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Kurzzusammenfassung
Die Speicherarchitektur moderner Mehrprozessorsysteme ist hierarchisch strukturiert. Mehrere
Ebenen von Caches und eine Non-Uniform Memory Access (NUMA) Architektur wurden ein-
geführt um die Zugri�szeiten von den CPU Cores auf die benötigten Daten zu verringern.
Dies führt zu inhomogen Ausführungsgeschwindigkeiten von Anwendungen mit einer Ab-
hängigkeit vom Ort der Daten. Durch die Berücksichtigung dieses Lokalitätsprinzips kann die
Geschwindigkeit von Anwendungen und Software-Bibliotheken, wie zum Beispiel bei dem
C++ Actor Framework (CAF), deutlich verbessert werden. CAF ist eine Implementierung des
Aktormodells, ein mächtiges Entwurfsmuster für verteilte und nebenläu�ge Anwendungen. In
CAF wird RandomWork-Stealing (RWS) als Standard-Scheduler genutzt. RWS skaliert exzellent,
ist einfach gehalten und benötigt nur sehr wenig Informationen über das System. Dies hat den
Nachteil, dass es keine Wissen über die Speicherarchitektur hat, das Lokalitätsprinzip ignoriert
und Möglichkeiten versäumt die Performanz von Anwendungen zu verbessern.

In dieser Arbeit entwickeln wir einen Scheduler, der das Wissen über die Speicherarchitektur
ausnutzt um die Performanz von aktorbasierten Anwendungen zu verbessern. Wir implemen-
tieren und analysieren den Scheduler in CAF unter Berücksichtigung eines Kompromisses
zwischen der Kommunikations- und der Ausführungslokalität. Die Kommunikationlokalität
beschreibt die Distanz zwischen kommunizierenden Aktoren während die Ausführungslokali-
tät die Distanz zwischen dem auszuführenden Aktor und seinen abgelegten Daten beschreibt.
Ausführliche Analysen zeigen, dass datenintensive Anwendungen bis zu 44% schneller auf
einer 64 Core NUMA-Maschine laufen können.
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Abstract
Memory architectures of modern processors are hierarchically structured. Multiple level of
caches and a non-uniform memory access architecture (NUMA) are introduced to reduce access
latency from processing units to their current working set. These lead to inhomogeneous per-
formance characteristics depending on where the data is located. Optimizing the data locality
of applications or libraries like the C++ Actor Framework (CAF) can signi�cantly improve the
performance. CAF is an implementation of the actor model. It is a powerful software pattern
for concurrent and distributed computing. CAF is designed for using multiple, exchangeable
schedulers with a default choice of random work-stealing (RWS). RWS is excellently scalable,
and by choosing a random victim scheduling is kept simple with minimal information required.
On the downside, it is unaware of the memory architecture, ignores data locality and misses
opportunities to improve the application performance.

In this thesis, we contribute a locality-guided scheduling that exploits knowledge about
the host system to improve the performance of actor based applications. We implement and
thoroughly analyze a CAF scheduler which considers the trade-o� between communication

locality and execution locality. The former describes the locality of communicating actors, while
the latter the locality between a worker which executes an actor and the location of its data.
Extensive performance evaluations show a performance gain for data intensive application of
up to 44% on a 64 core NUMA machine.
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1 Introduction

Concurrent programming becomes continuously more important as the number of cores per
CPU increases while single core performance stagnates. Fully taking advantage of multicore
systems requires special care from programmers to coordinate computations across multiple
processing units. A powerful computation model that overcomes these obstacles and addresses
concurrency problems like low level race conditions and deadlocks is the actor model [1].
Actors are lightweight, independent, and isolated entities that solely interact via asynchronous
message passing and allow for scaling applications to many cores.

The C++ Actor Framework (CAF) [2, 3] is an implementation of the actor model. Written in
the C++11 standard, the framework provides native program execution as well as a high level
of abstraction for writing concurrent and distributed applications with a focus on scalability.
CAF is designed with a modular architecture that allows developers to extend or exchange
components such as the scheduler.

The memory architecture of modern processors is structured hierarchically. This leaves
CPUs with inhomogeneous performance characteristics depending on the memory region they
access. Multiple levels of caches and a non-uniform memory access (NUMA) architecture are
introduced to compensate for these conditions. Taking data locality into account can improve
the performance of applications that utilize heterogeneous memory architectures. We focus
this work on optimizing the scheduler in CAF which promises to have a signi�cant impact on
the data locality.

The scheduler of an actor system is a performance critical component. Leaving it ill-
con�gured or choosing an un�t scheduling strategy can slow down applications when CPUs
are left idle and work is not balanced across the available cores e�ciently. CAF uses random
work-stealing (RWS) [4] by default, a decentralized scheduling approach with excellent scala-
bility. An RWS scheduler deploys a number of workers, each of which owns a job queue and
when it drains steals from a random victim.

In this work, we present a locality-guided scheduling (LGS) approach that exploits knowledge
about the memory architecture to improve the performance of actor-based applications. LGS
considers communication locality (CL) [5], the locality of communicating actors, and execution
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1 Introduction

locality (EL) [6], the locality between a worker and the data of the actor it executes. Locality
describes the arrangement of entities and data over CPUs, caches, and memory banks. We
combine weighted work-stealing and actor pinning that enables LGS to �nd a trade-o� between
the two localities. The former enables workers to prefer victims with close memory proximity
while the latter improves EL by scheduling actors near their state.

We evaluate LGS in two steps. First, we benchmark its performance in a data-intensive task
to quantify the case in suitable scenarios. Thereafter we examine the performance of LGS in
the actor benchmark suite Savina [7] which implements a wide variety of concurrency patterns
for actor systems.

1.1 Thesis Outline

The thesis is organized as follows. Chapter 2 introduces the actor model and the C++ Actor
Framework. Subsequently, it describes the fundamentals of data locality and scheduling.
Chapter 3 discusses scheduling challenges and design constrains along with related work.
Chapter 4 describes locality-guided scheduling in detail before discussing the implementation
in Chapter 5. The scheduling strategy is evaluated in Chapter 6. Finally, Chapter 7 concludes
and gives an outlook to future work.
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2 Background

In this chapter, we introduce the actor model and an implementation of it called the C++ Actor
Framework (CAF) which we use to test and evaluate our scheduling algorithm. Subsequently,
we give an overview on non-uniform memory architectures and discuss why taking data
locality into account can improve the performance. Next, we introduce scheduling in CAF and
survey side e�ects of locality related optimizations.

2.1 The Actor Model

The Actor Model is a software pattern for concurrent and distributed programming. The
model introduces independent and isolated entities called actors which interact via message
passing. A classic actor [8] typically responds to a received message by (1) spawning new
actors, (2) sending messages to other actors or (3) changing its own behavior. An actor is
a composition of an inbox, a behavior and a state which is processed by an execution unit.
Messages which are used for exchanging data, sending commands and requesting results of a
calculation upon reception are stored in the inbox of the actor. The inbox maintains the order
in which messages are received, but does not necessarily de�ne the order in which they are
processed. An actor sequentially selects a single message from its inbox which suits its current
behavior and processes it. Unsuitable messages may be dropped, skipped for later usage or
generate an error. While processing a message, an actor may change its state and adjust its
behavior for future messages. An execution unit may be an exclusive thread or an arbitrary
and temporary assigned thread.

The actor model has clear bene�ts compared to low-level multithreading programming.
Using independent and fully isolated actors eliminates the possibility of low-level race con-
ditions, because an actor can only change its own state. Moreover, low-level deadlocks are
impossible, because accesses to resources do not have to be locked from other actors. An actor
is a lightweight entity which represents a logical task and is independent from the creation
and destruction of heavy threads. Hence, it is feasible to start actors even for small tasks
which allows �ne-grained parallelization when scaling programs from one to many cores. Load
balancing is done automatically and thus relieves the programmer of this task.

3



2 Background

Error handling in concurrent and distributed systems is a complex challenge. The actor
model allows actors to monitor one another and link their fate [9]. When a monitored actor
dies, all monitoring actors are noti�ed with a message. Either, the monitoring actor is able to
handle the error, e.g., by restarting the faulty actor, or it dies as well to escalate the error. This
concept helps to design resilient and fault tolerant software, because problems are propagated
throughout the whole system or subsystem and it allows to re-establish faulty parts in a well
de�ned way.

The actor model was introduced by Hewitt et al. [1] in the context of arti�cial intelligence
and was re�ned later by Gul Agha [10]. While the �rst implementation was PLASMA [11],
today many actor libraries exits. For example, for Java and Scala the libraries Akka [12],
Habanero-Java [13], Jetlang [14] and Scalaz [15] exist among others. For C++11 the libraries
Theron [16], Charm++ [17] and CAF [3] are provided. Furthermore, languages like Pony [18]
and Erlang [19] use the actor model as a fundamental primitive.

2.2 The C++ Actor Framework

The C++ Actor Framework (CAF) [20, 21, 22, 3, 23, 24] is an open source implementation1 of
the actor model written in C++11. It combines a high level abstraction with a native program
execution. CAF provides lightweight, sub-thread actors with a low memory footprint and an
e�cient message passing layer. This allows to scale applications from small IOT devices [23]
up to computing at cluster level.

CAF implements the basic actor primitives spawn(), send() and become(). It extends
them with convenient functions, features and building blocks like transparent network abstrac-
tion, group communication, management for groups of workers, concurrency-save standard
output, composable actors and streaming support. Actors can be declared as a function or
a class and are constructed with the method spawn(). CAF supports both statically and
dynamically typed actors with asynchronous or blocking message handlers. Statically typed
actors have a prede�ned message interface which is announced to the C++ type system. This
allows to check the compatibility between senders and receivers at compile time. In contrast,
dynamically typed actors have low programming overhead and allow rapid prototyping.

The CAF runtime manages a precon�gured number of worker threads which executes the
actors, while a user-space scheduler assigns the actors to the workers. An actor in execution
dequeues a message from its inbox that matches its current message interface. Next, it processes
the message and then returns the control back to the scheduler cooperatively. While processing

1https://github.com/actor-framework
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2 Background

a message, an actor can send() messages to other actors in an asynchronous fashion or send
a message with the method request() and wait for the response message before processing
other messages. An actor can also change its behavior for future messages with the method
become() which is a convenient way to implement a state machine.

2.3 Non-Uniform Memory Access Architectures

The processing speed of a computer system highly depends on how fast CPUs can retrieve data
for their calculations. In this thesis, we analyze and try to optimize this data access on software
level. For such optimizations we need to understand the characteristics and peculiarities of a
computer system and require insights into the physical memory architecture. For simplicity
and uni�cation, we follow the example of hwloc [25] and use the term processing unit (PU) for
the smallest processing element on a computer. A PU could signify a processor with a single
core or a hardware thread in a superscalar processor.

