, the
routing algorithms establish network paths between publishers and subscriber. A join (sub-
scription) to a multicast address (the address of a distributed channel) signals the network to
add the sender of such a subscription to the network path. A leave (unsubscription) removes
the sending host from the network path.

IP Any Source Multicast (ASM) (Deering, 1989) is a very general publish/subscribe system as
shown in Figure 1. A host receives all messages sent to channels (groups) it has subscribed
to.

2 MESSAGE-ORIENTED PROGRAMMING 8

IP Source-Specific Multicast (SSM) (Holbrook and Cain, 2006) adds a source filtering mech-
anism to the publish/subscribe system. A host subscribes to a channel for a particular sender
S and does not receive messages from the channel that are not published by S.

publish

subscribe(source)

unsubscribe(source)

subscriber 1
(subscribed to A)

notify

notify

publisher A

publisher B

publisher C
subscriber 2

(subscribed to B)

subscriber 3
(subscribed to A)

channel

filter

ms
g

fr
om

 A

notify

Figure 3: Source-specific publish/subscribe system

Figure 3 illustrates the observable behavior of IP SSM. A subscription includes a channel
and a source. A subscriber then receives only messages from the channel with the specified
source address. Thus, the channel models 1:N communication between a source and any
number of subscribers.

2.3 Messages and Patterns

A message is an object of communication consisting of data and metadata. Metadata is
mandatory for message processing. The type of message data is an inevitable metadata.
There are use cases for messages with empty data, e.g., signaling of timeouts, but a receiver
always has to evaluate the metadata of a message first in order to process it. However,
metadata is not necessarily transferred along with the data, e.g., a typed channel could
transmit only the raw data since all participants of a communication know the metadata
beforehand.

A message pattern, henceforth referred to as pattern, is an expression querying both data
and metadata of messages that evaluates to either true or false for any given message.
Patterns ease message processing for participants of a message passing system to use
untyped communication channels. An untyped communication channel does not restrict
messages to particular types. Patterns are a convenient way for a participant to specify
what messages it accepts. Furthermore, patterns also can bind parts of the message data
to variables for further computations.

2 MESSAGE-ORIENTED PROGRAMMING 9

case 1

input: M

pattern 1 matched M

case 2pattern 2 matched M

no m
atch

receive
next

message

case Npattern N matched M

no m
atch

reject M

Figure 4: Receive loop using patterns

Figure 4 shows a typical receive loop using pattern matching. An incoming message M is
accepted if one of the predefined patterns does match M, otherwise, M is rejected. M is
processed at most once since no further patterns are evaluated after the first match.

2.4 Actor Systems

The actor model is a refinement of the message passing paradigm. It is explicitly designed
for both parallel and distributed systems using independent software entities responding to
messages they receive. Actors communicate by asynchronous messaging. Pattern matching
is not mandatory to implement actor systems, but it has proven useful and very effective for
message processing (Armstrong, 1996).

2 MESSAGE-ORIENTED PROGRAMMING 10

2.4.1 Message Processing

A distinguishing feature of an actor system is its message processing implementation. There
are two main categories.

Mailbox-based message processing
Incoming messages are buffered at the actor in a mailbox in FIFO order. The message
processing, however, is not necessarily FIFO ordered. During receive, an actor iterates
over messages in its mailbox, beginning with the first. An actor is free to skip messages
in its mailbox. A message remains in the mailbox until it is eventually processed and
removed from the mailbox as part of its consumption. An actor will be blocked until
a new message arrives or an optional timeout occurs after it reached the end of its
mailbox or it is empty.

Event-based message processing
Actors register a function or function object as callback to the runtime system. The
runtime system calls the receive callback of an actor with the messages in arrival
order. Thus, an actor cannot prioritize messages since it is executed in an event loop.

2.4.2 Behavior of Actors

The behavior of an actor denotes its response to the next incoming message. This response
includes sending messages to other actors, creation of new actors and defining the subse-
quent behavior (Agha, 1986, p. 12). Actor systems using mailbox-based message process-
ing and pattern matching can define a behavior as a partial function (Haller and Odersky,
2009). This enables the runtime system to skip messages automatically during receive, if
the behavior of an actor is undefined for a given message.

2.4.3 Monitoring of Actors and Fault Propagation

The actor model allows actors to monitor other actors (Hewitt et al., 1973). This is in partic-
ular necessary for building fault-tolerant distributed systems since errors are more likely in
distributed than in single-processed software. Distributed systems inherently include more
sources of errors.

Complete actor systems provide monitoring and linking for actors (Armstrong, 2003). A
terminating actor sends a down message to all its monitors and an exit message to all its

2 MESSAGE-ORIENTED PROGRAMMING 11

links. Both message types contain the exit reason of the terminating actor. An actor receiving
an exit message will per default terminate with the same exit reason unless it is a normal exit
reason. An actor terminated with exit reason set to normal finished execution without error.
This default can be explicitly overridden by an actor to trap exit messages and to treat them
manually. Down messages are processed like any other message.

alice

exit message
(non-normal exit reason)

link

bob

quit()

Figure 5: Linking of actors

Figure 5 shows two linked actors Alice and Bob. Bob sends an exit message to all of its links
as part of its termination with non-normal exit reason, causing Alice to finish execution as
well.

Links allow for strong coupling of actors. In fact, linked actors form a subsystem in which
errors are propagated through exit messages.

2.4.4 Group Communication

Group communication combines several semantics such as Anycast for load balanced or
replicated services, (selective) Broadcast for rendezvous processes or contacting unknowns,
Con(verge)cast for data aggregation or scalable many-to-one communication and publish/-
subscribe, resp. Multicast, for scalable (m)any-to-many communication.

We focus on the publish/subscribe paradigm, since it is most widely used for group communi-
cation in practice. However, existing publish/subscribe implementations such as IP multicast
and D-Bus3 individually require specific code access not applicable for message oriented
programming as intended in actor systems.

3D-Bus is an inter-process communication system for UNIX with support for system-wide events and ser-
vices: http://dbus.freedesktop.org

2 MESSAGE-ORIENTED PROGRAMMING 12

The lack of a general publish/subscribe API makes it difficult for a developer to implement
future-proof software since his decision on technologies is based on deployment at coding
time. Furthermore, the lack of an embedded and extensible group semantic for actor systems
hinders the use of group communication technologies for distributed actors.

3 RELATED WORK 13

3 Related Work

In this section, we will focus on Erlang and Scala, because they provide established and
practice-proven implementations of the actor model. Afterwards, we will introduce a few
libraries providing message-oriented concurrency available in Java, C# and C++.

3.1 Erlang

Erlang is a functional, dynamically typed programming language that was designed for pro-
gramming large-scale distributed systems. It is developed since 1985 (Armstrong, 1997). Its
concurrency abstraction is based on lightweight processes and is an integral part of the lan-
guage rather than implemented as a library. Erlang processes are actors, because they are
isolated computational entities communicating only via asynchronous, network-transparent
message passing with each other. As such, Erlang is a de facto implementation of the ac-
tor model and can be looked upon as reference for upcoming implementations including
libcppa.

3.1.1 Actor Creation

New processes, resp. actors, are created with the function spawn that takes another func-
tion or lambda expression4 as argument and returns the identifier of the newly created pro-
cess. Process identifiers are addresses of actors that are needed for message passing. The
function spawn could also create the process on any connected host with an optional argu-
ment. After creation, there is no difference between local and remote actors. All operations
on processes are network transparent.

4A lambda expression is an anonymous function that can be stored in variables or passed to other functions
as argument.

3 RELATED WORK 14

3.1.2 Message Processing

Erlang implements mailbox-based message processing as described in Section 2.4.1. Mes-
sages are send using the operator “!” followed by a tuple. The following example sends the
tuple (1,2,3) to the actor identified by Pid. This operation is network transparent. Pid is
either the address of a local actor or of a remote actor.

1 Pid ! { 1, 2, 3}

The blocking receive statement is a selection control mechanism that evaluates a partial
function defining the actors behavior as described in 2.4.2. The syntax of a receive statement
reads

1 receive
2 Pattern1 [when Guard1] -> Expression1;
3 Pattern2 [when Guard2] -> Expression2;
4 ...
5 after Time -> Expression3
6 end

A guard is an optional part of a pattern. The receive statement blocks the calling actor
either until an optional timeout occurs, or until a message was matched by one of the given
patterns.

The following example shows a receive with three patterns. The first matches only messages
with a single integer value. The second only matches messages with two elements, whereby
the first element is “hello”. The third pattern does match any message. If no message is
received within 50 milliseconds, “Received nothing” will be printed.

1 receive
2 X when is_integer(X) -> io:format("Received an integer~n");
3 {hello, What} -> io:format("Received: hello ~s~n", [What]);
4 Y -> io:format("Received: ~p~n",[Y])
5 after 50 -> io:format("Received nothing~n")
6 end

3.1.3 Name Service for Actors

Actors need addresses of other actors to address messages. An actor could learn new
addresses from messages it receives, or obtained a list of addresses during creation. Erlang

3 RELATED WORK 15

also provides a name service for actors to address actors providing system-wide services,
e.g., printing, with a well-known names.

However, it is impracticable to give all actors addresses of all “well-known actors” providing
system-wide services such as printing. Erlang provides a name service to register well-
known actors system wide.

The name service is implemented by the two functions register and whereis. It is also
possible to use names rather than process identifiers to send a message. Thus, whereis
is implicitly called when needed as the following example shows.

1 Pid = spawn(...),
2 register(my_actor, Pid),
3 my_actor ! "Hello Actor".

3.1.4 Fault Tolerance and Process Management

Erlang was intended to build fault-tolerant, distributed systems and therefore provides built-in
capabilities to monitor processes corresponding to Section 2.4.3:

“A frequent assumption made when writing Erlang software is that any Erlang
process may unexpectedly die (...). The runtime system provides a mechanism
to notify selected processes of the fact that a certain other process has termi-
nated; this is realized by a special message that arrives in the mailbox of pro-
cesses that are specified to monitor the vanished process.” (Earle et al., 2005,
p. 27)

Besides monitoring of processes, Erlang provides hierarchical process management with
supervision trees.

“A supervision tree is a tree of processes. The upper processes (supervisors) in
the tree monitor the lower processes (workers) in the tree and restart the lower
processes if they fail.” (Armstrong, 2007, p. 351)

3 RELATED WORK 16

...W1 W2 W3 Wn

S

Figure 6: Supervision tree

Fig. 6 shows a simple supervision tree S with workers W1 to Wn. Workers are num-
bered consecutively in order of creation. Supervision trees have three restart strategies:
one_for_one, one_for_all and rest_for_one.

...W1 W2 W3 Wn

S

re
sta

rt

Figure 7: one_for_one strategy

...W1 W2 W3 Wn

S

res
tart

restartre
sta

rt restart

Figure 8: one_for_all strategy

...W1 W2 W3 Wn

S

re
sta

rt restart

restart

Figure 9: rest_for_one strategy

Fig. 7 illustrates the one_for_one strategy. A worker, W2 in this particular case, is restarted
if it fails. Other workers are unaffected. The one_for_all strategy shown in Fig. 8 restarts
all workers if a worker terminates unexpectedly. Fig. 9 visualizes the rest_for_one strategy.
Only the failing worker and all workers created after it are restarted if a worker terminates
unexpectedly.

Supervision trees are also capable of loop detection, e.g., if workers are continuously
restarted and always terminate with the same error (Armstrong, 2003).

3.2 Scala

Scala is a multi paradigm programming language developed since 2001. It combines func-
tional and object-oriented programming (Odersky, 2011) and compiles to Java bytecode.
Scala is fully compatible to the Java programming language. It is possible to use and inherit
Java classes and interfaces in Scala and vice versa. Scala does not implement the actor
model as a language feature, but the language provides pattern matching and its syntax
is explicitly designed to ease development of domain-specific languages. Thus, a well de-

3 RELATED WORK 17

signed library implementing the actor model could provide a syntax as good as a language
extension.

Though, there is a downside of library solutions providing the actor model. It is impossible
to ensure isolation of actors. A programmer could easily share states among actors since
Scala does provide access to shared memory, leading to issues such as race conditions. It
is recommended, though, by Scala programming guides to use immutable messages and
not to share state among concurrent entities. This issue is inevitable in library solutions for
languages allowing shared memory access, since the compiler cannot enforce isolation of
actors.

3.2.1 Scala Actors Library

The Scala actors library is part of the standard library distribution since version 2.1.7 (2006).
Actors are defined by inheriting the class scala.actors.Actor and overriding the
method act(). An actor calls either react or receive with a partial function using
pattern matching. Both functions implement a mailbox-based message processing. The dif-
ference between the two functions is that react uses an event-based implementation and
never returns to the caller. The partial function argument of react is used as event handler.
This event handler can be replaced by nesting react statements to change the behavior
of the actor. Thus, react implements event-based programming without inversion of con-
trol (Haller and Odersky, 2006). An actor using the function receive is running in its own
thread. A threaded actor needs more system resources compared to an event-based actor.
It does have its own representation in the kernel of the operating system and allocates its
own stack. Thus, event-based actors usually yield better performance due to fewer context
switches and less allocated system resources.

The following example shows a singleton actor using react:

1 case class IntMessage(x: Int)
2
3 object ReactActor extends Actor {
4 override def act() {
5 loop {
6 react {
7 case i : Int => println("Received integer: " + i)
8 case IntMessage(x) => println("Received IntMessage: " + x)
9 case "quit" => exit() // terminate execution of this actor

10 }
11 }

3 RELATED WORK 18

12 println("This line is never executed (loop never returns)")
13 }
14 }
15
16 ReactActor.start()

The function loop recursively calls the following react statement. Such a loop also could
be achieved by recursively call act from inside the react block. Line 12 is unreachable
since neither loop nor react returns. Without using loop statement in line 5, this example
would receive exactly one message.

3.2.2 Akka

Akka is an event-driven implementation of the actor model (Typesafe Inc., 2011). It provides
an event-based message processing as described in 2.4.1. Akka also includes a Java API
for actor programming.

In addition, Akka implements software transactional memory to safely share a datastructure
across actors with begin/commit/rollback semantics. Transactions are atomic, consistent and
isolated. This deviates from other actor model implementations that either prohibit shared
states (Erlang) or at least recommend isolation of actors (Scala actors library).

3.3 Kilim

Kilim is an actor framework for Java (Srinivasan, 2011). It implements its own, lightweight
threads for actors and enforces actor isolation by static analysis. Kilim uses a post compiler
called weaver to modify the java bytecode based on annotations5 as shown in Figure 10.
The weaver ensures that a message does have at most one owner at a time and that an
actor cannot access stack or instance fields of another actor (Srinivasan and Mycroft, 2008).

5An annotations is metadata that can be added to classes, methods, variables, parameters and packages
in Java (Gosling et al., 2005). This metadata can be embedded in bytecode as part of the compiled class file
and is accessible at run-time using Java reflections.

3 RELATED WORK 19Kilim: Isolation-Typed Actors for Java 105

parse
type-
check

annotated
src

byte-
code

heap
model

isolation
check

CPS
transform

byte-
code

Kilim weaver

javac

external
annotations

Fig. 1. javac output post-processed by Kilim weaver

network and disk) [4] and service-oriented workflows. With a view to immedi-
ate industrial adoption, we impose the following additional requirements: (a) no
changes to Java syntax or to the JVM, (b) lightweight actors1 (c) fast messaging
(d) no assumptions made about a message receiver’s location and implementa-
tion language (e) widespread support for debugging, logging and persistence.

1.2 The Kilim Solution

This paper introduces Kilim2, an actor framework for Java that contains a byte-
code post-processor (“weaver”, see Fig. 1) and a run-time library. We list below
some important features as well as the design points:

Ultra-lightweight threads. Kilim’s weaver transforms methods identified by
an @pausable annotation into continuation passing style (CPS) to provide
cooperatively-scheduled lightweight threads with automatic stack manage-
ment and trampolined call stack [3, 20]. These actor threads are quick to
context-switch and do not need pre-allocated private heaps. The annotation
is similar in spirit to checked exceptions in that all callers and overriding
methods must be marked @pausable as well.

Messages as a special category. For the reasons outlined above, we treat
message types as philosophically distinct from, and much simpler than other
Java objects. Messages are:

– Unencapsulated values without identity (like their on-the-wire coun-
terparts, XML, C++ structs, ML datatypes and Scala’s case classes).
The public structure permits pattern-matching, structure transforma-
tion, delegation and flexible auditing at message exchange points; these
are much harder to achieve in the presence of encapsulation.

– Not internally aliased. A message object may be pointed to by at most
one other message object (and then only by one field or array element of

1 For example, threads are too heavyweight to assign per HTTP connection or per
component in composable communication protocol state machines.

2 Kilims are flexible, lightweight Turkish flat rugs woven with fine threads.

Figure 10: javac output post-processed by Kilim weaver (Srinivasan and Mycroft, 2008)

The weaver also performs a continuation passing style (CPS) transformation for all functions
of an actor. CPS allows to intercept a function at any point and resume its computation later
on (Reynolds, 1972). Thus, Kilim is able to perform preemptive scheduling of actors in its
own userspace scheduler.

3.4 Retlang

Retlang is a C# library for message-based concurrency in the style of the actor model. It
uses cooperatively scheduled fibers (Microsoft, 2011). Fibers are lightweight units of exe-
cution scheduled in userspace. Fibers are an implementation of coroutines (Conway, 1963)
that allow suspending and resuming on predefined locations. Consequently, scheduling is
controlled by Retlang rather than by the operation system.