The memory architecture is a system design to store and deliver data. In common multicore
systems memory is hierarchically structured. The primary storage also called main memory
is shared by all CPUs and accessible via a uni�ed address space. This design is called a
shared memory architecture [26] and can be further divided into designs like the distributed

memory architecture [27] where each CPU has its own private main memory. Shared memory
architectures can be classi�ed in systems with uniform and non-uniform memory accesses

(UMA, NUMA) [28]. A UMA-system guarantees same access times to each memory region
from each PU. In contrast, NUMA-systems do not have such a guarantee. On the one hand,
this complicates the design of performance critical software. On the other hand, it allows to
bundle PUs together with memory banks into NUMA-nodes which in turn allows commodity
hardware to scale linearly with the number of available PUs as long as the executed software
threads work on their local memory regions. NUMA-nodes are connected via data buses (links)
such that each PU can transparently access the memory of other nodes—although with varying
access times. These links form an interconnection network which exists in various topologies.
If NUMA-nodes are not connected in a full mesh, then multiple hops are necessary to reach all
memory regions. The more hops are required to access another NUMA-node, the slower the
memory access becomes. Load on links along the path can further slow down access times.
Figure 2.1 shows a Twisted Ladder Topology [29] connecting 8 NUMA-nodes, each consist of
local main memory and 8 PUs. The number of hops is limited by this topology to a maximum
of three.
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Main Memory
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Figure 2.1: The NUMA architecture Twisted Ladder Topology with 8 nodes and 64 processing
units.

Since current processing hardware runs much faster than data can be retrieved from main
memory, the performance of an actor critically depends on the amount of data it processes and
its memory access pattern. To reduce waiting times for data, modern hardware is equipped
with multiple levels of caches which are preloaded and temporally store data for future use.
The �rst level (L1) caches are often tightly coupled to speci�c PUs and on par in speed, but
small. Additional cache levels are larger, slower and often shared between a subset of PUs.
Figure 2.2 shows a snippet of a server which is plotted with the tool lstopo from the hwloc

library [25]. The snippet shows one CPU socket (Package #0) divided into two NUMA-nodes
(NUMANode #0 and NUMANode #1). Each node consists of 8 PUs, with a private L1 data
cache (L1d) and a shared L1 instruction cache (L1i). The L2-caches are shared by two PUs and
stores data as well as instructions. Finally, the L3-cache is the last level cache (LLC) and is
shared among a whole NUMA-node.

Data in caches is stored in granularity of cache lines. A cache line in a commodity hardware
often has a size of 64 bytes and can hold multiple independent values. When a PU requests
data from a speci�c address the caches are checked for the corresponding data �rst. A cache

hit signi�es that the data has been found, otherwise a cache miss occurred and the data must
be fetched from the main memory. It is possible that multiple PUs work on the same set of data
and several caches hold a copy of the same address. While reading from the same data location
has no side e�ects, writing to it invalidates data in other caches. Memory architectures of
commodity hardware provide a cache coherence mechanism to prevent PUs from working on
invalid data. Cache coherence algorithms track invalidations of cache lines and propagate
them to all other copies in order to refresh invalid cache lines on access.
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Figure 2.2: The cache hierarchy of a CPU socket with two NUMA-nodes of a server (generated
with hwloc [25]).

2.4 Data Locality

The Principle of Locality [30], also known as the Locality of Reference, is a fundamental principle
of computer science. It describes a phenomenon in which software uses speci�c values or
memory regions more often than others. This allows to predict the behavior of software and
enables performance optimization techniques like caching and prefetching of data.

[Locality can be de�ned] “in terms of a distance from a processor to object x at
time t, denoted D(x, t). Object x is in the locality set at time t if the distance is
less than a threshold T : D(x, t) ≤ T .” [30]

The distance D can be temporal or spatial. Temporal locality is the duration between the
reuse of the same piece of data. The duration can be caused by the behavior of the software
or the delay on a network link. Spatial Locality is a topological distance (physical or virtual)
between pieces of data. In the context of a NUMA architecture distances can be measured in
the number of hops required by a PU to access a memory region. Further examples for types
of localities are Instruction Locality [31], Branch Locality [32] and Sequential Locality [33]. A
more general term without a speci�cation of the actual metric is referred to as Data Locality.

Knowledge about data locality can be exploited by hardware and software to increase the
overall performance of a system. Often used hardware mechanisms to improve data locality
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are caching and prefetching of data. Caching relies on the idea that recently used data has a
high probability to be requested again in the near future [34] (temporal locality). Moreover,
it is likely that adjacent data will be requested, too [34] (spatial locality). This encourages to
prefetch data and store it proactively in caches. This technique is called cache prefetching and
is designed in order to reduce the number of accesses to slower memory and to reduce related
access latencies. Table 2.1 gives an overview of load access latencies which is not complete
and applicable to all systems. It shows measured CPU cycles per memory access type and
was measured by David et al. [35] on a system with 4x AMD Opteron 6172 processors with
HyperTransport 3.0 and on a system with 8 Intel Xeon E7-8867L with QuickPath Interconnect.
The table illustrates that the distance between PU and memory location has an impact on
the access latency by up to two order of magnitudes and subsequently an impact on the
performance of software.

AMD Opteron 6172 Intel Xeon E7-8867L
Memory Load Type 6.4GT/s HyperTransport 3.0 6,4GT/s QuickPath
L1 3 5
L2 15 11
L3 40 44
Local RAM 136 355
Remote RAM (one hop) 247 492
Remote RAM (two hops) 327 601

Table 2.1: An overview of memory access latencies in CPU cycles [35].

The data locality in software can be increased by adjusting the memory placement and the
memory access pattern. Compacting data to the NUMA-node of the executing task avoids
remote memory accesses and placing data linearly according to the access sequence supports
hardware prefetching (sequential locality). Listing 2.1 shows two slightly di�erent versions of
a function which summarizes all elements in a matrix. At �rst, the matrix of the dimension
SIZE ∗ SIZE is allocated and �lled. To summarize all elements in the matrix, two nested
for-loops generate all combinations of the indexes i and j to cover all elements of the matrix,
where i is the running index of the outer loop and j is the index for the inner loop. In the �rst
version sum is calculated by adding the elements column-wise which bypasses the prefetch
mechanisms and causes a high number of cache misses, thus leading to poor performance.
In the second version sum is calculated line-wise and bene�ts from an access pattern which
leverages the sequential locality.

8



2 Background

1 int matrix[SIZE][SIZE] = initalize_and_fill_data();
2 int sum = 0;
3 for (int i = 0; i < SIZE; ++i) {
4 for (int j = 0; j < SIZE; ++j) {
5 sum += matrix[j][i]; // (version 1) SLOW - column-wise access
6 sum += matrix[i][j]; // (version 2) FAST - line-wise access
7 }
8 }

Listing 2.1: Example of a locality optimized memory access pattern

The Linux operation system is NUMA-aware and provides tools for memory placement and
scheduling optimization [36, 37]. Memory can either be allocated explicitly from speci�c nodes
or via process and system wide polices. Linux supports the allocation polices �rst-touch and
interleave. The �rst-touch policy allocates data at the NUMA-node where the process or thread
(task) is currently executed. This is the default policy on most Linux systems and promises an
optimal data placement for small programs. The Linux scheduler tries to maintain the node of
the currently running task to obtain the data locality. If a program allocates more memory
than available on the current node, it falls back to memory of a nearby node. The scheduler
can move tasks to other nodes to balance workload. To prevent the scheduler from moving
tasks to other nodes, the tasks can be manually pinned to a set of PUs [38]. Memory pages
can be migrated between nodes [39] to improve the data locality. The pages which shall be
migrated are marked and will be migrated on next access (lazy migration). The interleave
policy allocates the memory pages in a round robin fashion from all nodes to reduce worst
case memory access scenarios.

Optimizing the data locality can enhance performance, but can also lead to a degradation.
False Sharing [40] is an e�ect that can occur in multi-threaded applications when a cache line
is shared among multiple caches. In detail, two objects A and B can be located next to each
other in memory and �t into the same cache line. The thread TA operates only on object A
and TB operates only on object B. Running concurrently, the cache line is shared among the
caches serving threads TA and TB . In this case, TA and TB do not share any data from the
logical view, but from the perspective of the memory architecture they do. This con�ict leads
to a degradation in performance when one of the thread starts to update its object. Then, the
other thread has to reload the cache line on access, even if its object did not change.
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2 Background

2.5 Scheduling

Concurrent software consists of chunks that can be executed in parallel. In the actor model,
these chunks construct a dynamic communication network consisting of a varying number of
actors. A scheduler assigns these actors (work items) to a pre-allocated number of workers
distributed across PUs (computing resources). Scheduling algorithms also called scheduling
disciplines [41] may focus on speci�c aspects like fair sharing of all resources, maximizing the
throughput or minimizing response time. We are looking for a scheduling discipline which
takes the data locality into account to improve the performance of applications.

CAF provides the scheduling disciplines work-sharing and work-stealing [42]. Work-sharing
is usually a First Come, First Serve (FCFS) scheduler [43] which has a centralized job queue.
Work items are enqueued at the tail and workers dequeue items from the head and execute
them. This can cause contention due to the synchronization requirements. Work-stealing
reduces this contention by introducing one job queue per worker. Each worker operates on its
own job queue until it is drained. Then, it picks another worker and tries to steal a work item.
The victim is chosen at random to avoid any kind of bias and to reduce the amount of required
information to the number of workers to steal a job.

Work items can either be scheduled in a preemptive or cooperative fashion. A preemptive
scheduler can interrupt its work items during execution, e.g., to reschedule them after a
de�ned period of time or when priorities change. This can be used to protect work items from
starvation or to enable fair sharing of CPU time. In contrast, a cooperative scheduler waits
until work items voluntarily yield control. This usually reduces the number of context switches
and causes less overhead than a preemptive scheduler at the price of possibly unfair resource
utilization. An unfair utilization can lead to the convoy e�ect [44] where a long running job
blocks other jobs from execution and reduces the throughput temporally.

A work-conserving scheduler tries to keep every worker busy while a non-work-conserving
scheduler [45] can withhold jobs on purpose to reduce the workload of workers. Such a
strategy could allow to reserve computational and bandwidth resources for tasks with higher
priorities or allows to prevent the performance degradation pattern trashing [46]. Originally,
trashing refers to the swapping of pages between main memory and hard disk. Other �avors
exist like cache-trashing which leads to a high number of cache misses. In a NUMA-system, a
non-work-conserving strategy can be used to reduce the contention on interconnection links.
Further scheduling characteristics are discussed in Section 3.2.

A typical use case for task and actor based programs is the divide and conquer paradigm
where work items can generate new work items to split problems into smaller problems.
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Consequently, each work item can have multiple children and at least one parents with the
exception of the �rst work item. A work item which requires multiple preconditions for its
execution might have multiple parents. These relationships are directed and acyclic and allow
to form a directed acyclic graph (DAG), where nodes represent work items and edges specify
their relationships. In task based parallelism, work items can be represented as tasks and are the
scheduled entities. This di�ers from the actor model wherein work items can be represented
as messages while actors are scheduled.

Whether a DAG is deterministic in respect to the program input, and whether it can be
generated ahead of the program execution depends on the concurrency model and its imple-
mentation. In the case of CAF, the actor pattern is by its nature of asynchronous message
passing non-deterministic. The DAG can only be generated dynamically at runtime, because
CAF has no knowledge about the behavior of the application. A DAG can be traversed by
the scheduler in a breadth �rst search (BFS), in a depth �rst search (DFS) policy [47], or in a
combination of it. The time complexity is the same for both polices when all edges have to be
traversed. When a program can be successfully completed without traversing all edges, the
best choice depends on the program. The total amount of required memory (space complexity)
can be much better for DFS than for BFS. For instance, a DAG in the shape of a balanced
tree is given, where b is the number of branches at each node and h is the height of the tree.
Then, DFS has a space complexity of O(h) and BFS has a complexity of O(bh). DFS can be
implemented by adding new jobs to the head of the job queue to simulate the behavior of a
stack (LIFO), while BFS adds new jobs to the tail (FIFO). On the one side, processing jobs in a
LIFO fashion reduces the memory footprint and increases cache locality. On the other side,
DFS cannot be parallelized. To parallelize a program, BFS can be used. It traverses a tree in a
level order and creates all work items for the next level which can be executed concurrently.
DFS and BFS can be combined by adding work items in an arbitrary ratio to the head and to
the tail of the job queue.

The overall runtime of an application which is also called makespan in the context of
scheduling can be counter-intuitively increased by optimizing software or upgrading hardware
[48, 49]. Such anomalies can be caused by the scheduling on multicore systems after reducing
the execution times of individual jobs, weakening dependencies or increasing the number of
PUs.

The following example illustrates three anomalies. Figure 2.3 shows a DAG of a test program
with the jobs J0 as root and J1 to J7 as children or grand children. Each job has a makespan of t
time units. To successfully complete this program all, jobs have to be executed. For simplicity
the scheduler uses work-sharing with a central and pure FIFO job queue. Jobs are created at
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the end of other jobs and jobs which are created in the same time slot are added to the queue
ordered by their index starting with the lowest. The host system consists of either two or three
processing units P1, P2 and P3. At the beginning of each time slot, idle PUs sequentially fetch
jobs from the job queue in order of their index. At program start, J0 is the only job in the job
queue. Figure 2.4(a) shows the baseline with two PUs and an optimal t of 8. The following list
describes the process time slot by time slot:

1. At program start P1 fetches the only job in the job queue J0 and P2 stays idle. During
execution, J0 spawns three jobs J1, J2 and J3 which are added in the same order to the
job queue.

2. P1 fetches J1 and P2 fetches J2.

3. While P1 is still busy with J1, P2 fetches J3 (the last job in the queue). At the end of this
time slot J1 creates J7.

4. P1 fetches the just added job J7 and executes it up to the time slot 8. P2 is still busy and
creates the jobs J4, J5 and J6 which are executed sequentially in the time slots 5 to 7 by
P2.

In the baseline scenario, the critical execution path is scheduled optimally with the jobs J0, J1
and J7 in a sequence. The three scheduling anomaly examples follow the pattern and disrupt its
critical path with a non critical job which leads to an increase of the makespan. The scheduler
cannot prevent such a disruption, because it has no knowledge about the application logic.

Figure 2.4(b) shows an example where an upgrade of the host system by an additional PU
increases the makespan by 1 unit. In this case, J1, J2 and J3 can be are executed concurrently in
time slot 2. At the end of this slot the jobs J4 to J7 are created and enqueued to the job queue
in the same order. Consequently, J7 is the last job in the job queue which leads to an interrupt
of the critical path and increases the makespan.

Figure 2.4(c) shows a scenario where the computational cost of job J2 could be saved. This
leads again to the sequence of J4 to J7 in the job queue, as a consequence J7 is executed last
which disrupts the critical path.

Finally, in Figure 2.4(d) the dependency of J4 is reduced and is created directly from the root
J0 instead of from J3. J1 to J4 are created by J0 and enqueued in the same order. In the next two
time slots, J1 to J3 are executed and J7, J5 and J6 are added to the job queue. At the beginning
of time slot 4, the jobs J4, J7, J5 and J6 are stored by the job queue. This leads to the disruption
of the critical path, because P1 fetches J4 and P2 is still busy with J3.
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Figure 2.3: Directed acyclic graph (DAG) of the scheduling anomaly example program.
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Figure 2.4: shows the baseline scheduling example and three program or hardware opti-
mizations which cause di�erent scheduling anomalies, resulting of an extended
makespan.
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Approaches exist to prevent problems caused by scheduling anomalies in real time scheduling.
For example, Brandt et al. [50] proofs that preemptive EDF (earliest deadline �rst scheduling)
has no anomalies. Another way is to take the upper bound of scheduling anomalies into account
and adjust the deadlines and system resources accordingly [48, 51]. A prove for a general upper
bound is introduced by R. L. Graham [48]. This theoretical upper bound can be reduced when
certain assumptions can be made like jobs have no dependencies [48]. Scheduling anomalies
can occur in CAF when optimizing the data locality. However, these are problems which
have to be considered when designing hard realtime systems where it musst be ensured that
deadlines are never missed. CAF follows the best e�ort principle, hence single deadlines are
irrelevant. The general upper bound is very pessimistic and can usually be neglected.
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3 The Problem of Actor Scheduling and
Related Work

We are looking for a scheduler which is aware of the memory architecture and considers the
non-uniform access characteristics to improve the performance of actor-based applications.
With this aim, we survey the current CAF scheduler in detail �rst. Next, we explore the design
constrains of a NUMA-aware scheduler which are imposed by CAF. Finally, we examine the
data locality aspects of the actor pattern in respect to scheduling and study the related work.

3.1 Scheduling in CAF

CAF supports the basic actor types blocking_actor and scheduled_actor. The former
is scheduled preemptively by the operating system, while the latter is scheduled cooperatively
in the user-space by the actor system. The actor system executes scheduled actors in a thread
pool, whereas the number of threads are precon�gured and by default are bound to the number
of cores of the host system. The number of actors depends on the application and can vary over
time. Blocking actors are assigned to a dedicated system thread that allows the use of blocking
calls like I/O operations which could starve other actors. However, this practice should be
used with caution, because spawning an actor in a dedicated thread is an expensive operation.

A scheduled actor can be in one of the four states (1) Waiting, (2) Ready, (3) Running or (4)
Done as shown in Figure 3.1. An actor is either spawned lazily or eagerly. By default an actor
is spawned eagerly and starts in state Ready to run its initialization as soon as possible. During
the initialization process, an actor can adjust its behavior and execute code, e.g., to prepare
future calculations by starting actors or sending messages. A lazily spawned actor delays its
initialization and stays in state Waiting until the �rst message is received. On receipt, an actor
in state Waiting switches to state Ready and is scheduled for execution. The �rst time an
actor is executed it performs its initialization. Then, it starts processing messages sequentially
by taking them from its inbox up to a precon�gured number. If the maximum number of
messages per schedule is reached, the actor switches either to state Waiting or back to state
Ready. De�ning a high number of messages to process in one schedule, maximizes the overall
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number of instructions performed per second by the actor system, whereas a low number
minimizes the response time. This approach has the downside that the execution time of an
actor is not considered and actors with long execution times can reduce the throughput of the
worker. An alternative approach could measure the execution time and could reschedule when
a threshold is exceeded instead of processing the next message. This increases the fairness
between actors, but also increases the computational e�ort on a critical code path. Calling
the function quit() closes the inbox of an actor, releases its resources and switches to the
�nal state Done. A one-shot actor, i.e., an actor spawned without a behavior, cannot receive
messages and therefore never switches to state Waiting and quits automatically after execution.

Done

Waiting

Ready

Running

lazily spawned

msg received executed

inbox.size() > 0

msg processed

on quit()

inbox.size() == 0

msg processed

eagerly spawned

Figure 3.1: A scheduled actor can be in one of the states: Waiting, Running, Ready, Done.

The cooperative scheduling algorithms work-sharing and work-stealing provided by CAF are
implemented as follows. The work-sharing scheduler has a centralized job queue protected by a
mutex with a condition variable according to the bounded bu�er problem [52]. In this problem,
consumers acquire data items from a data structure while producers add new items. The data
structure synchronizes accesses of consumers and producers. If the data structure is empty it
blocks consumers until new items are added and it blocks producers when the data structure
is full. While a job queue has no capacity limit, it can be empty. In contrast work-stealing uses
a job queue per worker whereby a job queue is not allowed to block workers. Instead a worker
has to poll other job queues and decide himself which frequency to use and when to take a
break. It aims a trade-o� between response time and CPU usage. CAF distinguishes between
three polling strategies: aggressive, moderate and relaxed. At �rst, a drained worker tries to
steal a work item by aggressively polling other workers job queue to acquire a new job as
fast as possible to minimize its idle time. After a precon�gured number of unsuccessful tries,
the worker falls back to the moderate stealing strategy. The polling frequency is reduced by
short intermediate sleep intervals to stay responsive while the contention on other workers
job queue is reduced. Finally, after a number of moderate tries, the worker falls back to the
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relaxed strategy. The polling frequency is further reduced to minimize the CPU load, when no
work is available. After a successful steal the stealing strategy is reseted to aggressive.

Work items are added to workers job queue via the functions internal_enqueue()

and external_enqueue(). Internal_enqueue() is only called by its own worker and
enqueues work items at the head to schedule the actor to be executed next. The function
is called by the current running actor for newly spawned actors and for idle actors which
received a message. Queue-jumping (enqueuing at the head instead of at the tail) is done to
increases the temporal locality, because newly spawned actors or sent messages might still be
cached when the next actor is executed. External_enqueue() is called by other workers
and enqueues work items at the tail to avoid interference with local optimization. For the same
reason, work-stealing dequeues work items from the tail. To interact with blocking actors
and to handle work items from a non-actor context, workers are managed by a Coordinator

which provides the function central_enqueue() to schedule external work items. On
enqueuing, the function chooses a worker and calls its external_enqueue() function
while the worker is chosen in a round robin fashion to balance the workload.