3.5 Theron

Theron (Mason, 2011) is currently the only existing actor library for C++ besides libcppa.
It is a rudimentary implementation that neither does supports group communication, nor
provides network transparency, thus, does not support distribution. Theron implements
event-based message processing without mailbox, using registered member functions as
callbacks, as discussed in Section 2.4.1. Actors are scheduled in a thread pool and de-
fined by inheriting from the class Theron::Actor. The class Theron::Receiver allows
threads to receive messages from actors. Monitoring or linking of actors is not supported.

4 DESIGN OF LIBCPPA 20

4 Design of libcppa

Before presenting the actual software design of libcppa, we will start by outlining our
general design goals and present the software concept for the reference counting garbage
collection used in our library.

4.1 Design Goals

Our aim is to add an actor semantic to C++ that enables developers to build efficient con-
current and distributed software. Though libcppa is influenced by functional programming
languages such as Erlang and Scala, it should not mimic a functional programming style and
provide an API that looks familiar to C++ developers.

4.1.1 Ease of Use

A user of libcppa ideally does not need to know about any internals of the library imple-
mentation. We decided to use an internal Domain-Specific Language approach, because
we want to raise the level of abstraction in C++, while requiring as little glue code6 as possi-
ble. Unusual function names, code conventions and semantics are best avoided. libcppa
should adopt concepts and best practices of the standard template library (STL) to reduce
both complexity and learning effort for developers using it. In particular, this includes iterator
interfaces and functor7 arguments whenever functionality should be added to libcppa.

4.1.2 Scalability

All modern operating systems provide threading libraries to allow parallel execution of inde-
pendent computations within a process. Threads are scheduled in the system kernel. This
makes creation and destruction of threads heavyweight because they rely on system calls
and acquire system resources such as thread state in the OS scheduler, stack and signal

6Glue code is source code that does not implement any functionality of an application, but serves the pur-
pose to fulfill interface requirements of a library. A common example is to define a class D extending a class or
interface C to override one virtual member function with the intended functionality F and then to create a single
object of D because a function of a library L requires an instance of C.

7A functor is anything providing the operator “()”. This includes function pointers, lambda expressions and
hand-written classes using operator overloading.

4 DESIGN OF LIBCPPA 21

stack. Thus, short-living threads do not scale well since the effort for creation and destruction
outweighs the benefit of parallelization.

Scalability in the context of multi-core processors requires splitting application logic into many
independent tasks that could be executed in parallel. An actor is a representation of an
independent task. This makes lightweight creation and destruction of actors mandatory.

4.1.3 Distribution Transparency

The Actor model applies to both concurrency and distribution. Thus, the network layer of
libcppa should manage all network connections and hide complexity and implementation
details for serialization and deserialization of messages to make network communication
transparent for developers. In particular, the representation of an address of an actor should
use a common interface for both local running and remote actors.

4.2 Reference Counting Garbage Collection Using Smart Pointers

C++ does not provide a garbage collector. Nevertheless, garbage collection can be imple-
mented by using reference counting and smart pointers to make development easier and
less error-prone.

A smart pointer is an object that behaves like a pointer in C++ by providing the operator “->”
and “*” with the semantics of raw pointers except that the pointed object is destroyed in the
destructor of a smart pointer if there is no more reference to it.

A reference count is intrusive if it is stored in the object itself. Thus, a class has to provide a
reference count to be used with an intrusive smart pointer.

There are several implementations of smart pointers available for C++. The most basic
kind is the unique_ptr implementation of the standard template library. A unique_ptr
object owns the object it points to, meaning that no other pointer to it is allowed. Therefore,
copying a unique pointer is prohibited and only move semantics8 are allowed. Moving the
content of one unique pointer to another transfers ownership atomically and guarantees that

8A move statement shifts the content of one object to another, e.g., after the statement a=b is a a copy of
b (a==b returns true), while the statement a=std::move(b) transfers state and content of b to a.
Thus, a represents the old value of b and b is empty.

4 DESIGN OF LIBCPPA 22

only one unique pointer at a time is pointing to a particular object. The pointed object is
destroyed in the destructor of unique_ptr if the internal pointer is not nullptr.

Figure 11: Smart pointer timings for GCC (Abrahams et al., 2001))

Figure 12: Smart pointer timings for MSVC (Abrahams et al., 2001))

Figures 11 and 12 compare several smart pointer implementations (Abrahams et al., 2001)
compiled with GCC (GNU compiler collection) and MSVC (Microsoft R© Visual C++). The
results are compared to raw pointers as well as an implementation without reference counting

4 DESIGN OF LIBCPPA 23

at all (Dumb). Intrusive uses a reference count stored in the object itself. Simple Counted
uses a separate, heap allocated reference count. Linked is an implementation using an
intrusive linked list in the object where all smart pointer instances pointing to it are stored.
An object has no more references if the list is empty. Special Counted is a non-intrusive
reference count similar to Simple Counted but uses a special purpose allocator. Cyclic uses
an intrusive reference count and stores each pointed object in a list for cycle detection.

Intrusive pointers outperform any other smart pointer implementation. The downside of this
approach is, that it affects client code by forcing classes to provide a reference count. This
downside is negligible if the decision to use intrusive reference counting is made at the be-
ginning of the design phase and all classes of a library are designed with reference counting
garbage collection in mind.

4.2.1 Base Class for Reference Counted Objects

The class ref_counted is the base for all reference counted classes. It provides an
atomic, lock-free reference count to allow a subclass to be used with intrusive smart pointers.

+ref()
+deref(): bool
+unique(): bool

ref_counted

Figure 13: Base class for reference counting

Figure 13 shows the interface of ref_counted. The member function ref increases the
reference count by one. deref decreases the reference count by one and returns true
if there are still one or more references left to the object. The member function unique
returns true if there is exactly one reference to the object.

libcppa provides two smart pointer implementations designed along with
ref_counted: intrusive_ptr and cow_ptr. The first is a straightforward smart
pointer implementation that mimics a pointer with automatic destruction but no additional
functionality. The second implements a copy-on-write (CoW) strategy.

4.2.2 Copy-On-Write

Copy-on-write (CoW) is an optimization strategy to minimize copying overhead with call-
by-value semantic. The message passing implementation of libcppa uses a call-by-value

4 DESIGN OF LIBCPPA 24

semantic. This would cause multiple copies of a message if it is send to more than one actor.
A message can be shared among several actors as long as all participants only demand read
access. An actor copies the shared object when it demands write access and is only allowed
to modify its own copy. Thus, race conditions cannot occur and each object is copied only if
necessary.

The template class cow_ptr implements a smart pointer with CoW semantic. It requires
an object O of type T to provide the same member functions ref_counted does and an
addition copymember function returning a new instance with the same type and value as O.
Using the copy constructor of T to create such a copy would fail if O is of a derived type. The
member function unique of O is called whenever non-const dereferencing9 is requested.
A new copy using the corresponding member function is created, if an object is not unique.
Afterwards, cow_ptr decreases the reference count of O and points to its copy O′ that can
be safely modified.

9Non-const dereferencing allows to modify an object, while const dereferencing grants read access only,
e.g., assuming two pointer to an integer: int i=0; int* pi=&i; int const* ci=&i;, the
expression *pi is a non-const dereferencing, allowing to modify the value of the pointed object: *pi=2. The
expression *ci is a const dereferencing and the expression *ci=2 would cause a compiler error.

4 DESIGN OF LIBCPPA 25

4.3 Designing an Actor Semantic for C++

In this section, we extend the C++ programming language with message-passing capabilities
conforming to the actor model. We will introduce new keywords as well as new statements to
the syntax of C++ and discuss the semantics of the introduced extensions afterwards. This
language extension is mapped to an internal Domain-Specific Language (DSL) later on.

4.3.1 Keywords and Operators

self
Identifies the current actor, similar to this in an object-oriented context.

receive
Begins a receive statement.

after
Defines a timeout within a receive statement.

anything
Wildcard for pattern expressions matching any number of types.

<-
This binary operator sends a message given as right operand to an actor given as left
operand.

4 DESIGN OF LIBCPPA 26

4.3.2 Syntax Extension

The syntax rules type-id, identifier and literal are according to the C++ syn-
tax definitions, base-stmt refers to the original statement definition (ISO, 2011, p.
1190, p. 22, p. 1178 and 1184). We extend10 the C++ syntax with the following Extended
Backus–Naur Form (EBNF) rules.

1 nondigit = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h"
2 | "i" | "j" | "k" | "l" | "m" | "n" | "o" | "p"
3 | "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x"
4 | "y" | "z" | "_"
5 | "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H"
6 | "I" | "J" | "K" | "L" | "M" | "N" | "O" | "P"
7 | "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X"
8 | "Y" | "Z"
9 nonzero-digit = "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8"

10 | "9"
11 digit = "0" | nonzero-digit
12 whitespace = " " | <tab> | <newline>
13 _ = { whitespace }
14 pattern-brick = "anything"
15 | (type-id [_ identifier]
16 [_ "=" _ (identifier | literal)])
17 | (identifier | literal)
18 pattern = pattern-brick { _ "," _ pattern-brick }
19 rcv-case = "(" _ pattern _ ")" _
20 "{" _ { statement } _ "}"
21 duration = nonzero-digit { digit } ("sec" | "msec")
22 timeout = "after" _ duration _ "{" _ { statement } _ "}"
23 behavior-stmt = "{" _
24 ((rcv-case _ { rcv-case _ } [timeout])
25 | timeout)
26 _ "}"
27 receive-stmt = "receive" _ behavior-stmt
28 send-stmt = identifier _ "<-" _ "{" _
29 (identifier | literal) _
30 { "," _ (identifier | literal) _ }
31 "}" _ ";"
32 statement = receive-stmt | send-stmt | base-stmt

10digit, nondigit and nonzero-digit are already identically defined and thus not added. They are
defined here for reasons of clarity and comprehensibility.

4 DESIGN OF LIBCPPA 27

4.3.3 Semantic of Send and Receive Statements

We introduced syntactic rules to extend the C++ programming language with a receive state-
ment and a send statement. A message is a tuple of values with size ≥ 1. The send
statement is basically a simplification and could be actually expressed by a function as well.
The receive statement, on the other hand, adds the required message-passing semantic
to the language. A receive statement is a selection control mechanism comparable to the
switch statement. An incoming message is compared to the patterns in declaration order and
the corresponding code of the first matching pattern is executed. Further patterns are not
evaluated, since receive has an at most once semantic. This is a mailbox-based message
processing approach as described in Section 2.4.1. An example:

1 receive {
2 (int = 1, double val) {
3 // ... case 0 ...
4 }
5 (int val1, double val2) {
6 // ... case 1 ...
7 }
8 after 0sec {
9 // ... timeout ...

10 }
11 }

This receive statement evaluates a behavior-stmt that creates a partial function f as
discussed in Section 2.4.2. f is undefined for a given message x if none of the given patterns
matches x. The partial function type of f behaves according to the following pseudo code.

1 class f:
2 is_defined_for(x):
3 return x.size() == 2
4 && x.typeAt(0) == typeid(int)
5 && x.typeAt(1) == typeid(double)
6 handle_message(x):
7 assert(is_defined_for(x))
8 if x.at(0) == 1:
9 // ... case 0 ...

10 else:
11 // ... case 1 ...
12 handle_timeout():
13 // ... timeout ...

Note that case 0 would never be evaluated if we would swap the declaration order.

4 DESIGN OF LIBCPPA 28

Receive statements block the calling actor until it received a message matched by one of
the given patterns or an optional timeout occurs. An empty receive block would always be a
deadlock and is thus prohibited by the syntax definition. A timeout with a zero-time duration
as in line 11 of the example above can be used to obtain a non-blocking receive. An actor
immediately executes the timeout if no message in its mailbox was matched.

It is possible to nest receive statements, as illustrated by the following example program.

1 #include <iostream>
2 using std::cout;
3 using std::endl;
4 int main()
5 {
6 self <- { 0.0 }; // msg1
7 self <- { 0.0f, ’a’ }; // msg2
8 self <- { ’a’, 0.0 }; // msg3
9 self <- { 1, 1.0 }; // msg4

10 self <- { 2, 2.0 }; // msg5
11 self <- { 3.0 }; // msg6
12 for (;;)
13 receive {
14 (int = 1, double val) { // alternative: (1, double val)
15 cout << "case1: " << val << endl;
16 }
17 (int val1, anything, double val2) {
18 cout << "case2: " << val1 << ",...," << val2 << endl;
19 }
20 (double val1) {
21 receive { // nested receive
22 (double val2) {
23 cout << "case3: " << val1 << "," << val2 << endl;
24 }
25 }
26 }
27 (float val, anything) {
28 cout << "case4: " << val << ",..." << endl;
29 }
30 (anything) { cout << "case5" << endl; }
31 after 1sec {
32 cout << "timeout" << endl;
33 return 0;
34 }
35 }
36 }

4 DESIGN OF LIBCPPA 29

The output of the example program will be:

case3: 0.0,3.0
case4: 0.0f,...
case5
case1: 1.0
case2: 2,...,2.0
timeout

The first message msg1 is a tuple with a single double element. Thus, it is matched by the
pattern in line 20. The nested receive statement accepts single double messages only. Thus,
all messages before msg6 are skipped. msg2 is a tuple with a float and a char element. It
is matched by the pattern in line 27 that matches any message with a float as first element
(the wildcard expression anything matches any number of additional elements). msg3 has
a char as first element, followed by a double. It is not matched by the pattern in line 17
because a char is not an int and the runtime is not allowed to implicit convert elements.
Thus, it is matched by the pattern in line 30 that matches any message. The two remaining
messages msg4 and msg5 are both matched by the pattern in line 17 (an int, followed by
any number of elements and a double as last element), but msg4 is handled by the pattern
defined in line 14 because it is declared first.

4.4 Unified Messaging for Groups and Actors

Sending a message to a group of actors should be equal to sending a message to a single
actor. In fact, a single actor is nothing else but a list of actors with one element. Thus, the
abstract class group and the abstract class actor are both inheriting the same interface:
channel.

A channel is a software entity that can receive asynchronous messages. More precisely,
messages are enqueued to a channel since the sender can assume that its message is
stored in the buffer of the asynchronous communication system.

+enqueue(sender: actor, msg: any_tuple)
channel

virtual void enqueue(actor* sender, any_tuple&& msg) = 0;
virtual void enqueue(actor* sender, const any_tuple& msg) = 0;

Figure 14: channel interface

4 DESIGN OF LIBCPPA 30

Figure 14 shows the channel interface along with the actual C++ signatures. The member
function enqueue is overloaded to allow for either copying or moving a tuple (see Section
4.7.1) to the receiver. The sender argument is optional, thus, can be set to nullptr. If set,
it allows the receiver to reply to a message.

4.5 Actors

An actor is the most fundamental communication primitive. It provides capabilities to receive
and send messages. However, there are several kinds of actors as well as several access
levels to actors.

The actor interface is essentially split in two. The first interface called actor provides all
operations needed for linking, monitoring and group subscriptions. The second interface is
local_actor. It represents the private access to an actor since only the actor itself is
allowed to dequeue a message from its mailbox. The keyword self that we introduced
earlier in Section 4.3.1 does have the type local_actor*.

+attach(what: attachable)
+detach(what: token)
+join(grp: group)
+leave(grp: group)
+link_to(other: actor)
+unlink_from(other: actor)
+id(): uint32_t

actor
+actor_exited(rsn: uint32_t)
+matches(what: token)

attachable

channel

actor_proxy
+quit(reason: uint32_t)
+dequeue(bhvr: behavior)
+trap_exit(): bool
+trap_exit(new_value: bool)
+last_dequeued(): any_tuple
+last_sender(): actor

local_actor

groupbehavior

+equals(other: token): bool
token

Figure 15: Actor interfaces with inheritance

Figure 15 shows a class diagram containing channel and local_actor as well as

4 DESIGN OF LIBCPPA 31

their inheritance relation. In addition, it shows the class actor_proxy that represents an
actor running on a different process or node. The interface attachable is a utility class
describing a handler that is called by the actor it is attached to if it finishes execution. This is
particularly useful to monitor actors. It is also possible to detach such a handler by using an
appropriate implementation of token.

4.5.1 actor Interface

An implementation of the actor interface shall implement all member functions according
to the definitions below. In addition, all member functions need to be implemented in a
thread-safe manner since other actors are allowed to call any of those member functions in
parallel.

attach(what: attachable)
Adds atomically what to an internal set of attachable instances if the actor did not
finished execution yet. Otherwise, what.actor_exited(reason) is called immediately
with reason set to the exit reason of the actor. The actor takes ownership of what.
Thus, it destroys what after calling what.actor_exited(). An actor calls all handlers
during its exit phase and empties its internal set of attachable instances afterwards.

detach(what: token)
Removes each a from the internal set of attachable instances with a.match(what) =
true without calling actor_exited().

join(grp: group)
Causes the actor to subscribe the group grp if it did not finished execution yet. Does
nothing if the actor already subscribed to grp.

leave(grp: group)
Causes the actor to unsubscribe the group grp. Does nothing if the actor does not
have a subscription to grp.

link_to(other: actor)
Causes this actor to enable a link between itself and other. The actor sends an exit
message to other immediately if he did finished execution. This member function has
no effect if this actor is already linked to other.

unlink_from(other: actor)
Causes this actor to remove a link between itself and other. This member function has
no effect if this actor is not linked to other.

4 DESIGN OF LIBCPPA 32

id(): uint32_t
Returns the identifier of this actor. This identifier is guaranteed to be unique in the
actors process.

4.5.2 local_actor Interface

The local_actor interface is only accessible from an actor itself. Thus, all member
functions can safely assume that they will never be called in parallel.

quit(reason: uint32_t)
Finishes execution of this actor by throwing an exception of the type actor_exited
with reason. Before throwing the exception, the actor has to call and destroy all
attachable instances in its local set as well as leaving all joined groups and send
exit messages to all of its links.

dequeue(bhvr: behavior)
The argument bhvr is a representation of a partial function with optional timeout. This
member function performs a receive operation according to the pseudo code in Section
4.3.3 with P = bhvr.

trap_exit(): bool
Returns true if this actor treats exit messages as ordinary messages that could be
received and handled manually. Otherwise, f alse is returned if this actor finishes
execution as soon as it receives an exit message with non-normal exit reason.

trap_exit(new_value: bool)
Changes the way an actor handles exit messages as described for trap_exit():
bool.

last_dequeued(): any_tuple
Returns the message that was last recently dequeued from this actor’s mailbox.

last_sender(): actor)
Returns the sender of the last recently dequeued message. It is optional to define a
sender for a message, thus, the result could be null ptr.

4 DESIGN OF LIBCPPA 33

4.5.3 Implicit Conversion of Threads to Actors

An actor semantic needs to be consistent. Therefore, the introduced keyword self is not
allowed to be invalid or to return null ptr. Otherwise, it could not be guaranteed that a receive
or send statement never fails. This implies that a non-actor caller, e.g., a thread, is converted
to an actor if needed. The example in Section 4.3.3 assumed main to be an actor without
calling any function beforehand. Thus, the keyword self cannot be implemented as a well-
known local, thread-local, or global variable similar to this. On each access, the runtime
system has to verify the value of self and must create an instance of local_actor if
needed.

4.5.4 Cooperative Scheduling of Actors

An actor library needs to schedule actors in an efficient way, as mentioned in Section 4.1.2.
An ideal way to ensure fairness in an actor system requires preemptive scheduling. A fair
system would guarantee that no actor could starve other actors by occupying system re-
sources. However, one needs unrestricted access to hardware or kernel space to implement
preemptive scheduling, since it needs hardware interrupts to switch between two running
tasks. No operating system can allow unrestricted hardware or kernel space access to a
userspace application for obvious reasons.

In general, userspace schedulers cannot implement anything but cooperative scheduling.
But there is some design space to make context switching implicit. The two operations
each actor uses frequently are sending and receiving of messages. Thus, the library could
switch the actor’s context back to the scheduler, whenever it sends or receives a message.
An ordinary workflow of an actor is receiving messages in a loop and sending messages
either as part of its message processing or after computing some result. Thus, interrupting
an actor during send would probably interrupt an actor during its message processing, while
interrupting it during receive seems natural in this workflow. Furthermore, we need to support
interruption during receive since an actor is not allowed to block while its mailbox is empty.
Instead, an actor returns to scheduler and is re-scheduled again after a new message arrives
to its mailbox.

A thread that uses the keyword self to send and receive messages is not affected by
the cooperative scheduling. Thus, developers can choose to execute an actor in its own
thread if it needs blocking system calls because, this would possibly starve other actors in a
cooperative scheduling.

4 DESIGN OF LIBCPPA 34

4.6 Event-Based Actors

We introduced an approach to extend C++ with a general actor semantic in Section 4.5. This
extension fits seamlessly into C++ concerning program execution and flow control. An actor
is blocked, or at least allows the scheduler to interrupt its computation during receive and
continues execution from the receive block on afterwards. This is the usual behavior of any
language construct in a procedural programming language using a stack. Therefore, each
actor needs to have its own stack in our presented approach. This is not much of an issue
in systems consisting of a few hundreds or even a few thousand actors. However, it does
become an issue in large-scale actor systems or on platforms with limited memory.

As an example for a current mainstream system: Mac OS X Lion defines the two constants
SIGST KSZ = 131072 and MINSIGST KSZ = 32768 in its system headers. SIGST KSZ
is the recommended stack size in bytes and MINSIGST KSZ is the minimum allowed stack
size in bytes. Assuming a system with 500,000 actors, one would require a memory usage of
at least 15 GB of RAM for stack space only. This would rise up to 61 with the recommended
stack size instead in use. This clearly does not scale well for large systems. To reduce
memory usage and scale up to large systems, we provide a second, event-based actor
approach that is not callback-based.

4.6.1 Stacked and Non-Stacked Actor Behavior

Callback-based message processing cannot prioritize messages since the callback is in-
voked by the runtime system usually in arrival order, and thus has a semantic different from
our mailbox-based actors using the receive statement. Therefore, we use a behavior-based
API with mailbox-based message processing.

+become(bhvr: behavior)
event_based_actor

+become(bhvr: behavior)
+unbecome()

stacked_event_based_actor

local_actor

fsm_actor

Figure 16: Event-based actor classes

4 DESIGN OF LIBCPPA 35

An event-based actor sets its required behavior as a partial function using the become mem-
ber function. This partial function is used until the actor replaces it by invoking become

again. Thus, both actor implementations in libcppa use a behavior-based approach as
described in Section 2.4.2.

The class stacked_event_based_actor stores previously used partial functions in
LIFO order, allowing an actor to return to its previous behavior by using the unbecome
member function.

4.6.2 Actors as Finite-State Machines

With the become semantic, one could model an actor as a special case of finite-state
machines by using member variables storing a particular behavior acting as states. The
class fsm_actor should encourage developers to do so. It does not provide any member
function but calls become(init_state) in its constructor where the member variable
init_state must be defined by any class derived from fsm_actor.

BA

b

a

a

E

¬a¬b

¬a

Figure 17: Simple finite-state machine

Figure 17 shows a simple finite-state machine (FSM) providing the states A, B, and E with
the transition conditions a and b. E is used as error state if the FSM receives an unexpected
token. This FSM is implemented by the following example class.

4 DESIGN OF LIBCPPA 36

1 class simple_fsm : public fsm_actor {
2 behavior state_a = {
3 (’b’) { become(state_b); }
4 (anything) { become(error_state); }
5 };
6 behavior state_b = {
7 (’a’) { become(state_a); }
8 (anything) { become(error_state); }
9 };

10 behavior init_state = {
11 (’a’) { become(state_a); }
12 (anything) { become(error_state); }
13 };
14 behavior error_state = {
15 (anything) { /* ... */ }
16 };
17 };

Providing an individual constructor is not necessary if a class is derived from fsm_actor.
All states could be declared with non-static member initialization introduced by C++11 as
our example illustrates.

Our approach does not cover non-deterministic state machines. Furthermore, asynchronous
message-passing differs from transition-based processing of the mathematical model of
finite-state machines, e.g., mailbox-based message processing allows prioritizing of mes-
sages. However, finite-state machines are well-known in computer science and have proven
useful in designing software systems, since this design pattern leads to small, very well
testable software components.

4.7 Messages

The statement x <- { 1, 2, 3.0 } enqueues a tuple with three elements to
x. Usually, a developer does not need to access the underlying tuple implemen-
tation. Elements are accessed by pattern matching implicitly, e.g., the statement
receive { (int arg0, int arg1, double arg2) { /*bhvr1*/} } matches
tuples with three elements consisting of two int values followed by a double value and
invokes bhvr1 with the three tuple elements as arguments. A developer may access
the received tuple by calling self->last_dequeued(), which returns an object of type
any_tuple, representing a tuple with no static type information. This allows developers to
access elements matched by anything that are not accessible otherwise.

4 DESIGN OF LIBCPPA 37

4.7.1 Copy-On-Write Tuples

A message could be send to multiple receivers, e.g., the statement x <- { 1, 2, 3.0 }

has any number of receivers, as described in Section 4.4. Since messages always follow
call-by-value semantic, sending a message to multiple actors would require multiple copies
of the message. We use a copy-on-write implementation as presented in sec. 4.2.2 to avoid
both unnecessary copies and race conditions.

template<typename... Types>
tuple<Types...> make_tuple(const Types&... args);

template<size_t N, typename... Types>
const Types[N]& get(const tuple<Types...>& tup);

template<size_t N, typename... Types>
Types[N]& get_ref(tuple<Types...>& tup);

template<typename... Types>
tuple_view<Types...> tuple_cast(const any_tuple& tup);

template<size_t N, typename... Types>
const Types[N]& get(const tuple_view<Types...>& tup);

template<size_t N, typename... Types>
Types[N]& get_ref(tuple_view<Types...>& tup);

bool empty() const;

const void* at(size_t p) const;

const uniform_type_info& utype_info_at(size_t p) const;

void* mutable_at(size_t p);

template<typename... Args>
any_tuple(const tuple<Args...>& tup);

template<typename... Args>
any_tuple(const tuple_view<Args...>& tup);

any_tuple

template<typename...>
tuple_view

namespace cppa

template<typename...>
tuple

Figure 18: Copy-on-write tuples with C++ signatures

Fig. 18 shows all representations of tuples with C++ signatures. Each non-const access to a
tuple representation detaches its value if it is shared. All three tuple classes have a copy-on-
write pointer to the data but provide different functionality. Note: Types[N] is not legal C++

4 DESIGN OF LIBCPPA 38

syntax. It is used here as simplification for representing the N-th element of the template
parameter pack Types.

tuple
Is a one-to-one representation of the internal data. Values are accessed via the free
functions get and get_ref. The difference between those two functions is that
get_ref grants non-const access. Thus, one has always a local copy that could be
mutated after calling get_ref.

tuple_view
Does provide the same code access via get and get_ref but is not a one-to-one
representation of the internal data. A view could hide values of the internal data. For
example, receive { (int arg0, anything, double arg2) {/*bhvr*/} }

accesses the first and the last element of a tuple only. bhvr is invoked with
a tuple_view<int,double> that hides all elements of the original message
matched by anything.

any_tuple
Represents a tuple without static types. It can be queried for the number of values
as well as the type of each individual value. It grants access to the values via raw,
untyped pointers. One can either cast each single element after a runtime type check
at runtime or create a tuple_view to get a representation of the same data with
static type information. A view can access either all data elements of the original
any_tuple using tuple_cast or could be created using a pattern to hide some
values.

4.7.2 Atoms

Assume an actor provides a mathematical service for integers. It takes two arguments,
performs a predefined operation and returns the result. It cannot determine an operation,
such as multiply or add, by receiving two operands. Thus, the operation must be encoded
into the message. The following example compares different approaches to do this.

4 DESIGN OF LIBCPPA 39

1 #define ADD_REQ 0
2 #define MULTIPLY_REQ 1
3 enum class req { add, multiply };
4 struct add_req { int lhs; int rhs; };
5 struct multiply_req { int lhs; int rhs; };
6 // ...
7 void math_actor() {
8 for (;;) {
9 receive {

10 // approach 1
11 (add_req req) { reply(req.lhs + req.rhs); }
12 (multiply_req req) { reply(req.lhs * req.rhs); }
13 // approach 2
14 (ADD_REQ, int lhs, int rhs) { reply(lhs + rhs); }
15 (MULTIPLY_REQ, int lhs, int rhs) { reply(lhs * rhs); }
16 // approach 3
17 (req::add, int lhs, int rhs) { reply(lhs + rhs); }
18 (req::multiply, int lhs, int rhs) { reply(lhs * rhs); }
19 // approach 4
20 ("add", int lhs, int rhs) { reply(lhs + rhs); }
21 ("multiply", int lhs, int rhs) { reply(lhs * rhs); }
22 }
23 }
24 }

The first approach uses message types, types that are used for messaging and do not have
any other purpose than encapsulating values. Using message types is verbose since one
has to create one type for each operation of an actor. Furthermore, the definition of the mes-
sage types must be available to all participants of a communication. Therefore, developers
have to maintain several header files containing message types. The second approach uses
symbolic, C-like constants and is obviously the worst solution since the implicit type of the
constants is int, which easily could lead to misinterpretation. An enumeration type, as used
in the third approach, solves the issue of ambiguous type, but a developer would have a
similar maintaining overhead as in the first approach, since the enum definition needs to be
available to each participant of the communication. The last approach uses string constants.
Strings are not a special purpose type, thus, there is still some possibility of misinterpreta-
tion. But string constants come with a cost since strings are always allocated on heap and
string comparison is more expensive than integer comparison.

The Erlang programming language introduced an approach to use non-numerical constants,
so-called atoms (Armstrong, 2007), which have an unambiguous, special-purpose type and
do not have the overhead of string constants. Atoms fill the gap between fast but inflexi-

4 DESIGN OF LIBCPPA 40

ble enums, causing maintaining overhead and expensive but flexible string constants. We
decided to not include atoms to our syntax extension since it could be done as well with
a user-defined literal in C++. Therefore, we introduced the suffix _atom as shown in the
following code snippet.

1 receive {
2 (add_atom, int lhs, int rhs) { /*...*/ }
3 (multiply_atom, int lhs, int rhs) { /*...*/ }
4 }

Atoms are mapped to integer values at compile time. An implementation shall use a collision-
free mapping. Thus, atoms combine performance of integer constants with the flexibility of
string constants.

4.8 Group Interface

The class group is a factory managing user-defined group modules. Each module imple-
ments a group communication technology.

+get(tech_name: string,
 group_id: string): group
+add_module(m: module)

group

+enqueue(sender: actor,
 msg: any_tuple)

channel

+get(id: string): group
+technology(): string

module

Figure 19: Group and related classes

Figure 19 shows a UML class diagram for the class group and its nested class module

which one has to implement in order to add a new group communication technol-
ogy to a libcppa application. A module has to provide a factory member function
group get(string id) that returns a technology-specific group instance for the group
identified by id. A group implementation using IP multicast for example would expect
a valid IP group address such as ”239.1.2.3“ for IPv4 or ”ff05::1:3“ for IPv6 as id pa-
rameter. An implementation using a locator/ID split probably would expect an URI like
”sip://news@cnn.com“. However, groups always behave similar after getting an instance
via the factory function get of class group. Actors can join/leave such groups without any
knowledge about the underlying technology.

4 DESIGN OF LIBCPPA 41

4.9 Serialization

Serialization is a requirement for network transparency. C++ does neither support platform-
independent serialization by itself, nor does it support the required runtime type representa-
tion, such as reflections to implement serialization. Thus, we need a minimal runtime-type
information (RTTI) system that allowing us to implement serialization on top of it.

4.9.1 Uniform Type Information

The C++ programming language does have very minimalist RTTI support. It provides the
operator typeid that returns a reference to a type_info object. That object could be
compared to other type_info objects and has the two member functions before and
name. The first one evaluates the collating order for types. The latter returns a string identi-
fying the represented type. However, the format of the returned string is not specified in the
C++ standard specification and is thus platform-dependent.

libcppa implements a runtime type information class of its own, since type_info does
not provide required functionality such as creation of new instances of the represented type
or support for user-defined serialization.

+type(): uniform_type_info
object

primitive_variant

+equals(type: uniform_type_info): bool
+equals(type: std::type_info): bool
+name(): std::string
+create(): object
+deserialize(from: deserializer): object
+serialize(what: object, to: serializer)

uniform_type_info

+begin_object(type: std::string)
+end_object()
+begin_sequence(size: size_t)
+end_sequence()
+write_value(v: primitive_variant)
+write_tuple(v: primitive_variant[*])

serializer
+seek_object(): std::string
+peek_object(): std::string
+begin_object(type: std::string)
+end_object()
+begin_sequence(): size_t
+end_sequence()
+read_value(type: primitive_type):
 primitive_variant
+read_tuple(types: primitive_type[n]):
 primitive_variant[n]

deserializer

primitive_type

Figure 20: Class diagram containing all serialization related classes

Figure 20 shows the interface uniform_type_info as well as its related classes for
serialization and deserialization. The complementary class object represents an instance
of any type. It provides access to its value through get or get_ref as shows in Figure 21.

4 DESIGN OF LIBCPPA 42

const uniform_type_info* uniform_typeid(const std::type_info&);

template<typename T>
const uniform_type_info* uniform_typeid();

template<typename T>
T& get_ref(object& obj);

template<typename T>
const T& get(const object& obj);

namespace cppa

Figure 21: Related functions for unfiorm_type_info and object

Figure 21 also shows the accessor functions for the uniform_type_info singletons.
Each type_info instance does have at most one corresponding uniform_type_info

instance.

The interfaces serializer and deserializer have a begin/end protocol to allow for
XML-like data representations as well as a binary data format. The deserializer inter-
face has two member functions to get the type name of the next object in the underlying data
source. The seek_object member function returns the type name and modifies the posi-
tion in the data source to handle a following call to begin_object, whereas peek_object
does not manipulate the read position. The class primitive_variant encapsulates any
primitive value such as UTF-8, UTF-16 and UTF-32 strings, signed and unsigned integers as
well as floating point values. The enumeration primitive_type denotes the type of such
a primitive value.

4.9.2 Announcing User-Defined Types

The compiler creates a type_info instance for each type. However, it is not possible to cre-
ate the corresponding uniform_type_info automatically, neither at compile-time, nor at
runtime due to the lack of reflections. Thus, a user has to announce all user-defined types for
messaging to enable serialization for the particular type by creating a uniform_type_info
instance for each user-defined type. For trivial types, this can be done semi-automatically by
giving pointers to all members of a class, as the following example illustrates.

1 struct my_msg_type { int a; float b; };
2 int main() {
3 announce<my_msg_type>(&my_msg_type::a, &my_msg_type::b);
4 // ...
5 };

4 DESIGN OF LIBCPPA 43

A pair of getter and setter member function pointers could be used, if a type does not al-
low public access to its members. However, this approach is limited to trivial types. A
more complex data structure, such as a tree, still requires provisioning of a hand-written
uniform_type_info implementation by the developer.

4.10 Network Transparency

Network transparency hides from an actor whether another actor runs on the same process
or not. Each operation like linking and sending messages behaves as if the other actor ran
in the same process. The only difference between a remote actor and a local actor is its exit
reason on a connection error.

4.10.1 Actor Addressing

Each actor needs a unique address so that other actors can send messages to it. This ad-
dress is not needed for in-process communication, since actors use the actor interface to
communicate with each other. However, the address is inevitable in distributed systems. We
designed the address of an actor to have three parts. The first part uniquely identifies the net-
work node. The second part is the process id given by the operating system. The last part is
the ID of an actor itself returned by the member function uint32_t actor::id() const.