3.2 Scheduling Constraints

A scheduler for a user-space actor system such as implemented in CAF is constrained in
multiple dimensions and requires careful consideration of trade-o�s between con�icting goals.

When scheduling actors in such an environment, the runtime system has no a priori knowl-
edge of the application behavior and thus must implement an approach that performs well for
a large number of versatile use cases for actors.

The general aim of scheduling optimizations is to minimize the makespan of an application.
Finding the best scheduling decision is a well-known optimization problem called the Job

Shop Scheduling Problem [53]. It describes the challenge of assigning a number of work items
of varying execution times to a number of PUs. Finding the optimal solution is an NP-hard
problem. Job Shop Scheduling can be distinguished between static and dynamic scheduling.
Static scheduling is an o�ine problem and information such as the number of work items,
their dependencies, and individual execution times are provided upfront. In contrast, the CAF
scheduler attempts to solve an online problem where work items are generated dynamically
and individual execution times are unknown. However, approaches to estimate execution times
exist. For example, Wang et al. [54] predicts the execution time in a task based parallelism
framework based on previous execution of tasks which can be adapted to the actor model.
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Prioritizing performance-critical work items such as items that have many dependencies
to future work is a strategy to reduce the makespan [55]. This requires knowledge about
the application behavior ahead of time. While this would be possible in the presence of a
deterministic execution model, actor systems are non-deterministic [56]. This renders the
approach based on makespan impractical.

Work items can either be scheduled in a preemptive or cooperative fashion. A preemptive
scheduler can interrupt work items either on the operating system level or within a virtual
machine in user-space. Designed as a native library that runs in user space, CAF remains
restricted to cooperative scheduling.

3.3 The Problems of Locality

A scheduler can optimize the communication e�ort between actors, called communication
locality (CL) [5], or the e�orts of a PU of accessing the data by its executing actor, known as
execution locality (EL) [6]. Note that both locality aspects are not restricted to actor parallelism,
but exist for task and thread parallelism as well. Here, CL occurs indirectly, e.g., when passing
on a result from one task to the next one. CL in�uences the performance of inter-actor message
exchange. In the best case, communication partners are executed on the same PU where
they may share data stored in L1-cache. In the worst case, the actors are located at di�erent
NUMA-nodes and data must be accessed remotely.

Communication with memory-mapped I/O devices is a�ected by CL similarly to actor-to-
actor communication as devices are connected to speci�c NUMA-nodes. Exchanging many
or large messages between two tightly-coupled actors performs best when scheduling both
actors to the same PU.

EL quanti�es the time required to access the state of individual actors. Executing an actor
on the same NUMA-node where its state is allocated minimizes memory access times. Hence,
keeping actors on or close to their initial NUMA-node can be bene�cial.

CL and EL may con�ict. An example are two data-intensive actors that are located on
di�erent NUMA-nodes and frequently exchange messages. The scheduler could optimize the
CL by running both actors on the same PU. However, this would degrade EL of one of the actors,
because it has to access its data remotely. On the other hand, keeping each actor close to its
state would result in a poor communication locality. An optimal strategy would have to analyze
the trade-o� between the respective memory is access characteristics and the communication
overhead. CAF cannot solve this challenge without the support of the application developer
as the runtime environment does not have knowledge about the context of messages. For
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example, a message might only contain a pointer and look small, but references a large data
structure to be processed by the recipient. Consequently, we need to consider di�erent metrics.

CAF can adjust CL and EL by scheduling decisions at two opportunities: (1) a worker �nished
its job and is looking for new work, or (2) an idle actor receives a message. CAF uses random
work-stealing to acquire new work for idle workers. Although very simple, this strategy
ignores data locality and misses opportunities to improve the application performance. An
actor without a message in its mailbox is considered idle and is not enqueued in any job queue.
On message receipt, such an actor is scheduled at the worker of the sender. This maximizes CL
at the cost of EL. As a result, an actor which relies on a large data set may be at a signi�cant
disadvantage when moved away.

3.4 Related Work

Work-stealing is widely used for scheduling actors or tasks for example by OpenMP [57],
Erlang [19], Akka [12], the Pony Language [18] and CAF [3].

Random work-stealing (RWS) [4] scales well by following a distributed approach, it is
stable [58], because it requires little action if the system is under high load, and the required
information is limited to the number of victims. RWS was evaluated as a load balancing strategy
between clusters connected over a wide area network (WAN) [59]. Although it performs well
within a cluster, stealing work from a remote machine over a WAN link is problematic as the
network introduces signi�cant latencies. Additionally, stealing from a remote cluster is much
more likely due to the (uniform) randomness when choosing a victim.

We experience a similar problem within a NUMA machine. Here, work may be unnecessarily
stolen from other NUMA-nodes which results in poor execution locality (EL). Previous work
provides multiple improvements to compensate for high network delays and to reduce the
bandwidth consumption [59]. However, none of these solutions are feasible for a NUMA-
aware scheduler, because they hide high network delays by prefetching mechanisms instead
of improving the data locality.

Scheduling algorithms such as work-sharing or random work-pushing [58] have scalability
problems and no advantage for CAF. A work-sharing scheduler has a centralized job queue.
Work items are enqueued at the tail and workers dequeue them from the head and execute
them. This can cause contention due to the synchronization requirements. In contrast, random
work-pushing is a distributed approach similar to RWS. Each worker has its own job queue.
Once the amount of jobs in a queue exceeds a threshold, its worker pushes surplus jobs to
another random worker as a proactive procedure. This algorithm balances the size of all queues
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and thus improves fairness in preemptive approaches. However, it is unstable since high load
on all PUs leads to an increase of unsuccessful push attempts that degrade performance.

There are several approaches to work-stealing that consider data locality. Acar et al. [60]
analyzed cache misses and proposed a locality-guided work-stealing algorithm for threads.
They explain that a thread should preferably be executed by a single PU to reduce the number
of cache misses. This can be achieved by assigning an a�nity for a speci�c PU to a thread and
equipping workers with a priority queue. Threads are scheduled twice, once with a normal
priority at the current worker and once with a high priority at the a�nity worker. Hence, a
thread can be in two di�erent job queues and it must be ensured that it is only executed once.
This approach can be adapted to actors by giving actors an a�nity for a worker. A drawback
is the synchronization between workers to avoid repeated execution of the same job which is
costlier for actors than for threads due to the much higher quantity of actors.

Olivier et al. [57] propose a hierarchical scheduling approach by combining work-stealing
with work-sharing to exploit shared caches and improve the data locality in NUMA-systems.
PUs that share a L2 or L3-cache are grouped together and use work-sharing to balance their
workload. Once the shared queue is drained workers try to steal items from other groups.
Each steal attempt tries to acquire one item for each member of the group in order to minimize
communication. This approach increases the data locality by reducing the number of remote
steals and e�ciently utilizes shared caches.

Wang et al. [54] use a class-based scheduling approach to categorize tasks based on their
memory footprint. Workers are equipped with a dedicated and a shared job queue. Tasks
with a high memory footprint are added to the former queue and cannot be stolen while tasks
that can be stolen at a low cost are added to the latter. The queue for a newly created task is
chosen based on factors like data size and the expected execution time. Acquiring the memory
footprint of an actor or message is only possible with the support of the application developer
which we want to avoid in CAF.

Quintin et al. [61] propose a probabilistic approach to increase the data locality of RWS,
called Probabilistic Work-Stealing (PWS). It works similar to RWS, but the probability to
become a victim is proportional to the inverse of the distance to the thief. This increases the
data locality, because the chance to become a victim increases with proximity. Although PWS
was designed with a computer network in mind the concept can be applied to a NUMA-system.
A static description of the memory architecture would be enough to calculate all required
information during startup. This is a desirable property as it minimizes the runtime overhead
for choosing a victim. Furthermore, involvement from an application developer is not required.
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The variant occupancy-based stealing is proposed by Contreras et al. [62]. It chooses the
victim by the largest job queue to balance the workload. Hence, this requires to probe all
victims, they are divided into groups to mitigate the overhead. The thief choses a group at
random and the victim in the group with occupancy-based stealing. This approach reduces the
number of steal attempts for applications which tends to lead to an imbalanced workload.

The actor communication patter of hubs and hub a�nity groups was introduced by Francesquini
et al. [63] in the context of Erlang applications. To avoid any confusion with the Erlang termi-
nology, we use the term actor when we refer to an Erlang process and we use the term worker
for an Erlang scheduler. All proposed improvements related to this communication pattern
focus on the communication locality (CL), because Erlang actors are migrated and always have
the optimal execution locality (EL). A hub actor communicates with many di�erent actors
while actors in a hub a�nity group mostly communicate with a speci�c hub. Placing a hub
and its a�nity group in close proximity improves the CL of the system.

To prevent the Erlang load balancer from distributing hubs and their a�nity groups across
distant PUs and thus decreasing the CL the scheduling algorithm is divided into phases: Initial
Actor Placement and Hierarchical Load-Balancing and Work-Stealing. In the �rst phase newly
spawned actors are grouped and placed at a speci�c worker. On spawning, the application
programmer gives the Erlang virtual machine (VM) a hint whether the actor is a hub or a
regular actor. While a hub receives its own a�nity group, a regular actor inherits the a�nity
group of its parent. The VM spreads hubs over the available workers, e.g., in a round robin
fashion, and places regular actors close to their hub. If an actor is executed for the �rst time, it
stores the current NUMA-node as its home-node to provide the scheduler with its preferred
location in the future.

Using these information, the periodic load-balancer tries to migrate actors back to their
home-node at �rst. It increases the migration radius if this is not su�cient to balance the
system, �rst within and then across NUMA-nodes. Work-stealing in Erlang works similar
to the PWS [61] algorithm. The algorithm takes the memory architecture into account by
preferring direct neighbors as a victim over distant ones.

Although the Erlang VM di�ers in many ways from CAF the described concepts can be
adapted. In contrast to Erlang, CAF actors are not migrated between workers. Hence, storing the
home-node and take it into account when scheduling actors can lead to a big performance boost
even without the concept of hubs. A periodic load balancer could improve the performance of
CAF based applications by reducing the number of steals. However, it is much more important
for Erlang which implements preemptive scheduling and balancing work queue sizes is crucial
for fair allocation of hardware resources.
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We now present our locality-guided scheduling strategy for multicore systems with hetero-
geneous memory architecture. The strategy consists of two mechanisms, a weighted work-
stealing approach that preferably picks victims from memory vicinity, and a soft actor pinning
that schedules actors close to their initial worker for facilitating fast access of state.