The node ID is a 160 bit hash of the Ethernet address of the first network device and the UUID
(Universally Unique Identifier, Leach et al. (2005)) of the root partition of the file system. This
ID is always the same for a given node as long as the hardware of the system remains
unchanged. A random number can be used instead of the Ethernet address if the host
system uses hardware interfaces without Ethernet addresses.

4.10.2 Middle Men and Actor Proxies

The class actor_proxy was introduced in Section 4.5. It implements the actor interface
and forwards all messages it receives to the middle man (MM) that created it. The MM is
a software component that encapsulates network communication and manages all connec-
tions and sockets. Furthermore, it creates instances of actor_proxy for known remote
actors.

4 DESIGN OF LIBCPPA 44

Network

Node A Node B

Actor 1 Actor 2

MM A MM B

Actor 2
Proxy

serialize deserialize

Actor 1
Proxy

Figure 22: Communication to a remote actor

Figure 22 shows a communication scenario for two actors running on different network
nodes. Actor1 (A1) sends a message to Actor2 (A2) represented by Actor2 Proxy
(A2P). A2P forwards the received message to its MM, which serializes the message and
sends the serialized byte stream to the MM of node B. The MM of B then creates a proxy
for A1 if needed and sends the deserialized message to A2 with sender set to Actor1
Proxy. Both middle men are invisible to A1 and A2. The reversed path for the message will
be taken if A2 replies to the received message.

Linking of actors slightly differs for an actor (A1) linked to a remote actor (A2). The proxy of
A2 sends a special message to its MM whenever it becomes linked to another actor. The
MM then sends this message to the MM of the original A2 instance. Finally, A2 becomes
linked to the proxy of A1, too.

4 DESIGN OF LIBCPPA 45

Network

Node A Node B

Actor 1 Actor 2

MM A MM B

Actor 2
Proxy

deserialize serialize

Actor 1
Proxy

link

Exit
messagelink Exit message

from Actor 2
link

Figure 23: Links in a distributed system

Figure 23 shows a scenario for links in a distributed system. Actor1 is linked to the proxy
of Actor2 and vice versa. Thus, whenever an actor finishes execution, it sends an exit
message to all of its links including proxies of remote actors it is linked to. The exit messages
send to proxies then are forwarded like any other message.

4.10.3 Publishing Actors and Connect to Remote Actors

The function void publish(actor_ptr whom, uint16_t where)11 causes the MM
to create a socket listening on port where. It throws an exception if the given port is already
in use by another socket.

The function actor_ptr remote_actor(string host, uint16_t port) could be
used to get a proxy representation of the actor running on the network node host published
at port port.

11The type actor_ptr is a smart pointer to an actor.

5 IMPLEMENTATION OF LIBCPPA 46

5 Implementation of libcppa

This section presents our implementation of the software design introduced in Section 4.
We will transform the language extensions to an internal domain-specific language (DSL) for
C++, and discuss trade-offs we had to decide about during this process. After the DSL, we
will take a closer look at implementations of individual software components including class
definitions and source code as well as arguments for particular choices of algorithms.

5.1 Actor Semantic as Internal Domain-Specific Language for C++

This section covers the mapping of our syntax extension to an internal domain-specific lan-
guage, as well as our implementation of atoms. Each subsection starts with a conceptual
discussion from a user’s point of view, followed by the actual implementation its discussion.

5.1.1 Atoms

We introduced the suffix _atom in Section 4.7.2. An implementation would be rather simple
and straight forward by defining a mapping of strings to integer values. Unfortunately, the
C++ ISO standard is yet not fully implemented by compiler vendors. Currently, no compiler
vendor did implement user-defined literals in a non-beta release. However, the value of an
atom should be an integer value computed at compile time.

We decided to use a constexpr function that converts a string constant to a 6-
bit encoding stored in a uint64_t. The conversion is done at compile time due
to constexpr. This is guaranteed to be collision-free though it limits atom lit-
erals to ten characters and prevents special characters. Legal characters are
“_0-9A-Za-z” and the whitespace character. The value of an atom is represented by
enum class atom_value : uint64_t { unused = 37337 }. An enum class

is a strongly typed enumeration and thus not implicitly convertible to any other type. The
implementation of the converting function atom reads:

5 IMPLEMENTATION OF LIBCPPA 47

1 constexpr uint64_t next_val(uint64_t val, size_t char_code) {
2 return (val << 6) | encoding_table[char_code];
3 }
4 constexpr uint64_t atom_val(char const* cstr, uint64_t val = 0) {
5 return (*cstr == ’\0’)
6 ? val
7 : atom_val(cstr + 1, next_val(val, *cstr));
8 }
9 template<size_t Size>

10 constexpr atom_value atom(char const (&str) [Size]) {
11 // last character is the null terminator
12 static_assert(Size <= 11, "only 10 characters are allowed");
13 return static_cast<atom_value>(detail::atom_val(str, 0));
14 }

The constexpr array encoding_table maps ASCII encoded characters to our 6-bit en-
coding. The calculated value is explicitly casted to the enum type in line 13. Still, the internal
representation of atom_value is an integer and two values could be compared as usual,
even though the values are not declared in the enum definition.

This approach provides an invertible mapping of string constants with ten or less char-
acters to a 64-bit integers. But it cannot ensure that users only use legal charac-
ters. Each invalid character is mapped to the whitespace character, why the assertion
atom("!?") != atom("?!") is not true. However, this issue will fade away after user-
defined literals become available in mainstream compilers.

5.1.2 Receive Statement and Pattern Matching

We introduced our receive statement for our fictional extension of the C++ programming
language in Section 4.3.3 with the example below.

1 receive {
2 (int =1, double v2) { /* ... */ }
3 (int v1, double v2) { /* ... */ }
4 after 0sec { /* ... */ }
5 }

This short example shows all important characteristics of our pattern matching approach.
The optional timeout is always the final statement in a receive block. It is possible to match
for type and value as shown in line 2. However, we have to implement receive as a

5 IMPLEMENTATION OF LIBCPPA 48

function since we cannot introduce a new statement to the hosting language. Thus, we
need a representation for the matching rules as shown in line 2 and 3. We could use lambda
expressions rather than function bodies as a first attempt as the following example illustrates.

1 receive (
2 [](int =1, double v2) { /* ... */ },
3 [](int v1, double v2) { /* ... */ }
4);

This approach excludes the timeout but looks promisingly close to our design at first glance.
However, this is neither legal C++ code, since default parameters are not allowed if the
argument has successors with non-default parameters, nor is it possible to query such default
parameters. To work around, we have to split our behavior statements in two to implement
the required functionality. The first part creates a pattern that matches incoming messages.
The second part is a lambda expression that is invoked after the pattern matched a message.
The first statement needs to create an intermediate object that provides a binary operator
taking a lambda expression as argument. The operator then returns an invoke rule object
that consists of the pattern of the intermediate object and the given lambda expression. The
following example uses a template function to create the intermediate object for visualizing
this idea.

1 receive (
2 on<int =1, double>() >> [](int, double v2) { /* ... */ },
3 on<int, double>() >> [](int v1, double v2) { /* ... */ }
4);

Choosing an operator in C++ should always follow careful justification. One cannot introduce
a new operator to the C++ programming language. We decided to use the stream operator
“>>” (also called bit shift operator) for this purpose, thus, line 2 and 3 of the example above
could be read as ”an incoming message is streamed to the lambda expression on a match”.
Besides, operator “->” could not be used since it is unary, and choosing one of the other
binary operators would be misleading, since they have arithmetic, logical, comparison or
assigning semantic.

Still, the example code above is not legal C++ syntax, because template parameters cannot
have a value. Furthermore, the first parameter of the lambda expression in line 2 is useless
since we already know its value. The pattern in line 3 is redundant as we are basically
matching the parameter types of the lambda expression. Thus, the pattern could be deduced
from the given lambda expression. Our last example fixes all issues and is syntactically
correct.

5 IMPLEMENTATION OF LIBCPPA 49

1 receive (
2 on(1, val<double>) >> [](double v2) { },
3 on<float,anything,double>() >> [](float v1, double v2) { },
4 on_arg_match >> [](int v1, double v2) { },
5 after(std::chrono::seconds(1)) >> []() { }
6);

There are two ways of using the variadic template function on, either without arguments
and template parameters only, or the reverse. The function matches types only if used with
template parameters. The default for using it with arguments is to match for values. The
template function val creates a wrapper object to cause on to match for the type only for
this particular argument. The literal “1” has the implicit type int in C++.

The lambda expression following the intermediate object returned by on can have fewer
arguments. Any number of arguments can be skipped from left to right as shown in line 2.
This avoids redundant arguments as long as the elements in a message follow the convention
to put elements that are matched for their values to the beginning, respectively, left-hand side.

The type anything matches any number of elements of a message and is thus ignored in
the parameter list of the lambda expression as shown in line 3.

Line 4 demonstrates how to reduce unnecessary repetitions. The special-purpose constant
on_arg_match creates a pattern from the parameter list of the following lambda expression.
Thus, line 4 is equal to on<int,double>() >> [](int v1, double v2) { }.

Finally, line 5 shows the use of after in declaring a timeout with duration definition of the
C++ standard template library (STL). The following lambda expression must not have pa-
rameters and there is no further statement allowed after a timeout definition.

The code line on<int,double>() >> [](int v1, double v2) { } creates an ob-
ject of class invoke_rule. Thus, on<...>() has to return an intermediate object that
provides operator >>. The type invoke_rule_builder of this intermediate object is trans-
parent to the user and is thus put into the namespace detail. The code listing below shows
the shortened class definition of invoke_rule_builder.

5 IMPLEMENTATION OF LIBCPPA 50

1 template<typename... TypeList>
2 class invoke_rule_builder
3 {
4 // ...
5 public:
6 template<typename... Args>
7 invoke_rule_builder(const Args&... args) { /*...*/ }
8 template<typename F>
9 invoke_rules operator>>(F&& f) { return /*...*/ }

10 };

The class invoke_rule_builder is basically a wrapper around an instance of the tem-
plate class pattern and provides operator >> to build an invoke_rule object. The defi-
nition of pattern is as follows.

5 IMPLEMENTATION OF LIBCPPA 51

1 template<typename T0, typename... Tn>
2 class pattern<T0, Tn...>
3 {
4 detail::tdata<T0, Tn...> m_data;
5 const cppa::uniform_type_info* m_utis[size];
6 const void* m_data_ptr[size];
7 public:
8 static constexpr size_t size = sizeof...(Tn) + 1;
9 typedef util::type_list<T0, Tn...> tpl_args;

10 typedef typename util::filter_type_list<anything,tpl_args>::type
11 filtered_tpl_args;
12 typedef typename tuple_view_type_from_type_list
13 <filtered_tpl_args>::type
14 tuple_view_type;
15 typedef typename tuple_view_type::mapping_vector mapping_vector;
16 pattern() {
17 const cppa::uniform_type_info** iter = m_utis;
18 detail::fill_uti_vec<decltype(iter), T0, Tn...>(iter);
19 for (size_t i = 0; i < size; ++i)
20 {
21 m_data_ptr[i] = nullptr;
22 }
23 }
24 template<typename Arg0, typename... Args>
25 pattern(const Arg0& arg0, const Args&... args)
26 : m_data(arg0, args...)
27 {
28 bool invalid_args[] = { detail::is_boxed<Arg0>::value,
29 detail::is_boxed<Args>::value... };
30 detail::fill_vecs<decltype(m_data), T0, Tn...>(
31 0, sizeof...(Args) + 1,
32 invalid_args, m_data,
33 m_utis, m_data_ptr);
34 }
35 bool operator()(const cppa::any_tuple& msg,
36 mapping_vector* mapping) const {
37 detail::pattern_arg arg0(size, m_data_ptr, m_utis);
38 detail::tuple_iterator_arg<mapping_vector> arg1(msg, mapping);
39 return detail::do_match(arg0, arg1);
40 }
41 };

5 IMPLEMENTATION OF LIBCPPA 52

A pattern has the two arrays m_utis and m_data_ptr as well as a tuple m_data holding
values. The array m_utis holds each type given as template parameter with one excep-
tion. Each template parameter set to anything results in a nullptr at the corresponding
position in the array m_utis. The tuple m_data can be initialized with a subset of values.
The class detail::tdata<...> then initializes all unspecified values with their default
constructor. Furthermore, initializing a value of type T with a boxed<T> also uses default
construction. The array m_data_ptr is set to nullptr wherever the default constructor
was used to create the corresponding value in m_data.

The typedef mapping_vector is a fixed-size vector holding at most N elements, where
N is the number of template parameters passed to pattern. The actual pattern matching
is implemented in the function detail::do_match called in line 39. It returns true if
a tuple was matched by the pattern, otherwise it returns false. Furthermore, the given
vector mapping contains a valid mapping as a side effect on match. This mapping could be
used to create a tuple view as introduced in Section 4.7.1 from the any_tuple argument
msg in line 35. This vector is in fact used as a map with the index as key. For example,
a vector containing the elements (1,3,4) is interpreted as ((1,1), (2,3), (3,4)) meaning
that the first element of the view is equal to the first element of msg, the second element
of the view is equal to the third element of msg, and the third element of the view is equal
to the fourth element of msg. The resulting view then could be used to invoke a lambda
expression, since we could use the static type information of the view to use its elements as
arguments. The function detail::do_match takes two parameters. The first parameter
is a pattern iterator. The second parameter is an iterable representation of the incoming
message including the mapping vector. The function is implemented as follows.

5 IMPLEMENTATION OF LIBCPPA 53

1 template<typename VectorType>
2 bool do_match(pattern_iterator& iter,
3 tuple_iterator_arg<VectorType>& targ)
4 {
5 for (; !(iter.at_end()&&targ.at_end()); iter.next(),targ.next())
6 {
7 if (iter.at_end()) return false;
8 // nullptr == anything; perform submatching
9 else if (iter.type() == nullptr) {

10 iter.next();
11 if (iter.at_end()) return true;
12 VectorType mv;
13 auto mv_ptr = (targ.mapping) ? &mv : nullptr;
14 for (; !targ.at_end(); mv.clear(),targ.next()) {
15 auto arg0 = iter;
16 tuple_iterator_arg<VectorType> arg1(targ, mv_ptr);
17 if (do_match(arg0, arg1)) {
18 targ.push_mapping(mv);
19 return true;
20 }
21 }
22 return false; // no submatch found
23 }
24 // compare types
25 else if (!targ.at_end() && iter.type() == targ.type())
26 {
27 // compare values if needed
28 if (iter.has_value() == false
29 || iter.type()->equals(iter.value(), targ.value())) {
30 targ.push_mapping();
31 }
32 else return false; // values did not match
33 }
34 else return false; // no match
35 }
36 return true; // iter.at_end() && targ.at_end()
37 }

The parameter iter is a pattern iterator and provides the member functions next, at_end,
has_value, value and type. The parameter targ iterates over an any_tuple that
should be matched by the given pattern. It has a similar interface as iter, but adds a
push_mapping that pushes the current position to the mapping vector. Passing another

5 IMPLEMENTATION OF LIBCPPA 54

vector to push_mapping, as shown in line 18, adds all elements from the passed vector to
the internal vector.

A tuple is matched by a pattern if each element is equal in type and value, if specified in the
pattern. Those comparisons are done in line 25 to 34. The member functions type return
a pointer to a uniform type information object. Those pointers can be compared without
dereferencing them, since all uniform_type_info instances are singletons.

The type anything needs special treatment as it matches zero ore more elements in the tu-
ple. A tuple, or subtuple is always matched if anything appears as the last or only element
of the pattern. Thus, the function always returns true in this case (line 11). Otherwise, the
function calls itself recursively with the pattern iterator at the next position and increases the
position in the tuple in each iteration (line 14 to 22) until it reaches the end of the tuple without
match. A user of libcppa will barely ever need to use the pattern class. However, a
pattern could be used to create a view from a tuple as shown in the following example.

1 pattern<int,anything,double> p(1);
2 decltype(p)::mapping_vector mv;
3 any_tuple t = make_tuple(1, 2, 3, 4, 5, 6.0);
4 if (p(t, &mv)) {
5 tuple_view<int,double> tv(d, mv);
6 // or: decltype(p)::tuple_view_type tv(d, mv);
7 assert(get<0>(tv) == 1);
8 assert(get<1>(tv) == 6.0);
9 }

The template class invoke_rule_builder creates a pattern in its constructor from given
parameters and template parameters. The function on that we introduced earlier to define
the receive statement is an overloaded function defined as follows.

5 IMPLEMENTATION OF LIBCPPA 55

1 template<typename T>
2 constexpr typename detail::boxed<T>::type val() {
3 return typename detail::boxed<T>::type();
4 }
5 constexpr anything any_vals = anything();
6 template<typename... TypeList>
7 detail::invoke_rule_builder<TypeList...> on() {
8 return { };
9 }

10 template<typename Arg0, typename... Args>
11 detail::invoke_rule_builder
12 <typename detail::unboxed<Arg0>::type,
13 typename detail::unboxed<Args>::type...>
14 on(Arg0 const& arg0, Args const&... args) {
15 return { arg0, args... };
16 }
17 template<atom_value A0, typename... TypeList>
18 detail::invoke_rule_builder<atom_value, TypeList...> on() {
19 return { A0 };
20 }
21 // ...
22 template<atom_value A0, atom_value A1,
23 atom_value A2, atom_value A3,
24 typename... TypeList>
25 detail::invoke_rule_builder<atom_value, atom_value, atom_value,
26 atom_value, TypeList...> on() {
27 return { A0, A1, A2, A3 };
28 }

The first overload in line 6-9 is the simple case that matches types only. The second overload
in line 10-16 is the case that matches for values. A user can use the function val to match
for types only on a particular element and any_vals as wildcard expression. The last cases
are convenience overloads that allow up to four12 atoms to be used in front of a type-only
match as shown in line four and five of the usage examples below.