Random work-stealing favors full resources utilization at the cost of locality when moving
actors between workers in the system. The weighted work-stealing is likely to preserve
execution locality when stealing. Actor pinning prevents actors to move away from their data
during rescheduling. While pinning can be deployed without weighted work-stealing, the
reverse does not hold. Weighted stealing correlates actors with their probable queue location
that is not given without pinning.

4.1 Weighted Work-Stealing

Fully randomized work-stealing leads to poor execution locality, because it ignores memory
access costs. We adjust the probabilities for picking a victim based on the NUMA architecture
in the same way Probabilistic Work-Stealing (PWS) adjusts probabilities based on the network
architecture in a cluster [61]. The probability for picking victims is proportional to the inverse
of the distance to the thief. The distance can be de�ned by the number of hops between the
thief node and the victim node.

We contribute a practical approach to weighted work-stealing with minimal runtime over-
head. On program start, hardware information are gathered and each worker (thief) sorts all
other workers (potential victims) according to their distance into the groups g0 ⊆ . . . ⊆ gk,
where the index correlates to the maximum distance. The group g0 only contains direct neigh-
bors. Note that the de�nition of neighborhood varies on di�erent platforms and can depend
on shared cache levels or shared memory banks. The group g1 contains all direct neighbors
as well as all workers with distance 1, and so on. Finally, gk contains all potential victims.
Stealing from groups with lower index correlates to faster execution times, since stealing from
distant workers causes expensive memory exchange.
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Once a worker runs out of work, it becomes a thief and tries to steal work items from all
victim groups in increasing order. The steal attempts per group depend on the size of the group.
The thief performs the lowest number of steal attempts on g0, but picks victims from the �nal
group gk inde�nitely. A worker does not remember the group where it last picked its victim
from and always starts anew at g0 after a successful heist.

On platforms with uniform memory access, a single group is created that includes all workers.
The same approach is taken in case reading the NUMA-node layout fails at runtime. In both
cases, our scheduling is equivalent to the classical random work-stealing.

When a thief has picked a victim with a non-empty queue it steals the tail element, i.e.,
the item with the longest wait duration. Stealing multiple work items can be bene�cial for
homogeneous item runtimes to reduce future stealing. However, CAF has no a priori knowledge
about the cost of processing a work item and thus cannot estimate whether stealing more
than one item at a time is bene�cial. In the worst case, a thief steals expensive work items
that the victim than steals back later. Looking for a work item with speci�c properties, e.g.,
one with a nearby home processing unit [63], would require an expensive search in the job
queue and cause additional synchronization overhead. Although a specialized data structure
can reduce the search cost for rare stealing events, it would be less optimal for the general
program execution. Additionally, workers enqueue newly spawned actors at the head of their
queue to bene�t from caching mechanisms. As a result, work items at the tail of a queue are
less likely cached and should therefore be stolen with higher preference.

As an example, consider a system with CPUs, each equipped with two cores, and connected
in a ring. Figure 4.1(a) shows this layout annotated with the probability for each core to
successfully steal a work item from core 1 (marked red) when using random work-stealing
(RWS). Cores of a CPU are direct neighbors and the stealing distance is de�ned by the number
of CPU hops to reach the victim. In this case, the worker of core 1 is a hot spot with many
enqueued work items. Other workers are idle and try to steal these items. The probability for
a successful steal is one out of seven, because the system has seven other cores a worker can
steal from. Figure 4.1(b) plots the probability for a successful steal as a function of the number
of consecutive attempts. Since all cores have the same probability, the graphs overlap. When
considering locality-aware stealing these probabilities change. Figure 4.2 depicts the setup
with adjusted probabilities. Here, the probability for a successful steal depends on the distance
between thief and victim and the number of stealing attempts before the thief increases its
radius. From the perspective of core 6, all potential victims are divided into three groups
g0 = {5}, g1 = {3, 4, 5, 7, 8}, g2 = {1, 2, 3, 4, 5, 7, 8}. On the �rst attempt, the success rate
to steal a work item is 0, because the only worker in g0 does not have any jobs either. The
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next �ve steals attempts have the same expectation with group g1. Finally, after 6 unsuccessful
attempts, the success rate increases to one out of seven. These probabilities depend on the
location of the core and are plotted in Figure 4.2(b). Here, core 2 will immediately steal work,
while cores 4 and 8 will have to increase their radius once, and core 6 will have to increase its
radius twice. This matches the targeted behavior of our locality-aware approach as it gives
direct neighbors a higher probability to steal work items than distant ones.
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Figure 4.1: Chances for successfully stealing a work item from core one using random work-
stealing.

4.2 So� Actor Pinning

Actor pinning improves the execution locality (EL) by �xing actors to workers in close proximity
of their data. The pinning strategy implemented by our scheduler is static soft pinning that is
automatically handled by the framework.

Similar to the approach of Francesquini et al. [63], the algorithm is divided into the phases
Initial Actor Placement and Scheduling. Following this idea, newly spawned actors are placed
at a speci�c worker during the Initial Actor Placement phase. CAF has two options to place
an actor in the worker pool: either in a round robin fashion or at the worker of its parent.
The former evenly distributes actors to balance the workload while the latter schedules actors
for fast execution with cache optimization in mind. In both cases, an actor stores the current
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Figure 4.2: Chances for successfully stealing a work item from core one using locality-aware
work-stealing.

worker persistently as its home processing unit (HPU) on �rst execution as proposed by Acar
et al. [60]. Thereafter, the actor is pinned to this node (static).

In the Scheduling phase, an actor can be stolen and executed by an arbitrary worker for
balancing reasons (soft)–diverging from the original algorithm. However, it moves back to
its HPU for subsequent executions. For this reason, an idle actor that receives a message
is scheduled at its HPU to guarantee an excellent EL. As an exception, an idle actor will be
scheduled at the PU of the sender if it is a direct neighbor to the HPU of the receiver, thus
maintaining a good EL while improving the CL. Here, we trade an optimal EL for an optimal
CL, because the idle actor is scheduled at the PU of the sender instead of its HPU. Figure 4.3
shows where an idle actor is enqueued when it receives a message.

This approach requires no additional e�ort from an application developer (automatic).
Moreover, it has little computational and memory overhead. The only additional information
an actor has to store is its HPU. Note that an actor can allocate memory on each execution at
which point it acquires memory from the NUMA-node where it is currently executed (�rst-
touch). If an actor jumps between NUMA-nodes for balancing reasons, its memory might be
scattered across di�erent NUMA-nodes which causes a degradation in EL. A dedicated memory
allocator could allow application developers to ensure that an actor accumulates all its memory
from NUMA-nodes of its HPU and thus avoid this behavior.
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Actor pinning largely enhances the importance of initial actor placement across workers.
An uneven placement may lead to frequent stealing as actors return to their initial worker after
execution. This inclination to return to a potentially unbalanced state can signi�cantly impact
the performance. To address this problem, actors do not inherit the HPU of a parent. Instead,
the HPU is assigned at �rst execution. This allows other workers to steal newly spawned
actors, thus balancing the system.

In general, actors can be pinned to a location such as a single core, a group of cores sharing
a cache level or to a speci�c NUMA-node with a hard [54] or a soft [60] constraint. Both
cases prohibit scheduling of pinned actors at another location. However, soft pinning still
allows workers to execute stolen actors. In this case, the execution on a distant worker is
only temporary and the actor jumps back to its home node after the execution. While both
strategies are suitable for actors with heavy memory accesses and I/O interactions, we chose
soft pinning for CAF, because hard pinning can easily lead to performance degradation as a
result of an imbalanced workload.

26



4 Design of Locality-Guided Scheduling

Alternatives to an automatic pinning strategy are semi-automatic and manual pinning. A
semi-automatic approach allows programmers to provide hints to the scheduler [63] such as
tightly coupled actors or dependencies on speci�c I/O devices. The scheduler can use this
knowledge for optimization according to its strategy. Speci�c problems can be addressed
well with this approach, e.g., pinning actors which require access to I/O devices like GPUs to
the appropriate NUMA-node. However, this is impractical as a generic approach since it is
not portable and hard to maintain for a larger code base. Automatic pinning [60] does not
require specialized knowledge of the programmer by transparently handling pinning decisions.
A static strategy could be pinning all actors to their initial workers. This is a good general
purpose approach, because actors initialize their state on their �rst execution when the required
memory is allocated from the host NUMA-node. Thereafter, this node has the best EL for this
actor. A dynamic strategy could pro�le the relationship between actors and decide at runtime
which groups of actors are closely coupled and should be executed by the same processing
unit. CAF implements a static strategy to avoid the additional complexity inherent to pro�ling.

4.3 Discussion: So�-Pinning and Sleep Intervals

The improvements to execution locality o�ered by actor pinning comes with some trade-o�s.
While an idle actor that receives a message was previously pulled to the worker of the sender,
it is now pushed to its HPU. Pulling an actor ensures that the worker that receives the work is
awake and can directly react to the new job. In contrast, the push approach can enqueue work
into the job queue of a sleeping worker—workers sleep shortly to reduce the system load and
contention of work queues if their queue is empty and they do not �nd work to steal. In such
a scenario, the execution of the actor is delayed until the respective worker wakes up or it is
stolen.

The benchmark discussed in Section 6.5.2 displays a scenario where this behavior impacts
performance: a system hosts two actors that exchange messages in a ping-pong pattern. Both
actors are placed at the same worker when spawned and immediately scheduled for execution
to initialize their behavior and prepare for future messages. Due to unfavorable timing one
actor might be stolen by a worker on a di�erent NUMA-node before its �rst execution. As a
result, the actors do not have neighboring HPUs and are never scheduled at the worker of
their communication partner. Instead, they are pushed to their HPU on message receipt. While
waiting for a reply, the respective worker becomes idle and goes to sleep, thus introducing
a delay to each message exchange. To mitigate this e�ect, we restricted the initial de�nition
of the HPU to direct neighbors of the worker where the actor is initially placed as shown in

27



4 Design of Locality-Guided Scheduling

Figure 4.4. If an actor is stolen from a distant worker before it could set its HPU, it uses its
initial worker as HPU. Otherwise the HPU is set to the thief. This ensures that tightly coupled
actors are not “ripped apart” when spawned and maintain reasonable proximity instead. Note
that this problem does not occur for actors pinned to the same worker or to a direct neighbor
as they can be executed by the same worker in both cases.

Message delay as a result of sleeping workers is not unique to the scenario discussed here
and might still appear with di�erent initial con�gurations. However, a real world application
is unlikely to run into such a problem for multiple reasons: (1) workers only sleep if the actor
system has a low workload, (2) a sleep time of 50 µs is the maximal execution delay for an actor
which can still be stolen in the meantime (although longer sleeps may occur if the actor system
has a low workload over a long period of time), and (3) the sleep interval can be reduced or
deactivated.
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In this chapter, we shortly introduce the library hwloc which we use to gather and exploit
hardware information. Then, we give an overview on how the scheduler in CAF is designed
and describe the implementation of LGS in detail.