1 on<int,double>()
2 on(1,val<double>)
3 on(any_vals, val<double>) // ... equal to: on<anything,double>()
4 on<atom("foo"),int>() // ... equal to: on(atom("foo"),val<int>)
5 on<atom("one"),atom("two"),anything,int>()

12It is not possible to use two variadic template parameter arguments. For example,
template<int...,class...> will cause a compiler error. Thus, we decided to overload on
for up to four leading atoms. There should be seldom a use for more than one.

5 IMPLEMENTATION OF LIBCPPA 56

As mentioned earlier, an “on(...) >> ...” expression returns an invoke_rules

object. Such an object encapsulates a pattern and a lambda expression. There
is also a class timed_invoke_rules that encapsulates a timeout instead of a pat-
tern and a lambda expression. Objects of that type are created by operator >> of
timed_invoke_rule_builder as shown below.

1 template<class Rep, class Period>
2 constexpr detail::timed_invoke_rule_builder
3 after(const std::chrono::duration<Rep, Period>& d)
4 {
5 return { util::duration(d) };
6 }

Class duration in namespace util used in line 5 is a simple wrapper for timeout dura-
tions. It accepts seconds, milliseconds and microseconds. Statements beginning with after
have to have a return type different from statements beginning with on in order to ensure at
most one timeout specification. Finally, the function receive will cause a compile-time error
if used with more than one timeout specification. It is implemented as follows.

1 inline void receive(invoke_rules& rules) {
2 self->dequeue(rules);
3 }
4 inline void receive(timed_invoke_rules&& rules) {
5 timed_invoke_rules tmp(std::move(rules));
6 self->dequeue(tmp);
7 }
8 inline void receive(timed_invoke_rules& rules) {
9 self->dequeue(rules);

10 }
11 inline void receive(invoke_rules&& rules) {
12 invoke_rules tmp(std::move(rules));
13 self->dequeue(tmp);
14 }
15 template<typename Head, typename... Tail>
16 void receive(invoke_rules&& rules, Head&& head, Tail&&... tail) {
17 invoke_rules tmp(std::move(rules));
18 receive(tmp.splice(std::forward<Head>(head)),
19 std::forward<Tail>(tail)...);
20 }
21 template<typename Head, typename... Tail>
22 void receive(invoke_rules& rules, Head&& head, Tail&&... tail) {
23 receive(rules.splice(std::forward<Head>(head)),
24 std::forward<Tail>(tail)...);
25 }

5 IMPLEMENTATION OF LIBCPPA 57

The first two declarations in line 1 and 4 cover use cases with either a variable or an rvalue13

passed to receive. Declaration three and four in line 8 and 11 are analogues for usage
with timeout. The recursively implemented overloads in line 15 and 21 cover the use case
of receive with multiple parameters. The member function splice of invoke_rules
moves the content of the right-hand operand to the left-hand operand. It returns a refer-
ence to the left-hand operand unless the right-hand operand was a timed_invoke_rules
object. In this case, a new timed_invoke_rules object is returned with the con-
tent of both operands moved to it. The class timed_invoke_rules does neither pro-
vide a slice member function nor is a function overload of receive available with
timed_invoke_rules as first argument followed by any other argument. Thus, the re-
cursion ends on a timed_invoke_rules argument. Any additional argument after a
timed_invoke_rules object will cause a compiler error as shown in line 5 of the usage
example below.

1 receive(
2 on<int,double>() >> []() { /*...*/ },
3 on("hello world") >> []() { /*...*/ },
4 after(std::chrono::seconds(1)) >> []() { /*...*/ }
5 //, on<int>() >> []() { } [would cause a compiler error]
6);

It is also possible to store a behavior in a variable, since invoke_rules provides the op-
erator “,” to concatenate objects. Such concatenations have to appear in parentheses as
shown in the following example. The commas would separate variable declarations in C++ if
used without parentheses.

1 auto sample_behavior = (
2 on("hello world") >> []() { /*...*/ },
3 after(std::chrono::seconds(1)) >> []() { /*...*/ }
4);

The type of sample_behavior is timed_invoke_rules since concatenation uses the
same recursive implementation as receive does. Thus, the type depends on the initialization.
This might be an issue if a user wants to store a behavior in a member variable that should
carry both rules with and without timeout. Therefore, we provide the class behavior that
stores either an invoke_rules instance or a timed_invoke_rules and can be used
wherever a behavior is expected. The following example code illustrates such use.

13An rvalue identifies a temporary object or an operand of a move assignment.

5 IMPLEMENTATION OF LIBCPPA 58

1 behavior b = (
2 on("hello world") >> []() { /*...*/ },
3 after(std::chrono::seconds(1)) >> []() { /*...*/ }
4);
5 receive(b); // b stores a timed_invoke_rule
6 b = (
7 on<int,double>() >> []() { /*...*/ }
8);
9 receive(b); // b stores an invoke_rule

5.1.3 Receive Loops

The function receive is explicitly designed to be used with temporary objects. A receive
statement shall contain all patterns and lambda expression. Functionality should not be
spread, but written exclusively at the position of the receive statement. However, this ap-
proach comes at a performance cost if used in a loop as the following example illustrates.

1 for (;;) {
2 receive(
3 on("hello world") >> []() { /*...*/ },
4 after(std::chrono::seconds(1)) >> []() { /*...*/ }
5);
6 }

The receive statement in line 2 is nested in a loop. Thus, it creates identical temporary
objects in each iteration again and again. This may have serious performance impacts for
large receive statements. Therefore, we provide the three functions implementing a receive
loop without redundant object creation issues shown below.

1 receive_loop(/*behavior*/);
2 receive_while(/*lambda returning bool*/)(/*behavior*/);
3 do_receive(/*behavior*/).until(/*lambda returning bool*/);

The first function never returns. It is an endless loop receiving messages. The second loop
receives messages as long as the given lambda expression returns true. This is equal to
receive used in a while loop. The last loop receives messages until the given lambda returns
true. It is equal to a do..while loop in C++ except that it loops until the condition becomes
true while a do..while loop continues until the condition is false.

The following example compares two implementations of the same loop using do_receive
and a do..while loop.

5 IMPLEMENTATION OF LIBCPPA 59

1 int hello_world_count = 0;
2 do_receive (
3 on(atom("HelloWorld")) >> [&]() { ++hello_world_count; }
4)
5 .until([&]() { return hello_world_count == 10 });
6 // -----
7 int hello_world_count = 0;
8 do {
9 receive (

10 on(atom("HelloWorld")) >> [&]() { ++hello_world_count; }
11);
12 }
13 while (hello_world_count < 10);

The do_receive loop closely approximates a native language construct. However, espe-
cially the lambda expression used as condition pollutes the source code with brackets and
a return statement, making it harder to read than its native counterpart. The C++ pro-
gramming language was not specified with internal or embedded domain-specific language
support in mind. Thus, user-defined statements will always be distinguishable from native
statements.

5.1.4 Send Statement

We discussed the operator <- in our design section, even though this operator
is not available in C++. Instead, we could use the stream operator << for the
purpose of sending messages, which still does not accept our preferred syntax
self << { val1, val2, ... }14. We are required to convert the message elements
to a tuple first: self << make_tuple(val1, val2, ...). This is more verbose than
originally intended. Accordingly, we also added the function send that is less verbose:
send(self, val1, val2, ...). Both implementations are straightforward.

14GCC rejects such code with: expected primary-expression before ’{’ token.

5 IMPLEMENTATION OF LIBCPPA 60

1 template<class C, typename Arg0, typename... Args>
2 void send(intrusive_ptr<C>& whom,
3 Arg0 const& arg0,
4 Args const&... args)
5 {
6 static_assert(std::is_base_of<channel,C>::value,
7 "C is not a channel");
8 if (whom) whom->enqueue(self, make_tuple(arg0, args...));
9 }

10
11 template<class C>
12 typename util::enable_if<std::is_base_of<channel,C>,
13 intrusive_ptr<C>& >::type
14 operator<<(intrusive_ptr<C>& whom, any_tuple const& what)
15 {
16 if (whom) whom->enqueue(self, what);
17 return whom;
18 }

The static assertion in line 6 gives users a clear hint whether send was used incorrectly.
The operator << uses a technique known as SFINAE (Substitution Failure Is Not An Er-
ror, Vandevoorde and Josuttis (2002)) by using the template enable_if. The typedef
enable_if<...>::type is undefined if channel15 is not a base of C. The compiler
will ignore the function definition in such, case since the function does not have a valid return
type due to a substitution failure.

5.1.5 Emulating The Keyword self

The keyword self is an essential ingredient of our design. From a user’s pointer of view,
the keyword identifies an actor similar to the implicit this pointer identifying an object within
a member function. Unlike this, though, self is not limited to a particular scope. Fur-
thermore, it is not just a pointer, but it needs to perform implicit conversions on demand as
defined in Section 4.5.3. Consequently, self requires a type allowing implicit conversion to
local_actor*, where the conversion function returns a thread-local pointer. Our approach
shown below uses a global constexpr variable with a type that behaves like a pointer.

15See Section 4.4 for the definition of channel.

5 IMPLEMENTATION OF LIBCPPA 61

1 class self_type {
2 static local_actor* get_impl();
3 static voidset_impl(local_actor* ptr);
4 public:
5 constexpr self_type() { }
6 inline operator local_actor*() const {
7 return get_impl();
8 }
9 inline local_actor* operator->() const {

10 return get_impl();
11 }
12 inline void set(local_actor* ptr) const {
13 set_impl(ptr);
14 }
15 };
16 constexpr self_type self;

The constexpr variable self provides access to the implicit conversion operator as well as
the dereference operator “->”. From a user’s point of view, self is not distinguishable from
a pointer of type local_actor. The static member functions are implemented as follows.

1 thread_local local_actor* t_self = nullptr;
2 local_actor* self_type::get_impl() {
3 if (t_self == nullptr) t_self = convert_thread_to_actor();
4 return t_self;
5 }
6 void self_type::set_impl(local_actor* ptr) {
7 t_self = ptr;
8 }

Our approach adds little, if any, overhead to an application. In fact, self is nothing but
syntactic sugar and the compiler could easily optimize away the overhead of using member
functions. A constexpr variable does not cause a dynamic initialization at runtime, why the
global variable self does not cause any overhead since it provides an empty constexpr
constructor. Furthermore, all member functions are declared inline, allowing the compiler
to replace each occurrence of a member function with a call to self_type::get_impl.
self.set() is intended for in-library use only. The latter is needed to implement coopera-
tive scheduling.

5 IMPLEMENTATION OF LIBCPPA 62

5.2 Mailbox Implementation

The message queue, or mailbox, implementation is an important component of message
passing systems. In fact, the overall system performance including its scalability depends on
the chosen algorithm. A mailbox is a single-reader-many-writer queue. Everyone is allowed
to enqueue a message to a mailbox, but only the owning actor is allowed to dequeue a
message from it. Hence, the dequeue operation does not need to support parallel access.

Mutex-based concurrency does not scale well, especially in multi-core environments. There-
fore, lock-free queue implementations became an independent research topic. Scalable
solutions use atomic operations to avoid expensive locking. However, such atomic opera-
tions require hardware support. Furthermore, a lock-free implementation has to solve the
so-called ABA problem. The ABA problem occurs whenever a thread T1 reads a value A
from a shared memory segment and gets suspended. Another thread T2 then changes the
value of the shared memory segment from A to B and back to A again. When T1 finally
gets resumed, it has no way to detect the modification (I.B.M. Corporation, 1983). This may
corrupt states in CAS16-based systems (Dechev et al., 2006).

-head: node<T>
-tail: node<T>
+enqueue(what: node<T>)
+dequeue(): node<T>

queue
+next: node
+value: T

node
T T

*0..1

Figure 24: Generic queue interface

Figure 24 shows a simple interface for a queue. The enqueue member function could be
implemented as in the pseudo code below.

1 void enqueue(node<T>: what) {
2 tail.next = what;
3 tail = what;
4 }

In this example, enqueue manipulates two memory locations, tail.next first and after-
wards tail itself. Even if we assume that setting a value is atomic, a race condition is very
likely to occur. Consider that thread T1 manipulates tail.next and gets interrupted by
thread T2. T2 overrides the change to tail.next and writes tail. T1 then also writes
tail resulting in an inconsistent state.

16CAS stands for compare-and-swap and denotes an atomic operation with three parameters: Address,
ExpectedValue and NewValue. It compares the value stored at the memory location Address and replaces it
with NewValue if ExpectedValue was read.

5 IMPLEMENTATION OF LIBCPPA 63

E0

0

... 0

he
ad

En

Xtail

Y

Figure 25: Inconsistent queue state with unreachable tail

Figure 25 shows an inconsistent queue state due to the race condition in the previous ex-
ample. X is the element enqueued by T1, Y is the element enqueued by T2. X has no
predecessor in the queue since En.next was overwritten by T2 with Y . Thus, X is unreach-
able from head. To avoid such inconsistencies we need to set both pointer atomically like in
the following pseudo code, or we need to choose a more complex algorithm that excludes
race-conditions and still is reasonably fast.

1 void enqueue(node<T>: what) {
2 atomic { // the holy grail of concurrency
3 tail.next = what;
4 tail = what;
5 }
6 }

5.2.1 Spinlock Queue

A spinlock (Mellor-Crummey and Scott, 1991) is an integer value guarding a critical section.
It is initialized with 0 and set atomically to 1 using a CAS operation. It is called spinlock
because a thread spins in a loop waiting for the CAS operation to succeed. The following
example adds an atomic integer variable lock to our queue.

1 void enqueue(node<T>: what) {
2 for (;;) {
3 if (CAS(&lock, 0, 1)) { // lock acquired
4 tail.next = what;
5 tail = what;
6 lock = 0; // release lock
7 return;
8 }
9 }

10 }

5 IMPLEMENTATION OF LIBCPPA 64

The spinlock is acquired in line 3 by trying to set the value of lock from 0 to 1. The lock is
released to 0 after the critical section is left. We assume this to be atomic in our example.
Furthermore, we assume that neither the compiler nor the runtime environment reorder write
operations in the critical section. Spinlocks are lightweight locks that do not involve system
calls and thus outperform mutex based implementations in practice (Sutter, 2008). Spin-
locks are reasonably fast for short critical sections, but the waiting loop becomes wasteful
otherwise.

5.2.2 Lock-Free Queue

So far, we assumed a queue always to have a consistent state. There are inconsistent
states from which no recovery exists (see Figure 25). However, the following example is an
optimistic approach allowing temporarily inconsistent states.

1 void enqueue(node<T>: what) {
2 for (;;) {
3 node<T> old_tail = tail;
4 if (CAS(&tail, old_tail, what)) {
5 old_tail.next = what;
6 return;
7 }
8 }
9 }

This implementation first sets the tail pointer in an atomic operation. The predecessor is
connected to the new element thereafter.

E0 0...

0

he
ad

En Y

tail

X Z

Figure 26: Temporary inconsistent queue state

Figure 26 shows a possible state of this algorithm. Y and Z are enqueued after X but are
not yet reachable from head, because the thread T1 that enqueued Y did yet not updated

5 IMPLEMENTATION OF LIBCPPA 65

X .next. However, this is only a temporary inconsistency. The queue returns to a consistent
state after T1 updates X .next.

5.2.3 Cached Stack

There is a data structure that does not exhibit such consistency issues since it requires only
one CAS operation for its enqueue operation: the stack. A stack does not have a head pointer
since it is a LIFO container. However, a mailbox provides FIFO ordering of messages. Thus,
a dequeue operation would have complexity O(n) since it would have to traverse the whole
stack to reach the oldest element. We combined a stack with a FIFO ordered, non-thread-
safe cache to achieve a fast and efficient enqueue operation offered by a stack as well as
FIFO ordered dequeue operations.

comare_and_swap (ST)
expected value: E

new value: N

E

E

N

...

...

E

N

...

N

enqueue(N)
{

 T = tail
 N.next = T

 if not cas(&tail,
 T,N) {
 enqueue(N)
 }

}

ST

Figure 27: Enqueue operation in a cached stack

A
dequeue()
{
 R = CH
 if R != NULL {
 CH = R.next
 return R
 }

}

BC

 do {
 E = ST
 if E == NULL
 return NULL
 } while not cas
 (&ST,E,NULL)

 while E != NULL {
 NEXT = E.next
 E.next = CH
 CH = E
 E = NEXT
 }CBA

CB

 return dequeue()

CH
ST

Figure 28: Dequeue operation in a cached stack

Figure 27 shows the enqueue operation. It only needs one CAS operation and always main-
tains a consistent state. Figure 28 shows the dequeue implementation. It always dequeues
elements from the FIFO ordered cache (CH). The stack (ST) is emptied and its elements
are moved in reverse order to the cache if there was no element in the cache. Emptying the
stack is also done with one CAS operation because it just has to set ST to NULL.

Enqueue has the complexity O(1) while dequeue has an average of O(1) but a worst case
of O(n). However, concurrent access to the cached stack is reduced to a minimum.

5 IMPLEMENTATION OF LIBCPPA 66

5.2.4 Choosing an Algorithm

We introduced three possible single-reader-many-writer queue implementations. We only in-
troduced algorithms that could be implemented with atomic CAS operations. As mentioned
earlier, atomic operations need hardware support. CAS is widely supported by mainstream
vendors and is part of the C++ standard library. There are other algorithms available that
require DCAS (double-word CAS that could update a memory location of two words length
rather than one) or other atomic operations (Michael and Scott, 1996). However, we have
tested our three queue implementations in a performance benchmark to obtain reliable deci-
sion guidance.