5.1 Hwloc

Portable Hardware Locality (hwloc) [25] is a library of the Open MPI project1. Hwloc gathers
information about the hardware topology of the host system including the NUMA architecture,
CPU sockets, caches and I/O devices. It provides a convenient API to access these information
and to exploit it.

For example, after initializing hwloc and loading the hardware topology a list of all PUs
and Nodes can be accessed by the functions hwloc_topology_get_complete_cpuset

and hwloc_topology_get_complete_nodeset. A matrix which stores the distance be-
tween all NUMA-nodes is returned by this functionhwloc_get_whole_distance_matrix

and the root object of the hardware topology which is structured as a tree by the function
hwloc_get_root_obj. The tree can be traversed, whereby a node represents either a CPU
socket, a cache level or a PU. Additionally, a node stores information like the cache size. These
information can be exploited by binding the current running thread to a set of PUs with the
function hwloc_set_cpubind and a thread can be forced to allocate memory from a speci�c
NUMA-node with hwloc_set_membind.

5.2 The Architecture of the Actor Scheduler in CAF

In this section, we give an overview of the software architecture of CAF with a focus on
the scheduler. Figure 5.1 shows relevant classes and their relationships. The class diagram
is simpli�ed and omits several functions and interfaces. The class coordinator loads a
number of workers on startup. Each worker creates a thread to process work items (resumable)

1https://www.open-mpi.org/
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concurrently. The scheduling algorithm is de�ned separately from the worker which allows to
simply exchange the behavior of the workers. A policy based design is used to equip a worker
with a speci�c scheduling algorithm.

The coordinator is started by the actor_system which represents the environment for
actors. The actor system loads on startup modules like I/O abstraction, actor registry and
a con�guration manager (actor_system_config) which allows to �ne-tune CAF. The
actor_system_config can be used to specify a scheduler as well as to con�gure scheduler
internals like the number of workers and polling intervals.

5.3 The Locality-Guided Scheduling

The implementation of the Locality-Guided Scheduler (LGS) consists of an initialization part,
weighted work-stealing and soft actor pinning. In the initialization, LGS gathers hardware
information and pins worker threads to speci�c PUs. The initialization and weighted work-
stealing are implemented as the policy locality_guided_scheduling and inherit most functions
from the class work_stealing. However, actor pinning is implemented in the actor class
scheduled_actor and only controlled by the policy LGS.

Figure 5.1 shows the design of the scheduler where modi�cations and additions for the
implementation of LGS are marked red. We extend the worker class by adding setter and getter
functions for direct neighbors and we updated the function exec_later. Exec_later

enqueues work items (resumables) to the job queue and the added �ag allows to specify if the
work item has to be added at the tail or at the head. We further extend the scheduling policies
by the function init_worker_thread which is directly called after a worker has started its
thread. While this function is empty for the classes work_stealing and work_sharing,
LGS uses it for pinning the threads to PUs.

Listing 5.1 shows the initialization of worker threads by LGS. First, we de�ne wdata and
cdata to enable access to the context of controller and worker. Next, we pin the current thread
to the PU which has the id of the worker. Subsequently, we gather hardware information
and sort all other PUs by their distance and store the result in a matrix with the function
init_worker_proximity_matrix. The �rst row in the matrix (wp_matrix[0]) con-
tains all direct neighbors which is passed to the worker.
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coordinator<T>

+start()

+init()

+data(): T

+worker_by_idx(): worker

+num_workers(): size_t

+system(): actor_system

+enqueue(resumable)

worker<T>

+start()

+data(): T

+id(): size_t

+parent(): coordinator

+max_throughput(): size_t

+external_enqueue(resumable)

+exec_later(resumable, bool)

+is_neighbor(worker): bool

+set_neighbors(vector<worker>)

work_stealing

+get_poll_strategy(): ...

+init_worker_thread(worker)

+try_steal(worker)

+central_enqueue(coordinator, resumable)

+internal_enqueue(worker, resumable)

+external_enqueue(worker, resumable)

+resume_job_later(worker, resumable)

+dequeue(worker)

work_sharing

...

locality_guided_scheudling

...

-init_worker_proximity_matrix(worker)

1 N

Figure 5.1: A Coordinator manages a number of workers, whereby the scheduling algorithm
is de�ned separately and can be exchanged. Functions and classes we added or
changed are marked red.
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1 template <class Worker>
2 void init_worker_thread(Worker* self) {
3 auto& wdata = d(self); // data of worker
4 auto& cdata = d(self->parent()); // data of controller
5 // pin current thread to PU
6 auto pu = hwloc_bitmap_make_wrapper();
7 hwloc_bitmap_set(pu.get(), self->id());
8 auto res = hwloc_set_cpubind(cdata.topo.get(), pu.get(),
9 HWLOC_CPUBIND_THREAD | HWLOC_CPUBIND_NOMEMBIND);

10 CAF_ASSERT(res == -1);
11 // get distance matrix
12 wdata.wp_matrix = wdata.init_worker_proximity_matrix(self, pu);
13 ...
14 self->set_neighbors(wp_matrix[0]);
15 ...
16 }

Listing 5.1: Initalization of worker threads

Listing 5.2 shows the implementation of determining the home processing unit (HPU) for an
actor. It follows the design shown in Figure 4.4. The parameter eu points to the current worker
which wants to execute the actor and hpu_ is a private member variable of the actor storing
the HPU. In the process of spawning an actor, the HPU is set to the current worker (the initial
worker). When a worker executes an actor, the function activate of the actor is called. When
the actor is executed for the �rst time, it is initialized. One-shot actors are �nalized afterwards
and never executed again. Other actors set their HPU after the initialization accordingly.
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1 bool scheduled_actor::activate(execution_unit* eu) {
2 ...
3 if (!getf(is_initialized_flag)) {
4 initialize();
5 if (finalize()) {
6 ...
7 } else {
8 if (hpu_ != eu) {
9 // actor was stollen after spawning

10 if (hpu_ == system().dummy_execution_unit()
11 || hpu_->is_neighbor(eu)) {
12 hpu_ = eu; // set the HPU to the current PU
13 }
14 }
15 }
16 ...
17 }

Listing 5.2: The HPU is set to the current PU under speci�c circumstances

Listing 5.3 shows the implementation of how actors are pinned to their HPU. It follows the
design shown in Figure 4.3. When an actor receives a message the function enqueue is called.
It adds the message (mailbox_element) to the inbox of the actor. This might return the
status success or unblocked_reader. The latter indicates a successful enqueue, but an
idle actor. Idle actors must be re-scheduled and enqueued to a job queue of a worker. The actor
can either be enqueued at the HPU or at the current worker (eu). Enqueuing of actors to job
queues are further distinguished between external enqueue and internal enqueue. The former
enqueues the actor at the tail while the latter is enqueued at the head.
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1 void scheduled_actor::enqueue(mailbox_element_ptr ptr,
execution_unit* eu) {

2 ...
3 // add message to mailbox
4 switch (mailbox().enqueue(ptr) {
5 // successfully enqueued
6 case detail::enqueue_result::success:
7 ...
8 // actor is idle and needs to be re-scheduled
9 case detail::enqueue_result::unblocked_reader: {

10 ...
11 if (eu) {
12 // msg is received from an other scheduled actor
13 if (eu == hpu_ || eu->is_neighbor(hpu_)) {
14 eu->exec_later(this, true); // internal enqueue
15 } else {
16 // ‘eu‘ has a high memory distance to this actor
17 hpu_->exec_later(this, false); // external enqueued
18 }
19 } else {
20 // msg is received from a non-actor context or from a

detached actor
21 hpu_->exec_later(this, false); // external enqueue
22 }
23 }
24 }
25 ...
26 }

Listing 5.3: Actors are pinned to their HPU
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In this chapter, we evaluate the scheduling discipline Locality-Guided Scheduling (LGS). We
examine how LGS a�ects the data locality and the performance. Subsequently, we identify
scheduling problems and discuss possible solutions.

In Section 6.1, we present our test server and the tools we use for our evaluation. Next,
in Section 6.2, we describe the popular actor benchmark suite Savina and our self designed
benchmark Matrix Search. In Section 6.3, we describe our �rst experience with LGS and Matrix
Search. We summarize further analysis and �ndings related to Matrix Search in Section 6.4.
Finally in Section 6.5, we study LGS with the Savina benchmark suite and analyze speci�c
benchmarks which stand out.

6.1 Measurement Setup

6.1.1 Test Server

All measurements were performed on a Dell PowerEdge R815 server with four AMD Opteron

6376 processors, clocked at 2.3 GHz. Figure 6.1 shows the hierarchical memory architecture
of our test server created by the hwloc utility [25] lstopo. A CPU socket is represented by
a Package which is divided into two NUMANodes, each consisting of 8 cores and 64 GB
of main memory. This adds up to a total of 64 PUs spread over 8 NUMA-nodes with 512
GB of main memory. Each core has its private L1-data cache. The L2-cache is shared by
two cores and the L3-cache is shared by all cores of a NUMA-node. The NUMA-nodes are
connected via bidirectional, point-to-point and cache coherent links using the HyperTransport

[64] technology. The structure of the interconnection network is shown by a System Locality

Distance Information Table (SLIT) [29] in Table 6.1. It shows the number of hops between two
NUMA-nodes. The table is diagonally re�ected, because the interconnection link between each
two nodes is symmetric. The distance for the local node to itself is zero and the maximum
number of hops to reach each node from each other node is limited to two.

Our test server provides the programmable hardware counters Core and Uncore [29]. We use
them to analyze performance issues in our benchmarks. The former counts core speci�c events
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like cache misses, TLB misses and instruction prefetching. The latter counts Northbridge
speci�c events like local and remote main memory accesses, I/O accesses and thermal status.
These counters have very low runtime overhead, but are limited to 5 Core counters per PU
and to 4 Uncore counters per socket. All counters are con�gurable via the Maschine Speci�c

Register (MSR) interface [65].
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Figure 6.1: Architecture view of our test server generated by hwloc
(Command: lstopo –no-legend –no-io)
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Node 0 1 2 3 4 5 6 7
0 0 1 1 2 1 2 1 2
1 1 0 2 1 1 2 2 1
2 1 2 0 1 1 1 1 1
3 2 1 1 0 1 1 2 2
4 1 1 1 1 0 1 1 2
5 2 2 1 1 1 0 2 1
6 1 2 1 2 1 2 0 1
7 2 1 1 2 2 1 1 0

Table 6.1: NUMA-node distance matrix of our test server (Command: hwloc-distance)

Software Version
Linux Kernel 3.16.7
GCC 4.8.3
Java 1.8.0
Hwloc 1.11.8
Likwid 4.2.1
Perf 3.16.4
CAF 0.14.6

Table 6.2: Software, tool and library versions used for our measurements

6.1.2 Tools and Libraries

Our test server is operated by a Linux distribution with default NUMA-settings (�rst-touch).
Further software, tools and libraries that we use are summarized in Table 6.2. GCC (GNU
Compiler Collection) is used to compile CAF and the benchmarks. The Hwloc (Hardware
Locality) [25] library provides a convenient interface to obtain information about the hardware
topology. Likwid [66] is a performance monitoring and benchmark suite we use to con�gure
and read hardware counters. Perf is a Linux pro�ling tool which allows a detailed performance
analysis of applications. It uses statistical sampling and is able to record various software
counters like page faults and context switches. Finally, we use Perf as the backend for Flame

Graphs [67] which is a handy way to visualize stack traces and allows to see which functions
in a program consume the most processing time.
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All measurements are done with the CAF benchmark suite. It consists of a number of scripts
and tools to automatize preparation and execution of benchmarks, editing of data and plotting
of graphs.

We measure each benchmark with 4 to 64 workers. To change the number of workers, we
enable cores on the host in steps of four and provide the CAF scheduler with an equal amount
of worker threads. For a con�guration of four cores, each activated core is hosted on a di�erent
NUMA-node. These NUMA-nodes are �lled up until each node has eight active cores before
cores on the remaining NUMA-nodes are activated.

Each benchmark reads a con�guration �le on startup which allows to adjust the behavior
of the scheduler and CAF internals. Furthermore, a prede�ned set of parameters are passed
on startup to the benchmarks and may allow to adjust the level of concurrency, the problem
complexity, and other characteristics.

Each measurement is repeated 10 times which leads to 160 measuring points per graph. After
execution, the collected raw data is structured and plotted with the statistical programming
language R. A graph displays the mean as well as error bars that show the 95% con�dence
interval.

6.2 Benchmark Description

6.2.1 The Savina Benchmark Suite

Savina [7] is a comprehensive benchmark suite for actor libraries with the goal to cover a
wide range of concurrency patterns. It currently consists of 30 benchmarks, including micro-
benchmarks like Ping-Pong and Recursive Fibonacci, classical concurrency problems like Dining
Philosophers and Sleeping Barber, and various applications of di�erent styles of parallelism like
Quicksort and the N-Queens Problem. All benchmarks can be con�gured and allow to adjust the
problem complexity and the degree of concurrency. Savina currently supports nine JVM-based
actor libraries and includes among others Akka [12], Habanero-Java library [13], Jetlang [14]
and Scalaz [15].

We translated 23 of the 30 Savina benchmarks to CAF1. In detail, we updated the benchmark
suite and all benchmarks in order to improve the comparability to C++. For example, the
original Savina benchmarks use a pseudo random generator from the standard Java library
which is not comparable to the one in the C++ library. We implemented our own and integrated
it in the Java and C++ benchmarks. Not all benchmarks could be translated to C++, because

1https://github.com/shamsimam/savina
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some are using Java-speci�c libraries like BigDecimal where a translation is out of scope for
this thesis.

We run the benchmarks with our own prede�ned set of con�guration parameters instead of
with the default ones. We increase the problem complexity as well as the level of concurrency
when possible to expand the execution time to better measure the scheduling impact on our 64
core test server. The following list summarizes each benchmark and provides our con�guration.
A more detailed description of the benchmarks and their origin can be found in the original
paper [7].

Micro-benchmarks are designed to study and compare speci�c features of actor systems
like the messaging or spawning overhead.

1. Ping-Pong consists of two actors sending a message back and forth for N times.
(N = 2, 000, 000)

2. Thread Ring arranges N actors in a ring. A token is passend from one actor to
the next one along the ring. The token traverses sequentially two times R number
of actors. (N = 1, 200;R = 1, 200, 000)

3. Counting Actor consists of two actors. One sends N messages to the other one,
who fetches them from its inbox. (N = 10, 000, 000)

4. Fork Join (Throughput) consists of one sending actor andA receiving actors. The
sending actor sends one messages to all other actors. This is repeated sequentially
N times. On receipt, a small computation is performed. (N = 60, 000;A = 360)

5. Fork Join (Actor Creation) creates an actor and sends a message to it. This is
sequentially repeatedN times. A spawned actor fetches the message from its inbox
and performs a small computation before it terminates. (N = 4, 000, 000)

6. Fibonacci calculates the N th Fibonacci number recursively. In each recursion,
two actors are spawned and a message is sent to both to calculate the Fibonacci
numbers n− 1 and n− 2, where n is the current Fibonacci number at the current
recursion level. (N = 34)

7. Chameneos arranges meetings by a central actor called Mall for two Chameneos

actors. On meeting, the pair of Chameneoses exchange and update their state.
Chameneoses which are not in a meeting ask the Mall to arrange one. The number
of Chameneoses C as well as the number of meetings M can be con�gured. (C =

4, 000;M = 800, 000)
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8. Big is a many-to-many Ping-Pong scenario. W Ping-Pong actors are spawned
and it is ensured that each actor knows all other actors. Then, a Ping-Pong actor
randomly chooses a buddy, sends a ping message to it and waits for the response.
In the meantime, it can respond to other Ping messages with a Pong. After it
receives its response it chooses a new buddy. Once all actors have received N Pong
messages the program terminates. (N = 60, 000;W = 360)

Concurrency benchmarks test classical coordination problems.

9. Concurrent Dictionary encapsulates a hash-map in an actor and provides a read
and a write message interface for it. E workers send M read and write requests
to the map actor and wait for a response. The ratio W between read and write
requests can be con�gured. (E = 100;M = 50, 000;W = 10)

10. Concurrent Sorted Linked-List is similar to the Concurrent Dictionary, but uses
a sorted linked-list. (E = 20;M = 8, 000;W = 10)

11. Producer-Consumer with Bounded Bu�er uses a manager actor to coordinate
a number of P producer actors and a number of C consumer actors. The number
of items a producer creates before it terminates is de�ned by I . The manager uses
a bu�er with storage places for B items which is �lled by producers and emptied
by consumers. In case the bu�er is full, the manager delays new orders to the
producers, while on an empty bu�er, the manager delays responses to consumers.
(B = 75;P = 60;C = 60; I = 1, 500)

12. Dinning Philosophers describes a classical synchronization problem, where N
philosophers are sitting at a round table, while each wants to eat M times. (N =

80;M = 40, 000)

15. Logistic Map Series calculates the equation xn+1 = rxn(1 − xn) concurrently
for T di�erent rs, whereby S iterations are done per concurrent calculation. The
equation describes the growth of a population, where x is the ratio of the cur-
rent population to the maximum population and r is the ratio of reproduction
to starvation. One actor (series-worker) is assigned per r which delegates each
iteration to a compute actor and waits for the response, whereby each iteration
is instructed by a coordinator. The key problem for a series-worker is that the
communication between coordinator, series-worker and compute actor follows a
synchronous request-response pattern. For each instruction from the coordinator
a response from the compute actor must be received before the series-worker can
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handle the next instruction, while multiple instructions might already be in the
inbox. (T = 10;S = 25, 000; r = 3.46)

16. Bank Transaction focuses on the synchronous request-response pattern similar
to the benchmark Logistic Map Series. A teller actor generates N bank transaction
tasks, each including a sender and a recipient from a pool of A bank account
actors. The transaction tasks are transmitted to their senders. The sender forwards
the transaction to the recipient which replies with an acknowledgment. In the
meantime, the account of the sender is locked from other transactions. (N =

800, 000;A = 16, 000)

Parallelism benchmarks are more realistic applications which take full advantage of multi-
core machines.

17. All-Pairs Shortest Path is an implementation of the Floyd-Warshall algorithm
which searches for the shortest path in a weighted graph. The number of nodes
is de�ned by N , the block size by B and the maximum edge weight by W . (N =

900;B = 150;W = 300)

19. N-Queens Problem searches for S solutions to place N queens on a N ∗N sized
chess board in a non-attacking position. A central coordinator receives incomplete
chess boards (work items) and passes them to one of its W workers in a round
robin fashion. A worker receives a work item, identi�es the free columns in which
a queen can be placed and sends a new work item back to the coordinator for
each valid position. A complete N-queen puzzle is reported to the coordinator.
(N = 14;W = 100;S = 1, 500, 000)

20. Recursive Matrix Multiplication splits two given N ∗N matrices recursively
into smaller blocks up to a block length of T . The blocks are distributed among W
workers and multiplied separately, while the results are written to a third matrix
shared by all workers. (N = 2, 048;W = 40;T = 16384)

21. Quick-Sort dynamically creates a binary tree of actors where each parent splits
the input vector in two and passes each part to a child. The initial input vector is
randomly generated with N elements and in each recursive step, the input vector
is divided at a partition element. One vector contains elements which are smaller,
while the other vector contains elements which are greater or equal. The recursion
ends when a vector contains two or less elements. The children return their vectors
sorted which then are merged by the parents. (N = 40, 000, 000)
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22. Radix-Sort arranges sorting actors in a pipeline structure whereby the number
of stages is de�ned by the radix. N randomly chosen values are enqueued to the
pipeline. Each sorting actor checks whether the received value has a high bit
at the radix position. Values with a high bit are stored in a bu�er, while others
are forwarded to the next stage. If a stage has received all values, it forwards all
bu�ered values to the next stage, starting with the oldest value. (N = 400, 000)

24. Bitonic-Sort sorts N input items, where N must be a power of 2. The input
is arranged into bitonic sequences and then passed through a data independent
sorting network consisting of actors. (N = 8, 192)

25. Sieve of Eratosthenes searches for N prime numbers. The sieve is a dynamically
arranged pipeline of actors with an incremental number producer at the beginning.
Each stage has a bu�er for M prime numbers. On receiving a potential prime
number, a stage checks whether one of the numbers in the bu�er is a divider. When
no divider can be found, the number is stored in the bu�er and dropped otherwise.
If the bu�er is full, the potential prime number is passed to the next state. If no
next stage exist, a new one is created. (N = 2000, 000;M = 10, 000)

27. Online Facility Location decides when and where to open a facility in a region
based on the cost of opening a facility and the cost of servicing customers. A
producer actor feeds a facility location actor with N randomly chosen positions
of customers. When a density threshold G for customers is reached, the facility

location actor splits its region in four pieces, spawns a facility location actor for
each and transfers the respective customers to it. This process is repeated until all
customers are placed. (N = 200, 000;G = 1, 000)