Figure 29: Queue benchmark using 4 threads Figure 30: Queue benchmark using 8 threads

In Figures 29 and 30, benchmark results for all three queue algorithms are shown for a 2.66
GHz dual core i7 processor. All tests used a polling consumer thread without synchronization
overhead other than caused by the queue algorithms. More threads increase the probability
of collisions during enqueue. Thus, the performance decreases with increased concurrency.
However, the spinlock queue and the cached stack scale linearly with the number of mes-
sages. The performance of the lockfree list depends heavily on timing. If a thread sets the
tail pointer and gets suspended thereafter, the consumer has to wait until that particular
worker resumes. The lockfree queue approximates the cached stack performance if workers
seldom get suspended during an enqueue, but approximates the performance of the spinlock
queue for heavy work load.

Our implementation of the lockfree queue did not solve the ABA problem. However, we im-
plemented our mailbox using the cached stack algorithm since it yields the best performance.
The cached stack avoids the ABA problem since its enqueue operation does not manipulate
preceding elements.

5 IMPLEMENTATION OF LIBCPPA 67

5.3 Actors

We introduced three kinds of actors in Section 4.5: converted threads, cooperatively sched-
uled actors and event-based actors. This section discusses our actor implementations as
well as the ways users create actors. In addition, appropriate use case examples are given.

5.3.1 Spawning Actors

The function spawn starts a new actor and returns an actor_ptr to its creator. We have
implemented an opt-out cooperative scheduling using a thread pool as discussed in Section
4.5.4. An actor that should not be cooperatively scheduled can be spawned detached to run
in an own thread. The prototypes of the function spawn read as follows.

1 enum scheduling_hint {
2 scheduled,
3 detached
4 };
5 template<scheduling_hint Hint, typename F, typename... Args>
6 actor_ptr spawn(F&& what, Args const&... args);
7 template<typename F, typename... Args>
8 inline actor_ptr spawn(F&& what, Args const&... args) {
9 return spawn<scheduled>(std::forward<F>(what), args...);

10 }
11 actor_ptr spawn(abstract_event_based_actor* what);

The enumeration scheduling_hint denotes whether a user wants an actor to take part in
cooperative scheduling or not. The value detached can be passed as a template parameter
to the function overload of spawn in line 5. The template parameter F identifies a function
pointer or functor. The parameters args are passed to that function or functor on execution.
The function spawn could be used without declaring a scheduling_hint (see line 8) in
which case the default is scheduled. The last function overload in line 11 executes the
given instance of an event-based actor. Event-based actors are always scheduled in the
thread pool.

5.3.2 Abstract Actor

The class abstract_actor implements all pure virtual member functions of the class
actor as defined in Section 4.5. The two member functions join and leave were im-

5 IMPLEMENTATION OF LIBCPPA 68

plemented using attach and detach. The member function join attaches a group sub-
scription to the actor that could be detached by using leave. The C++ declaration of the
abstract class actor, restricted to its pure virtual functions, looks as follows.

1 class actor : public channel {
2 public:
3 virtual void attach(attachable* ptr) = 0;
4 virtual void detach(attachable::token const& what) = 0;
5 virtual void link_to(actor_ptr& other) = 0;
6 virtual void unlink_from(actor_ptr& other) = 0;
7 virtual bool establish_backlink(actor_ptr& other) = 0;
8 virtual void remove_backlink(actor_ptr& other) = 0;
9 };

We have added the two member functions establish_backlink and remove_backlink
to our initial design. Links must be bidirectional17, why an actor has to establish a backlink
from the actor it becomes linked to. The class abstract_actor uses the following member
variables.

1 class abstract_actor : public actor {
2 typedef std::lock_guard<std::mutex> guard_type;
3 typedef std::unique_ptr<attachable> attachable_ptr;
4 uint32_t m_exit_reason;
5 std::mutex m_mtx;
6 std::list<actor_ptr> m_links;
7 std::list<attachable_ptr> m_attachables;
8 inline bool exited() const {
9 return m_exit_reason != exit_reason::not_exited;

10 }
11 };

Each access to one of the lists or to the exit reason is guarded by a mutex. The typedef
guard_type is a RAII (Resource Acquisition Is Initialization, Stroustrup (1995)) style class
that locks a mutex in its constructor and automatically unlocks it in its destructor if the vari-
able leaves its scope. The utility member function exited returns true after the actor already
finished execution. The namespace exit_reasons contains the following predefined con-
stants.

17As shown in Section 2.4.3, a link couples the lifetime of actors.

5 IMPLEMENTATION OF LIBCPPA 69

1 namespace exit_reason {
2 constexpr uint32_t not_exited = 0x00000;
3 constexpr uint32_t normal = 0x00001;
4 constexpr uint32_t unhandled_exception = 0x00002;
5 constexpr uint32_t remote_link_unreachable = 0x00101;
6 constexpr uint32_t user_defined = 0x10000;
7 }

An actor is alive as long as its exit reason is not_exited. The constant normal identifies
an actor did finish execution without any error, while unhandled_exception is the exit
reason for an actor that died unexpectedly. The error code remote_link_unreachable

is used only if the middle man lost connection to remote actors. Then each proxy will send
this error code to all of its links. A user also can define its own exit reasons, if he wishes
to, but has to use a constant greater or equal user_defined to ensure that its own error
codes do not collide with internal error codes.

The implementations of the four link-related member functions in abstract_actor are as
follows.

1 void abstract_actor::link_to(actor_ptr& other) {
2 guard_type guard(m_mtx);
3 if (exited()) send(other, atom("exit"), m_exit_reason);
4 else if (other->establish_backlink(this))
5 m_links.push_back(other);
6 }
7 bool establish_backlink(actor_ptr& other) {
8 guard_type guard(m_mtx);
9 if (exited()) {

10 send(other, atom("exit"), m_exit_reason);
11 return false;
12 }
13 m_links.push_back(other);
14 return true;
15 }
16 void unlink_from(actor_ptr& other) {
17 guard_type guard(m_mtx);
18 other.remove_backlink(this);
19 m_links.remove_if([&](actor_ptr& ptr) { return ptr == other });
20 }
21 void remove_backlink(actor_ptr& other) {
22 guard_type guard(m_mtx);
23 m_links.remove_if([&](actor_ptr& ptr) { return ptr == other });
24 }

5 IMPLEMENTATION OF LIBCPPA 70

The member functions attach and detach are analogues but do not send exit messages
nor manipulate the member variable m_attachables instead of m_links.

5.3.3 Thread-Mapped Actors

A thread-mapped actor is of the type converted_thread_context that represents either
threads that are implicit converted to actors or actors spawned with scheduling hint set to
detached. The class converted_thread_context implements the member function
dequeue inherited from local_actor, see Section 4.5.

5.3.4 Cooperatively Scheduled Actors

Cooperatively scheduled actors are executed in a thread pool. This thread pool is managed
by a supervisor that offers two queues. The first queue is the worker queue that contains
all idle threads of the pool. The second queue is the job queue that contains all actors in
ready state. An actor is ready if it has at least one message in its mailbox. The supervisor
increases the size of the thread pool dynamically, if all workers are blocked for a certain
amount of time, as illustrated by the pseudo code below.

supervisor()
job = job_queue.dequeue()
if (worker_count < max_worker_count)

worker = worker_queue.try_dequeue(500ms)
else

worker = worker_queue.dequeue()
if (worker == NULL) worker = new_worker()
worker.execute(job)
supervisor()

To prevent starvation of other actors in the job queue, the supervisor waits at most 500
milliseconds for a worker to become unblocked again. It then starts a new worker, unless the
thread pool reached its maximum size. We have chosen a long timeout since we assume
actors to behave well.

Cooperatively scheduled actor implementations inherit from abstract_scheduled_actor

and override the member function resume that is defined as follows.

5 IMPLEMENTATION OF LIBCPPA 71

1 struct resume_callback {
2 virtual void exec_done() = 0;
3 };
4 class abstract_scheduled_actor : public abstract_actor {
5 public:
6 virtual void resume(fiber* from, resume_callback* callback) = 0;
7 };

The class fiber is a platform-independent context switching implementation. The pa-
rameter from denotes the context of the calling worker. The resumed actor calls
callback->exec_done() to indicate that it finished execution.

Our default implementation used for scheduled actors is the class yielding_actor. It
uses the following context switching API.

1 enum class yield_state {
2 blocked,
3 done
4 };
5 yield_state call(util::fiber* callee, util::fiber* caller);
6 void yield(yield_state state);

The function call switches to the context callee. A call to yield then switches back
to caller. The parameter state passed to yield becomes the return value of call.
The return value blocked indicates that it is waiting for an event, e.g., a new message,
and done indicates that the callee finished execution. The resume member function of
yielding_actor is shown below.

1 void yielding_actor::resume(fiber* from, resume_callback* callback)
2 {
3 self.set(this);
4 for (;;) {
5 switch (call(&m_fiber, from)) {
6 case yield_state::done:
7 callback->exec_done();
8 return;
9 case yield_state::blocked:

10 return;
11 }
12 }
13 }

5 IMPLEMENTATION OF LIBCPPA 72

An actor calls yield whenever its mailbox is empty. A receive statement with a timeout
causes the actor to send a delayed timeout message, a so-called future message, to itself
rather than block the thread it is executed in.

5.3.5 Event-Based Actors

Event-based actors are scheduled in the same thread pool as cooperatively scheduled ac-
tors. The resume member function does not perform context switching, but dequeues the
next message from the actor’s mailbox and executes the currently active behavior if defined
for the dequeued message. However, programming event-based actors is slightly different
since one has to implement the actor as a class. Users can choose one of the three classes
event_based_actor, stacked_event_based_actor and fsm_actor.

All event-based actor classes provide the member function become that takes ei-
ther a behavior expression or a pointer to a behavior member variable. The class
stacked_event_based_actor also provides an unbecome member function that re-
stores its previous behavior. Thus, a user is able to nest behavior as the following example
illustrates.

1 struct test_actor : stacked_event_based_actor {
2 void init() {
3 become(
4 on<int>() >> [=](int v1) {
5 become(
6 on<double>() >> [=](double v2) {
7 reply(v1 * v2);
8 unbecome();
9 }

10);
11 }
12);
13 }
14 };

Unlike receive, the behavior passed to become is executed until it will be replaced by
another behavior. Furthermore, become does replace the actor’s event handler with the
specified behavior and returns immediately. An actor finishes execution for normal exit
reasons if unbecome is called with an empty behavior stack. An actor inheriting from
event_based_actor or stacked_event_based_actor must override the member
function init that should set an initial behavior. The template class fsm_actor uses the

5 IMPLEMENTATION OF LIBCPPA 73

curiously recurring template pattern (Coplien, 1995) to set the initial behavior of an actor to
the member variable init_state of the derived class. It is implemented as follows.

1 template<class Derived>
2 struct fsm_actor : event_based_actor
3 {
4 void init() {
5 become(&(static_cast<Derived*>(this)->init_state));
6 }
7 };

A class inheriting from fsm_actor passes itself as template parameter, illustrated in the
example below.

1 struct test_actor : fsm_actor<test_actor> {
2 behavior init_state = (
3 on<int>() >> [=](int value) {
4 // ...
5 become(&wait4double);
6 }
7);
8 behavior wait4double = (
9 on<double>() >> [=](double value) {

10 // ...
11 become(&init_state);
12 }
13);
14 };

5 IMPLEMENTATION OF LIBCPPA 74

5.4 Groups

The technology-transparent group communication API, introduced in Section 4.8, allows de-
velopers to provide their own modules to extend libcppa. We implemented a simple
module for local groups identified by user-defined names. Future releases of libcppa may
include implementations for network technologies such as IP multicast. Our implementation
of the group interface introduced in Section 4.8 in C++ is defined as follows.

1 class group : public channel {
2 protected:
3 group(std::string const& id, std::string const& mod_name);
4 virtual void unsubscribe(channel_ptr const& who) = 0;
5 public:
6 class subscription;
7 class module {
8 protected:
9 module(std::string const& module_technology);

10 public:
11 virtual intrusive_ptr<group> get(std::string const& id) = 0;
12 };
13 std::string const& identifier() const;
14 std::string const& technology() const;
15 virtual subscription* subscribe(channel_ptr const& who) = 0;
16 static intrusive_ptr<group> get(std::string const& technology,
17 std::string const& identifier);
18 static void add_module(module* impl);
19 };

There are three member functions a class inheriting from group needs to override:
subscribe, unsubscribe and enqueue. The latter is inherited from channel. The
class group::subscriber is an attachable, see Section 4.5.1, that automatically unsub-
scribes an actor after it finished execution. The factory class for such a user-defined group
implementation needs to inherit from group::module and to override get, which creates
a group object from a technology-dependent group identifier.

5.4.1 Local Group Module

A local group is a list of actors identified by some name. Its purpose is to provide a process-
wide group communication. Our implementation of local_group as shown below uses a

5 IMPLEMENTATION OF LIBCPPA 75

shared_spinlock that allows either shared locking or exclusive locking. Thus, any number
of actors can enqueue messages in parallel to a single group.

1 class local_group : public group {
2 shared_spinlock m_shared_mtx;
3 std::set<channel_ptr> m_subscribers;
4 public:
5 local_group(const std::string& id) : group(id, "local") { }
6 void enqueue(actor* sender, const any_tuple& msg) {
7 shared_guard guard(m_shared_mtx);
8 for (channel_ptr& cptr : m_subscriber) {
9 cptr->enqueue(sender, msg);

10 }
11 }
12 group::subscription* subscribe(const channel_ptr& who) {
13 exclusive_guard guard(m_shared_mtx);
14 if (m_subscribers.insert(who).second)
15 return new group::subscription(who, this);
16 return nullptr;
17 }
18 void unsubscribe(const channel_ptr& who) {
19 exclusive_guard guard(m_shared_mtx);
20 m_subscribers.erase(who);
21 }
22 };

The member variable m_subscriber is a set of actors. A set is an associative container
that stores its elements uniquely. Its insert operation returns a pair consisting of an iterator
to the element and a boolean value that is set to false, if the element was already inserted
to the set. The local_group does create a subscription object only if an actor did not
already subscribe to the group, see line 15. The module that manages local group instances
is implemented as follows.

1 class local_group_module : public group::module {
2 shared_spinlock m_mtx;
3 std::map<std::string, group_ptr> m_instances;
4 public:
5 local_group_module() : group::module("local") { }
6 intrusive_ptr<group> get(const std::string& group_name) {
7 shared_guard guard(m_mtx);
8 auto i = m_instances.find(group_name);
9 if (i != m_instances.end())

10 return i->second;
11 else {

5 IMPLEMENTATION OF LIBCPPA 76

12 group_ptr tmp(new local_group(group_name));
13 upgrade_guard uguard(guard);
14 auto p = m_instances.insert(std::make_pair(group_name, tmp));
15 return p.first->second;
16 }
17 }
18 };

The member function get seeks for an element with a shared lock first. If the map does
not contain an appropriate object, the lock becomes exclusive by using an upgrade guard,
see line 13. The insert operation of the map could return a different object than tmp if
another thread preemptively inserted another instance. Thus, the function returns always
the instance found in the map, see line 15, to ensure that always the same object is returned
for any given name.

5.4.2 A Use Case Example

The following use case example illustrates the use of a local group for in-process event
handling. Our usage example implements a daemon actor that sends an update message
every two seconds to the group “time check” and five listening actors finish execution after
receiving five updates.

1 void daemon() {
2 auto g = group::get("local", "time check");
3 receive_loop(
4 after(seconds(2)) >> []() { send(g, atom("update")); }
5);
6 }
7 void worker() {
8 self->join(group::get("local", "time check"));
9 int i = 0;

10 receive_while([&]() { return i < 5; }) (
11 on(atom("update")) >> [&]() { ++i; }
12);
13 }
14 int main() {
15 spawn(daemon);
16 for (int i = 0; i < 5; ++i) spawn(worker);
17 await_all_others_done();
18 return 0;
19 }

5 IMPLEMENTATION OF LIBCPPA 77

The function await_all_others_done used in line 19 blocks the calling actor until all
other actors finish execution. Thus, this example program never terminates since the daemon
actor remains in its loop forever.

5.5 Serialization

This section discusses our implementation of the uniform type representation and semi-
automated serialization of user-defined classes as introduced in Section 4.9.2.

5.5.1 Uniform Type Name

The C++ standard does not specify the content of a string returned by type_info::name.
Thus, typeid(X).name() does not only depend on X. It also depends on the used com-
piler. This is not suitable for serialization, since we need a mapping from a type name to
its runtime type for deserialization. Thus, uniform_type_info::name has to return an
identical string on each platform. The MS Visual C++ compiler generates a human-readable
name that can be easily transformed to the type name as declared in the source code. GCC
contrary does return a mangled representation that can be demangled using GCCs ABI18.
The function demangle must be implemented for each supported compiler. Its output shall
be the type name as declared in source code without any whitespaces or qualifiers such as
“class” or “struct”. The following implementation demangles a type name produced by GCC
to our indented representation.

1 std::string demangle(char const* decorated) {
2 size_t size;
3 int status;
4 char* undecorated = abi::__cxa_demangle(decorated, nullptr,
5 &size, &status);
6 assert(status == 0);
7 std::string result = undecorated;
8 free(undecorated);
9 filter_whitespaces(result);

10 return result;
11 }

The argument decorated is the C-string returned by type_info::name. The function
abi::__cxa_demangle in line 4 returns a C-string containing a demangled version of

18An Application Binary Interface is a low-level interface for applications.

5 IMPLEMENTATION OF LIBCPPA 78

the type name. On success, status is set to 0. The C-string might contain needless
whitespaces, e.g., “> >” rather than “>>” in nested template names. Those whitespaces
are removed by filter_whitespaces called in line 10. It erases each whitespace in the
string unless it separates two alphanumeric characters, such as in “unsigned int”.

All uniform_type_info instances are singletons. They are stored in two maps, one that
associates instances with their platform-dependent name, and one that associates instances
with their uniform name. Thus, a lookup at runtime is always of the complexity O(log n). The
two maps increase the overall system performance since a deserializer requires the uniform
name, but the function uniform_typeid, see Section 4.9.1, Figure 21, needs to lookup
the name returned by type_info::name. Demangling the platform-dependent name on
each lookup would add an expensive overhead.

5.5.2 Announcement of User-Defined Types

Our approach automatized serialization of member variables as long as all members are
built-in data types, strings or STL compatible containers which element types follow the same
rules. These constraints are checked with metaprogramming utility classes. The first utility
class identifies primitive data types. Our utility classes use the same conventions as the type
traits of the standard template library (STL). The first utility class is implemented as follows.

1 template<typename T>
2 struct is_primitive {
3 static const bool value =
4 std::is_arithmetic<T>::value
5 || std::is_same<T,std::string>::value
6 || std::is_same<T,std::u16string>::value
7 || std::is_same<T,std::u32string>::value;
8 };

A data type is primitive if and only if it is one of the built-in integer or floating point types. This
is the case if std::is_arithmetic<T>::value is true, or if it is one of the STL string
classes. We do not support std::wstring since it is platform-dependent. Ensuring STL
compatibility is not that trivial and requires some metaprogramming utilities first.

1 template<typename T> struct rm_ref { typedef T type; };
2 template<typename T> struct rm_ref<T const&> { typedef T type; };
3 template<typename T> struct rm_ref<T&> { typedef T type; };
4 template<> struct rm_ref<void> { };

5 IMPLEMENTATION OF LIBCPPA 79

The class rm_ref removes references, both const and non-const, from a given type but is
explicitly not defined for void. We need this utility class in our next trait which evaluates
whether a given type behaves like a forward iterator.

1 template<typename T> class is_forward_iterator {
2 template<class C> static bool sfinae_fun(
3 C* iter,
4 typename rm_ref<decltype(*(*iter))>::type* = 0,
5 typename enable_if<
6 std::is_same<C&,decltype(++(*iter))>>::type* = 0,
7 typename enable_if<
8 std::is_same<bool,decltype(*iter == *iter)>>::type* = 0,
9 typename enable_if<

10 std::is_same<bool,decltype(*iter != *iter)>>::type* = 0
11)
12 { return true; }
13 static void sfinae_fun(void*) { }
14 typedef decltype(sfinae_fun((T*) nullptr)) result_t;
15 public:
16 static const bool value = std::is_same<bool,result_t>::value;
17 };

The class defines an overloaded, static member function. The second overload at line 13
takes a void pointer and has a void return type. The other overload in line 2 is a template
function that has a non-default first parameter of type C. The second parameter has an un-
defined type if C::operator* is undefined or has a void return type. The next parameters
in line 6 evaluates if the member function C::operator++ is defined. The last two parame-
ters evaluate if C supports the comparison operations == and !=. All parameters, except the
first, have default values. Thus, the template function could be called with one argument. The
typedef result_t in line 14 is defined as the return type of the overloaded member function
sfninae_fun. The compiler chooses the overload based on the type of the parameter. A
template function taking a pointer of type T* is always a better match than a function taking
a pointer of type void*, since this would require an implicit conversion. However, the first
overload in line 2 is only available if and only if T provides all required operations. Otherwise,
the first overload is unavailable due to substitution failure. Finally, we set the static member
variable value in line 16 to true if result_t is defined as bool, which is the return type
of the first overload, otherwise value is false.

Based on this trait, we declared a type trait is_iterable that evaluates if a type
T defines the two member functions ConstIterator T::begin() const and
ConstIterator T::end() const where ConstIterator is a forward iterator. All
containers in the STL are iterable, thus, detected by the trait is_iterable.

5 IMPLEMENTATION OF LIBCPPA 80

STL containers divide into two categories: lists and maps. Lists, such as std::vector and
std::list, provide the member function push_back to add new elements. Maps, such as
std::map and std::set, provide the member function insert instead. Thus, we defined
the two traits is_stl_compatible_list and is_stl_compatible_map. Now, we are
able to provide default implementations for strings, built-in types and any container providing
an STL compatible interface. The correct implementation is chosen with enable_if and
our declared type traits. The following source code shows a pseudo code implementation
for a STL compatible list. A map implementation would be similar except that it would use
insert rather than push_back.

1 template<typename T>
2 enable_if<is_stl_compatible_list<T>>
3 serialize(T const& list, serializer& sink) {
4 sink << list.size();
5 for (auto i = list.begin(); i != list.end(); ++i)
6 serialize(*i);
7 }
8 template<typename T>
9 enable_if<is_stl_compatible_list<T>>

10 deserialize(T& list, deserializer& source) {
11 size_t size;
12 source >> size;
13 for (size_t i = 0; i < size; ++i) {
14 T::value_type element;
15 deserialize(element);
16 list.push_back(element);
17 }
18 }

The implementation is a one-to-one mapping of our design in Section 4.9.2. Recursive data
structures, such as a vector of vectors, are detected as well as primitive data types as the
following usage example illustrates.

1 struct my_struct { std::vector<std::vector<int>> a; float b; };
2 int main() {
3 announce<my_struct>(&my_struct::a, &my_struct::b);
4 send(self, my_struct { {{1,2},{3,4}}, 5 });
5 receive(
6 on<my_struct>() >> [](my_struct const& value) {
7 // ...
8 }
9);

10 };

5 IMPLEMENTATION OF LIBCPPA 81

5.6 Middle Man

A middle man has to fulfill three tasks. It receives, deserializes and forwards messages from
remote peers to local actors, serializes and sends messages to remote actors, and creates
local proxies for remote actors. Therefore, we have split the middle man in two distinct
components.

5.6.1 Addresses of Middle Men

Middle men are singletons, why each process has exactly one middle man. A process is iden-
tified by its process_information containing the nodeID and the processID as specified
in Section 4.10.1. A process_information also identifies a middle man instance since
each process has exactly one middle man.

An actor address is specified as (nodeID, processID,actorID), where nodeID and
processID identify a middle man instance MM. Thus, an actor address also could be read
as (MMID,actorID).

5.6.2 Post Office

A post office PO is a software entity that covers two of the three tasks of a middle man.
It creates proxy instances for remote actors and it receives messages from other nodes in
the network. More precisely, it receives messages from other middle men. A PO only has
read access to all sockets it has to remote nodes and runs in its own thread. Sockets are
multiplexed by using select and non-blocking receive operations.

All proxy instances are stored in a multimap, a map that can store more than one value per
key, with the ID of the middle man it belongs to as key. The PO creates a new proxy instance
whenever it deserializes an actor address with an unknown, new actorID. As a result, the
PO implicitly learns new remote actors.

5.6.3 Mailman

The mailman implements the third task of a middle man: serializing and transmission of
messages to remote actors. It runs in its own thread and shares all sockets with the PO but

5 IMPLEMENTATION OF LIBCPPA 82

does only have write access to the sockets. It has a map that stores all sockets as values
with the middle man address as key.

Each proxy instance forwards all messages it receives to the mailman with its own address
as receiver. The mailman then selects the corresponding socket, serializes the message and
sends the byte stream to the socket.

6 MEASUREMENTS AND EVALUATION 83

6 Measurements and Evaluation

In this section, we compare the runtime behavior of our implementation with the matured
actor model implementations of Erlang and Scala - its standard library, as well as the Akka
library. For this purpose we identified and implemented three different use cases to measure
actor creation overhead, mailbox performance in N:1 communication scenarios and a use
case simulating a realistic application behavior.

In detail, we implemented and compared all three algorithms using

libcppa (event-based)
C++19 with libcppa based on event-based message processing

libcppa (stacked)
C++ 19 with libcppa based on context switching

erlang
Erlang in version 5.8.3

scala (akka)
Scala20 with the Akka library (event-based message processing)

scala (react)
Scala 20 with the event-based actor implementation of the standard library

scala (receive)
Scala 20 with the thread-mapped actor implementation of the standard library

The benchmarks ran on a virtual machine with Linux using 2 to 12 cores of the host system
comprised of two hexa-core Intel R© Xeon R© processors with 2.27GHz.

19Compiled using the GNU C++ compiler (g++) in version 4.6.1 with optimization level O3.
20Scala in version 2.9.1 running on a JVM using 4GB of RAM.

6 MEASUREMENTS AND EVALUATION 84

6.1 Measuring the Overhead of Actor Creation

Our first benchmark measures the overhead of actor creation. It recursively creates 219

actors, as the following pseudo code illustrates.

1 spreading_actor(Parent):
2 receive:
3 {spread, 0} =>
4 Parent ! {result, 1}
5 {spread, N} =>
6 spawn(spreading_actor, self)) ! {spread, N-1}
7 spawn(spreading_actor, self)) ! {spread, N-1}
8 receive:
9 {result, X1} =>

10 receive:
11 {result, X2} =>
12 Parent ! {result, X1+X2}
13
14 main(X):
15 spawn(spreading_actor, self)) ! {spread, X}
16 receive:
17 {result, Y} =>
18 assert(2^X == Y)

Each actor spawns two further actors after receiving a {spread, N} message unless N is
0, in which case the actor sends {result, 1}. After spawning two more actors, an actor
waits for two result messages, sends an result message of its own to its parent, and finishes
execution. Thus, our benchmark program creates 2X actors, where X is the argument passed
to main.

6 MEASUREMENTS AND EVALUATION 85

 0.00

 20.00

 40.00

 60.00

 80.00

 100.00

 120.00

 140.00

 160.00

 2 4 6 8 10 12

ti
m

e
 (

s
e
c
o
n
d
s
)

number of cores

actor creation

cppa (event-based)
cppa (stacked)

erlang
scala (akka)
scala (react)

Figure 31: Actor creation performance for 219 actors

In Figure 31, we display the actor creation time as a function of available CPU cores. This
measurement tests how lightweight actor implementations are. The ideal behavior is a de-
creasing curve. We did not use test thread-mapped actor implementation of Scala, because
the JVM cannot handle half a million threads. And neither could a native application.

In the outcome, two classes can be clearly identified. Both Scala implementations and Erlang
have constant or decreasing time consumption, while libcppa has a more fluctuating time
consumption that increases with concurrency.

It is not surprising that Erlang yields the best performance, as its virtual machine was build
to efficiently handle actors. Furthermore, it is not surprising that the context-switching imple-
mentation of libcppa consumes more time than an event-based approach because of the
overhead of stack allocation. Results indicate that the scheduling overhead caused by more
hardware concurrency outweighs the benefit in libcppa for this scenario.

6 MEASUREMENTS AND EVALUATION 86

6.2 Measuring Mailbox Performance in N:1 Communication Scenario

Our second benchmark measures the mailbox performance in an N:1 communication sce-
nario. We used 20 threads sending 1,000,000 messages each, except for Erlang which does
not have a threading library. In Erlang, we spawned 20 actors instead. The minimal runtime
of this benchmark is the time the receiving actor needs to process 20,000,000 messages and
the overhead of passing the messages to the mailbox. More hardware concurrency leads to
higher synchronization between the sending threads, since the mailbox acts as a shared
resource.

 0.00

 20.00

 40.00

 60.00

 80.00

 100.00

 2 4 6 8 10 12

ti
m

e
 (

s
e
c
o
n
d
s
)

number of cores

N:1 communication scenario

cppa (event-based)
cppa (stacked)

erlang
scala (akka)
scala (react)

scala (receive)

Figure 32: Mailbox performance in N:1 communication scenario

In figure 32, we display the time needed for the application to send and process 20,000,000
messages as a function of available CPU cores. The ideal behavior is a slowly increasing
curve.

In the outcome, four classes can be identified. Scala (receive) approaches the optimal be-
havior, while the other Scala implementations show inferior performance. Both libcppa
implementations show similar performance to Scala (receive) on two cores but have a faster

6 MEASUREMENTS AND EVALUATION 87

increasing curve. Erlang has an abrupt rise in runtime for more than 4 cores up to an average
of 600 seconds on 12 cores. The results are clipped for visibility purposes in the graph.

Results indicate that our mailbox implementation using the cached stack algorithm, intro-
duced in Section 5.2.3, scales very well though we could see the same increase in runtime
due to the scheduling overhead as in our previous benchmark. The overhead of stack allo-
cation is negligible in this use case. Thus, the run time of both libcppa implementations
is almost identical. The message passing implementation of Erlang does not scale well for
this use case. The more concurrency we add, the more time the Erlang program needs.

6 MEASUREMENTS AND EVALUATION 88

6.3 Measuring Performance in a Mixed Scenario

Our final benchmark simulates a more realistic use case with a mixture of operations. The
continuous creation and termination of actors is simulated along with a total of more than
50,000,000 messages sent between actors and some expensive calculations are included to
account for numerical work load. The test program creates 20 rings of 50 actors each. A to-
ken with initial value of 10,000 is passed along the ring and decremented once per iteration.
A client receiving a token always forwards it to the next client and finishes execution when-
ever the value of the token was 0. The following pseudo code illustrates the implemented
algorithm.

1 chain_link(Next):
2 receive:
3 {token, N} =>
4 next ! {token, N}
5 if (N > 0) chain_link(Next)
6
7 worker(MessageCollector):
8 receive:
9 {calc, X} =>

10 MessageCollector ! {result, prime_factorization(X)}
11
12 master(Worker, MessageCollector):
13 5 times:
14 Next = self
15 49 times: Next = spawn(chain_link, Next)
16 Next ! {token, 10000}
17 Done = false
18 while not Done:
19 receive:
20 {token, X} =>
21 if (X > 0): Next ! {token, X-1}
22 else: Done = true
23 MessageCollector ! {master_done}

Each ring consists of 49 chain_link actors and one master. The master recreates the
terminated actors five times. Each master spawns a total of 245 actors (5 ∗ 49) and the
program spawns 20 master actors. Additionally, there is one message collector and one
worker per master. A total of 4921 actors (20+ 20∗245+ 1) are created but no more than
1021 (20+20+(20∗49)+1) are running concurrently. The message collector waits until it
receives 100 (20∗5) prime factorization results and a done message from each master.

6 MEASUREMENTS AND EVALUATION 89

We calculated the prime factors of 28,350,160,440,309,881 (329,545,133 and 86,028,157)
to simulate some work load. The calculation took about two seconds on the tested hardware
in our loop-based C++ implementation. Our tail recursive Scala implementation performed
at the same speed, whereas Erlang needed almost seven seconds.

 0.00

 50.00

 100.00

 150.00

 200.00

 250.00

 300.00

 2 4 6 8 10 12

ti
m

e
 (

s
e
c
o
n
d
s
)

number of cores

cppa (event-based)
cppa (stacked)

erlang
scala (akka)
scala (react)

scala (receive)

Figure 33: Performance in mixed use case

In figure 33, we display the runtime of the benchmark as a function of available CPU cores.
The ideal behavior is a linear speed-up – doubling the number of cores should halve the
runtime.

In the outcome, three classes can be identified. Erlang has an almost linear speed-up. Scala
(receive), Scala (akka) and both libcppa implementations increase in runtime after reach-
ing a global minimum. Scala (react) reaches a local minimum at 8 cores and accelerates
again for 12 cores.

As expected, the thread-based Scala implementation yields the worst performance though
the runtime increase for eight and more cores surprises. Akka is significantly faster than both
standard library implementations of Scala and about 30% than libcppa (event-based) for
up to six cores.

6 MEASUREMENTS AND EVALUATION 90

Erlang performs very well, given the fact that its prime factorization is more than three times
slower. The very efficient scheduling of Erlang, which is the only implementation under test
that performs preemptive scheduling, is best at utilizing hardware concurrency.

The overhead of the libcppa scheduler hinders better performance results. Especially the
rise in runtime at 12 cores surprises. The overhead of stack allocation and context switching
is about 10-20% in this benchmark for up to six cores where the scheduler is stretched to its
limits.

6.4 Measurement Summary

We have shown that both libcppa implementations are competitive, though context-
switching actors are not feasible for scenarios with a large number of actors. libcppa
performs at comparable speed to well-tested and established actor model implementations.
Nevertheless, its scheduling algorithm is not able to utilize more than six cores efficiently by
now.

As expected, the event-based implementation is faster since it requires less scheduling and
allocation overhead. Provided that the application does spawn a moderate number of actors,
the context-switching actor implementation performs sufficiently.

7 CONCLUSION & OUTLOOK 91

7 Conclusion & Outlook

In this thesis, we have implemented a library that extends the C++ programming language
with an actor semantic that provides an extensible, publish/subscribe-based group commu-
nication. C++ does not provide pattern matching as a language feature, but we were able to
implement this feature in our library to provide a convenient way to implement actors. Actor
communication is distribution transparent and, as first results indicate, fast. The cooperative
scheduling is scalable and we were able to compete mature implementations of the actor
model, though, the used scheduling algorithm hinders better results.

The pattern matching implementation of libcppa is not, and cannot be, as elegant as
language based approaches, as the following comparison of two equivalent actor implemen-
tations illustrates. Both actors implement the spreading_actor of Section 6.1. The first
implementation uses Erlang, the second context-switching actors of libcppa.

1 testee(Parent) ->
2 receive
3 {spread, 0} ->
4 Parent ! {result, 1};
5 {spread, X} ->
6 spawn(actor_creation, testee, [self()]) ! {spread, X-1},
7 spawn(actor_creation, testee, [self()]) ! {spread, X-1},
8 receive
9 {result, R1} ->

10 receive
11 {result, R2} ->
12 Parent ! {result, (R1+R2)}
13 end
14 end
15 end.

7 CONCLUSION & OUTLOOK 92

1 void stacked_testee(actor_ptr parent) {
2 receive (
3 on(atom("spread"), 0) >> [&]() {
4 send(parent, atom("result"), (uint32_t) 1);
5 },
6 on<atom("spread"), int>() >> [&](int x) {
7 any_tuple msg = make_tuple(atom("spread"), x-1);
8 spawn(stacked_testee, self) << msg;
9 spawn(stacked_testee, self) << msg;

10 receive (
11 on<atom("result"), uint32_t>() >> [&](uint32_t r1) {
12 receive (
13 on<atom("result"), uint32_t>() >> [&](uint32_t r2) {
14 send(parent, atom("result"), r1+r2);
15 }
16);
17 }
18);
19 }
20);
21 }

Apart from C++ using more brackets, the receive statement in Erlang is more compact since
it does not have to use lambda expressions. However, we come close to a language-based
solution, though, receive is a trade-off. One the one hand, allocating a stack for each ac-
tor and performing context-switching causes a small runtime overhead, on the other hand,
receive-based actor communication can be used in threads as well. This allows devel-
opers to easily extend existing, thread-based applications. From a developer point of view,
spawning an actor differs from creating a thread only by the name of the function used21, al-
lowing developers to migrate seamlessly to more lightweight and scalable context-switching
actors.

Applications aiming at hundreds of thousand actors surely should use event-based actors.
We would recommend using event-based actors for any new application due to fewer over-
head and better runtime results. Our event-based actors scale better and use less memory
but have a slightly different API. However, a system can freely mix threads acting as ac-
tors, context-switching actors as well as event-based actors, since all actors use one single
interface for sending messages, linking, monitoring and joining groups.

21The boost threading library as well as the C++ standard template library provide an API that is very
similar to the spawn function of libcppa.

7 CONCLUSION & OUTLOOK 93

The following example is an event-based actor implementation of spreading_actor (see
page 84) in Scala using the Akka library. The second example implements an equivalent
actor in C++ using the event-based API of libcppa.

1 import akka.actor._
2 case class Spread(value: Int)
3 case class Result(value: Int)
4 class AkkaTestee(parent: ActorRef) extends Actor {
5 def receive = {
6 case Spread(0) =>
7 parent ! Result(1)
8 self.stop
9 case Spread(x) =>

10 val msg = Spread(x-1)
11 actorOf(new AkkaTestee(self)).start ! msg
12 actorOf(new AkkaTestee(self)).start ! msg
13 become {
14 case Result(r1) =>
15 become {
16 case Result(r2) =>
17 parent ! Result(r1+r2)
18 self.exit
19 }
20 }
21 }
22 }

7 CONCLUSION & OUTLOOK 94

1 struct testee : fsm_actor<testee> {
2 actor_ptr parent;
3 behavior init_state = (
4 on(atom("spread"), 0) >> [=]() {
5 send(parent, atom("result"), (uint32_t) 1);
6 become_void();
7 },
8 on(atom("spread"), int) >> [=](int x) {
9 any_tuple msg = make_tuple(atom("spread"), x-1);

10 spawn(new testee(this)) << msg;
11 spawn(new testee(this)) << msg;
12 become (
13 on(atom("result"), uint32_t) >> [=](uint32_t r1) {
14 become (
15 on(atom("result"), uint32_t) >> [=](uint32_t r2) {
16 send(parent, atom("result"), r1+r2);
17 become_void();
18 }
19);
20 }
21);
22 }
23);
24 testee(actor_ptr const& pptr) : parent(pptr) { }
25 };

Scala does have a pattern matching implementation similar to Erlang, making the source
code more compact compared to our on... >> lambda approach. But besides that, we
achieved our goal of providing an actor semantic for C++.

We provide a technology-independent group communication semantic in libcppa. So far,
we implemented a technology module for in-process communication, see Section 5.4.2 for
an example, but such a group interface aims at large-scale distributed applications based
on the actor model. Furthermore, it allows developers to integrate existing publish/subscribe
systems such as D-Bus seamlessly without dealing with technology-specific or platform-
dependent APIs. We could not unfold the full potential of an “actor multicast model” yet.
Our current development state is a solid basis for further implementations and application
scenarios for such large-scale distribution that could scale up to globally distributed systems
by using a group communication service layer for world-wide multicast such as H

A

Mcast
(Waehlisch et al., 2011).

7 CONCLUSION & OUTLOOK 95

The actor model allows developers to implement scalable, concurrent applications of a high
level of abstraction. However, currently available actor model implementations do not uti-
lize the parallel processing power present in modern computer systems. SIMD22 processing
units, such as GPUs (graphical processing units), are known to outperform CPUs in compu-
tationally intensive applications such as encoding or decoding video streams and cryptog-
raphy. OpenCL (Open Computing Language, Khronos OpenCL Working Group (2008)) is a
programming standard for SIMD processing units that explicitly addresses high-performance
computing using both GPU and CPU. OpenCL also could be used to access custom hard-
ware operations (Jaskelainen et al., 2010). There is a C++ API for developing OpenCL
applications (Gaster, 2010). However, developing such applications requires specific code
access and OpenCL-context management. A GPU has its own memory. Code and data
are transferred to the GPU before executing an algorithm and the results must be read back
after the computation is done. This management could be done by libcppa. A SIMD actor
could define its behavior based on patterns but would have to provide an OpenCL compatible
implementation. Such actors would be scheduled on the GPU rather than on the coopera-
tively used thread pool. Executing actors on a GPU would enable libcppa to address
high-performance computation applications based on the actor model as well.

22SIMD (Single Instruction, Multiple Data) processing units perform operations on multiple data simultane-
ously.

REFERENCES 96

References

Abrahams, D., Collings, G., Colvin, G., and Dawes, B. (2001). Smart Pointer Timings. Boost
Library Documentation
URL http://www.boost.org/libs/smart_ptr/smarttests.htm.

Agha, G. (1986). Actors: a model of concurrent computation in distributed systems. Technical
Report 844, MIT, Cambridge, MA, USA.

Armstrong, J. (1996). Erlang - A survey of the language and its industrial applications. In
Proceedings of the symposium on industrial applications of Prolog (INAP96), pages 16–
18. Hino.

Armstrong, J. (1997). The development of Erlang. In Proceedings of the second ACM
SIGPLAN international conference on Functional programming, ICFP ’97, pages 196–
203, New York, NY, USA. ACM. ISBN: 0-89791-918-1.

Armstrong, J. (2003). Making Reliable Distributed Systems in the Presence of Software
Errors. PhD thesis, The Royal Institute of Technology Stockholm, Sweden.
URL: http://erlang.org/download/armstrong_thesis_2003.pdf.

Armstrong, J. (2007). Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf. ISBN-10: 193435600X, ISBN-13: 978-1934356005.

Conway, M. E. (1963). Design of a separable transition-diagram compiler. Commun. ACM,
6:396–408. ISSN: 0001-0782.

Coplien, J. O. (1995). Curiously recurring template patterns. C++ Report, 7:24–27. ISSN:
1040-6042.

Dechev, D., Pirkelbauer, P., and Stroustrup, B. (2006). Lock-Free Dynamically Resizable
Arrays. In Shvartsman, A. A., editor, OPODIS, volume 4305 of Lecture Notes in Computer
Science, pages 142–156. Springer. ISBN: 3-540-49990-3.

Deering, S. (1989). Host extensions for IP multicasting. RFC 1112, IETF.

Earle, C. B., Fredlund, L.-A., and Derrick, J. (2005). Verifying fault-tolerant Erlang programs.
In ERLANG ’05: Proceedings of the 2005 ACM SIGPLAN workshop on Erlang, pages
26–34, New York, NY, USA. ACM. ISBN: 1-59593-066-3.

Eugster, P. T., Felber, P. A., Guerraoui, R., and Kermarrec, A.-M. (2003). The many faces of
publish/subscribe. ACM Comput. Surv., 35:114–131. ISSN: 0360-0300.

REFERENCES 97

Gamma, E., Helm, R., Johnson, R. E., and Vlissides, J. (1995). Design Patterns. Elements
of Reusable Object-Oriented Software. Addison-Wesley. ISBN-10: 0201633612 ISBN-13:
978-0201633610.

Gaster, B. R. (2010). The OpenCL C++ Wrapper API. Khronos Group.
http://www.khronos.org.

Gosling, J., Joy, B., Steele, G., and Bracha, G. (2005). The Java Language Specification,
Third Edition. Addison-Wesley Longman, Amsterdam, 3 edition.

Haller, P. and Odersky, M. (2006). Event-Based Programming without Inversion of Control. In
Joint Modular Languages Conference, Lecture Notes in Computer Science, pages 4–22.
Springer-Verlag Berlin. ISBN: 3-540-40927-0.

Haller, P. and Odersky, M. (2009). Scala Actors: Unifying thread-based and event-based
programming. Theor. Comput. Sci., 410(2-3):202–220.

Hansen, P. B. (1973). Operating system principles. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA. ISBN: 0-13-637843-9.

Hewitt, C., Bishop, P., and Steiger, R. (1973). A universal modular ACTOR formalism for arti-
ficial intelligence. In IJCAI, pages 235–245, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.

Hickey, R. (2011). Clojure programming language.
URL http://clojure.org.

Holbrook, H. and Cain, B. (2006). Source-Specific Multicast for IP. RFC 4607, IETF.

I.B.M. Corporation (1983). IBM System/370 Extended Architecture, Principles of Operation.
IBM Publication No. SA22-7085.

ISO (2011). Programming languages - C++. Standard 14882:2011, ISO/IEC Information
technology, Geneva, Switzerland.

Jaskelainen, P. O., de La Lama, C. S., Huerta, P., and Takala, J. H. (2010). OpenCL-based
design methodology for application-specific processors. In ICSAMOS, pages 223–230.
IEEE. ISBN: 978-1-4244-7936-8.

Khronos OpenCL Working Group (2008). The OpenCL Specification, version 1.2.
UTL: http://www.khronos.org/opencl.

Leach, P. J., Mealling, M., and Salz, R. (2005). A Universally Unique IDentifier (UUID) URN
Namespace. RFC 4122, IETF.

REFERENCES 98

Mason, A. (2011). Theron homepage.
http://www.theron-library.com/.

Mellor-Crummey, J. M. and Scott, M. L. (1991). Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. Comput. Syst., 9:21–65. ISSN: 0734-2071.

Meyers, S. and Alexandrescu, A. (2004). C++ and the Perils of Double-Checked Locking.
URL http://drdobbs.com/cpp/184405726.

Michael, M. M. and Scott, M. L. (1996). Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In Proceedings of the fifteenth annual ACM symposium on
Principles of distributed computing, PODC ’96, pages 267–275, New York, USA. ACM.
ISBN: 0-89791-800-2.

Microsoft (2011). Fibers.
URL http://msdn.microsoft.com/en-us/windows/ms682661.

Odersky, M. (2011). The Scala Language Specification Version 2.9.
URL: http://scala.epfl.ch/docu/files/ScalaReference.pdf.

Reynolds, J. C. (1972). Definitional interpreters for higher-order programming languages. In
Reprinted from the proceedings of the 25th ACM National Conference, pages 717–740.
ACM.

Srinivasan, S. (2011). Kilim homepage.
URL http://www.malhar.net/sriram/kilim/.

Srinivasan, S. and Mycroft, A. (2008). Kilim: Isolation-Typed Actors for Java. In ECOOP ’08:
Proceedings of the 22nd European conference on Object-Oriented Programming, pages
104–128, Berlin, Heidelberg. Springer-Verlag. ISBN: 978-3-540-70591-8.

Stroustrup, B. (1995). The design and evolution of C++. Addison-Wesley. ISBN: 978-0-201-
54330-8.

Sutter, H. (2008). Writing a Generalized Concurrent Queue.
URL http://drdobbs.com/cpp/211601363.

TIOBE software (2012). Programming Community Index.
URL http://www.tiobe.com.

Typesafe Inc. (2011). Akka homepage. URL http://akka.io/.

Vandevoorde, D. and Josuttis, N. M. (2002). C++ Templates: The Complete Guide. Addison-
Wesley Professional, 1 edition. ISBN: 9780201734843.

REFERENCES 99

Waehlisch, M., Schmidt, T., and Venaas, S. (2011). A Common API for Transparent Hybrid
Multicast. Internet-Draft – work in progress 03, IETF.

List of Figures

1 Simple publish/subscribe system . 6
2 Observer pattern . 7
3 Source-specific publish/subscribe system 8
4 Receive loop using patterns . 9
5 Linking of actors . 11
6 Supervision tree . 16
7 one_for_one strategy . 16
8 one_for_all strategy . 16
9 rest_for_one strategy . 16
10 javac output post-processed by Kilim weaver (Srinivasan and Mycroft,

2008) . 19
11 Smart pointer timings for GCC (Abrahams et al., 2001)) 22
12 Smart pointer timings for MSVC (Abrahams et al., 2001)) 22
13 Base class for reference counting . 23
14 channel interface . 29
15 Actor interfaces with inheritance . 30
16 Event-based actor classes . 34
17 Simple finite-state machine . 35
18 Copy-on-write tuples with C++ signatures 37
19 Group and related classes . 40
20 Class diagram containing all serialization related classes 41
21 Related functions for unfiorm_type_info and object 42
22 Communication to a remote actor . 44
23 Links in a distributed system . 45
24 Generic queue interface . 62
25 Inconsistent queue state with unreachable tail 63
26 Temporary inconsistent queue state . 64
27 Enqueue operation in a cached stack . 65
28 Dequeue operation in a cached stack . 65
29 Queue benchmark using 4 threads . 66
30 Queue benchmark using 8 threads . 66
31 Actor creation performance for 219 actors 85
32 Mailbox performance in N:1 communication scenario 86
33 Performance in mixed use case . 89

Hiermit versichere ich, dass ich die vorliegende Arbeit im Sinne der Prüfungsordnung nach
§22(4) bzw.§24(4) ohne fremde Hilfe selbständig verfasst und nur die angegebenen Hilfsmit-
tel benutzt habe.

Hamburg, 16.01.2012 Dominik Charousset

	1 Introduction
	1.1 The Actor Model
	1.2 Overview of this Work
	1.3 Organization of the Thesis

	2 Message-Oriented Programming
	2.1 Message Passing
	2.1.1 Synchronous Message Passing
	2.1.2 Asynchronous Message Passing
	2.1.3 Inversion of Control

	2.2 Publish/Subscribe
	2.2.1 Related Software Patterns
	2.2.2 IP Multicast

	2.3 Messages and Patterns
	2.4 Actor Systems
	2.4.1 Message Processing
	2.4.2 Behavior of Actors
	2.4.3 Monitoring of Actors and Fault Propagation
	2.4.4 Group Communication

	3 Related Work
	3.1 Erlang
	3.1.1 Actor Creation
	3.1.2 Message Processing
	3.1.3 Name Service for Actors
	3.1.4 Fault Tolerance and Process Management

	3.2 Scala
	3.2.1 Scala Actors Library
	3.2.2 Akka

	3.3 Kilim
	3.4 Retlang
	3.5 Theron

	4 Design of libcppa
	4.1 Design Goals
	4.1.1 Ease of Use
	4.1.2 Scalability
	4.1.3 Distribution Transparency

	4.2 Reference Counting Garbage Collection Using Smart Pointers
	4.2.1 Base Class for Reference Counted Objects
	4.2.2 Copy-On-Write

	4.3 Designing an Actor Semantic for C++
	4.3.1 Keywords and Operators
	4.3.2 Syntax Extension
	4.3.3 Semantic of Send and Receive Statements

	4.4 Unified Messaging for Groups and Actors
	4.5 Actors
	4.5.1 actor Interface
	4.5.2 local_actor Interface
	4.5.3 Implicit Conversion of Threads to Actors
	4.5.4 Cooperative Scheduling of Actors

	4.6 Event-Based Actors
	4.6.1 Stacked and Non-Stacked Actor Behavior
	4.6.2 Actors as Finite-State Machines

	4.7 Messages
	4.7.1 Copy-On-Write Tuples
	4.7.2 Atoms

	4.8 Group Interface
	4.9 Serialization
	4.9.1 Uniform Type Information
	4.9.2 Announcing User-Defined Types

	4.10 Network Transparency
	4.10.1 Actor Addressing
	4.10.2 Middle Men and Actor Proxies
	4.10.3 Publishing Actors and Connect to Remote Actors

	5 Implementation of libcppa
	5.1 Actor Semantic as Internal Domain-Specific Language for C++
	5.1.1 Atoms
	5.1.2 Receive Statement and Pattern Matching
	5.1.3 Receive Loops
	5.1.4 Send Statement
	5.1.5 Emulating The Keyword self

	5.2 Mailbox Implementation
	5.2.1 Spinlock Queue
	5.2.2 Lock-Free Queue
	5.2.3 Cached Stack
	5.2.4 Choosing an Algorithm

	5.3 Actors
	5.3.1 Spawning Actors
	5.3.2 Abstract Actor
	5.3.3 Thread-Mapped Actors
	5.3.4 Cooperatively Scheduled Actors
	5.3.5 Event-Based Actors

	5.4 Groups
	5.4.1 Local Group Module
	5.4.2 A Use Case Example

	5.5 Serialization
	5.5.1 Uniform Type Name
	5.5.2 Announcement of User-Defined Types

	5.6 Middle Man
	5.6.1 Addresses of Middle Men
	5.6.2 Post Office
	5.6.3 Mailman

	6 Measurements and Evaluation
	6.1 Measuring the Overhead of Actor Creation
	6.2 Measuring Mailbox Performance in N:1 Communication Scenario
	6.3 Measuring Performance in a Mixed Scenario
	6.4 Measurement Summary

	7 Conclusion & Outlook