28. Trapezoidal Approximation approximates the integral of the function f(x) =
1

x+1 ∗
√
1 + e

√
2x ∗sin(x3−1) between the interval [L,R]. The interval is divided

into N pieces which are computed by W actors. (W = 4, 000;N = 400, 000, 000)

6.2.2 The Matrix Search Benchmark

The benchmarkMatrix Search is designed by us and focuses on a data-intensive task to showcase
the bene�ts of locality-guided scheduling (LGS) over our previous communication locality
scheduling (CLS) approach which uses RWS and focuses on CL. Matrix Search can be con�gured
with a number of controllers which coordinate a group of seekers each. All actors are spawned
in round robin fashion to balance the workload. A seeker waits for requests from its controller
to solve word-�nding puzzles. Solving a puzzle requires the seeker to �nd a sequence of
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characters in a local S ∗ S matrix of random characters. For this purpose, only matches along
columns are valid. Since the matrices are written row-wise into memory, this bypasses the
prefetching mechanism of the CPU and increases the complexity of the data access. The
number of �ndings is reported back to the controller to signal that the seeker is ready for the
next job. A controller sends N puzzle requests (jobs) to each seeker, whereby a job can be
assigned in di�erent ways. Jobs can be assigned continuously or block-wise. In the former case,
a seeker �nishes its job, reports the result and gets a new job from the controller. In the latter
case, all seekers have to be �nished before the controller delivers new jobs. The assignment
of a job can be further distinguished between local and round robin. A seeker which reports
its �ndings to its controller switches afterwards to the actor state Waiting and remains their
until it receives a new job. When receiving a new job, the seeker must be scheduled and
enqueued at a job queue of one of the scheduler workers. A local job assignment causes a
seeker to be scheduled at the current worker of the controller. This is the default behavior in
CAF and designed to increase the cache locality. A round robin assignment schedules seekers
accordingly. This avoids piling up all seekers at the same worker and a�ects the workload
balance.

The performance of this benchmark relies on the access characteristics of seekers to their
matrices. By soft pinning actors and taking locality into account when stealing actors we
vastly increase the chance for a good execution locality between an actor and its matrix and
hereby improve the performance. While the benchmark is an arti�cial scenario, it is designed
to showcase the e�ect that consideration of locality has on runtime behavior.

6.3 The Data Locality Experience

In this section, we use Matrix Search to compare LGS with our previous scheduling approach
CLS. First, we compare their makespan and their data locality. Second, we depict why this
approach is naive and give a detailed analysis which reveal performance issues in LGS. Finally,
we show how these problems can be solved and summarize the results.

Comparing LGS with CLS

Figure 6.2 shows the real runtime (wall-clock time) of Matrix Search in seconds as a function
of the workers of the scheduler and compares multiple versions of LGS and CLS. In this
measurement Matrix Search uses one controller and 225 seekers, while jobs are assigned to
seekers continuously and locally. Each matrix has a size of 3500 characters in length and width,
about 12 MBytes. A seeker searches this matrix 100 times for words with 6 randomly chosen
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characters. First we focus on algorithms CLS and LGS which are nearly overlapping for a
con�guration of up to 12 workers. Thereafter, LGS outperforms CLS with a performance gain of
up to 33%. To show that LGS ful�lls its design goal we measure the number of local and remote
memory accesses, whereby an indicator for good EL is a high number of memory accesses to
the local node and a low number to other NUMA-nodes. Consequently, we expect that LGS
improves the ratio between local and remote accesses over CLS. Figure 6.3 shows these accesses
in absolut numbers as a function of the number of worker threads. Both scheduling algorithms
start with a similar ratio of 4% of remote accesses. Then the number of local accesses drops and
is replaced by remote accesses. At 32 con�gured workers CLS leads to more remote accesses
than local ones. In contrast, the ratio in LGS �uctuates between 1 and 8% remote accesses and
might explain the performance gain.
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Figure 6.2: Matrix Search – Comparison of the execution time between variants of LGS and
the baselines CLS and CLS-TP.

Revealing Performance Problems

Next, in a more detailed analysis we show why the performance gain is not caused by the
improved data locality and present that actor pinning can even reduce the performance.

Figure 6.2 also shows a modi�ed version of CLS which we call CLS-TP. CLS-TP behaves
exactly like CLS, but each worker of the scheduler is hard-pinned to a speci�c PU (note that
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Figure 6.3: Matrix Search – LGS improves the data locality by trading remote with local memory
accesses.

the actors are not pinned). This increases the performance of up to 37%. A measurement with
Linux Perf explains why pinning of worker threads increases the performance for 64 con�gured
workers. CLS results in about 100,000 migrations of threads between PUs and 4,000,000 page
faults in one run. CLS-TP can reduce the migrations to 150 and halves the page faults. Figure
6.4 is a cutout of the same plot to highlight the interesting part. While LGS uses weighted
work-stealing and actor pinning, it also requires to pin the worker threads and consequently
optimizes the EL of CLS-TP. However, Figure 6.4 shows that LGS is up to 11% slower than
CLS-TP. Therefore, only the side e�ect of thread pinning improves the performance of LGS
and the speci�cally designed data locality optimization reduces it.

Figure 6.3 shows that LGS improves the data locality. After the new insights, one might
think this is a side e�ect of thread pinning as well. However, Figure 6.3 shows the memory
accesses for CLS-TP as well and reveals this is not the case. CLS-TP improves the data locality
of CLS, but is still much worse than LGS. In detail, the local memory accesses of CLS-TP drop
nearly linearly with an increases in the number of workers and are replaced by remote accesses.
In comparison, the local accesses of CLS drop notably faster while LGS stays at a constant
level with �uctuations.
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Figure 6.4: Matrix Search – Comparison of the execution time between variants of LGS and
the baselines CLS and CLS-TP (zoomed in).

The reason why LGS performs worse than CLS-TP despite better data locality can be
explained with Figure 6.5. It examines the activity of the work-stealing scheduler by showing
the number of scheduling event, steal attempts and successfully steals in relation to the number
of con�gured workers for CLS, CLS-TP and LGS. Scheduling events are the sum of messages
processed by all actors and are independent from the number of scheduling workers. A steal
attempt occurs when a worker runs out of jobs and tries to steal a job from another worker,
whether or not a job is found. The scheduling events and steal attempts are not related and it
is possible to have more attempts than events. Successful steals are the number of stolen jobs
and are a subset of attempts and scheduling events. The steal attempts and steals for CLS and
CLS-TP have a very similar behavior. While the steals are nearly constant at a low level, the
attempts rise linearly from 1, 000 to 30, 000. LGS stands out with a multiple of steals and with
a strong �uctuation of attempts. This indicates a load balancing problem which might cause a
performance degradation.

Analyzing and Solving the Performance Problem

To identify the cause of the load balancing problem we have to reconstruct the scheduling
sequence of the actors. Matrix Search is con�gured with 1 controller and 225 seekers. All
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Figure 6.5: Matrix Search – LGS causes �uctuations of steal attempts which might indicate a
workload imbalance.

seekers only communicate with the controller which follows the hub and the a�nity group
pattern identi�ed by Francesquini et al. [63]. In comparison to the controller, seekers have a
heavy load. On startup, all actors are evenly distributed in a round robin fashion across the
scheduler workers, where they initialize their matrices and process their �rst job. In average 3.5
seekers are enqueued at each worker. After the �rst seeker has processed its request, it sends its
results back to the controller which has a high change of being idle through its low workload.
If the controller is idle, CLS schedules it to be the next job of the current worker. Next, the
controller is executed and sends the next job request to the seeker which is again scheduled
to be the next actor. As long as the controller is idle, a worker alternates between seeker and
controller until the seeker �nishes all of its searches. This sequence is very e�cient, because
the worker is productive the whole time. From the perspective of the controller it jumps from
job queue to job queue and performs this sequential CLS pattern for each seeker. When the
controller is already enqueued and receives a second message, the pattern is interrupted and
causes a workload imbalance. The controller processes both messages one after another and
enqueues the respective seekers at the same worker. This is of little consequence as long as
each worker as enough work.
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LGS behaves di�erently. After a seeker has processed its request, it sends a message to the
controller. If the controller is idle, it is enqueued at the tail of its HPU. Note, it might also be
enqueued at the head of one of the direct neighbors of the HPU as shown in Figure 4.3 which
can lead to the same sequential CLS pattern. The odds of this pattern to happen is one out
of eight, because we have eight NUMA-nodes. Due to the low probability of this pattern we
ignore it at this point and focus on the dominant pattern. Enqueuing the controller at the tail
can lead to the convoy e�ect [44]. The convoy e�ect is a throughput degenerating pattern
which occurs when a long running actor like a seeker blocks other actors from execution. The
execution of the controller is critical for the performance of Matrix Search. If it is stalled in a
job queue behind seekers, workers might run out of jobs. This can cause �uctuations of steal
attempt and an increased number of steals as shown in Figure 6.5.

To prove our hypothesis of the convoy e�ect we modify LGS to prevent this e�ect and call
it LGS-UC (Unpinned Controller). While LGS pins all actors to its HPU, LGS-UC allows to
unpin speci�c actors manually. We unpinned the controller which then behaves similar to a
CLS scheduled controller. This avoids the convoy e�ect, allows the sequential CLS pattern
and pro�ts from the improved data locality of LGS. Figure 6.2 and 6.4 compare the execution
times of LGS-UC with our other scheduling algorithms. They show that LGS-UC reduces the
execution time of CLS-TP by up to 13% and it consequently con�rms the hypothesis.

In summary, we are able to improve the performance of a custom tailored benchmark by up
to 44%. It has the drawback that it requires hints of the application developer of which actors
have to be pinned and which not and providing such hints requires deep knowledge about the
scheduling in CAF. However, without hints of the application developer it is still possible to
increase the performance with CLS-TP by up to 37% and with LGS by up to 33% over CLS. In
the following subsections we describe further e�ects seen with LGS and Matrix Search.

6.4 Matrix Search Measurements

In this section we present further insights from our experiments with the Matrix Search
benchmark. First, we show additional baselines LGS can be compared with. We study two
variants of LGS which might improve the performance. Finally, we show a use case where LGS
has a clear advantage over CLS.

6.4.1 The Interleaved Memory Access Mode

To examine the performance gain of LGS we used CLS and CLS-TP as baselines, because they
require no or little e�ort to use in a productive environment. Other baselines we can compare
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LGS with are the memory interleaved versions of CLS and CLS-TP. Our test system is per
default con�gured with the memory policy �rst touch which allocates memory on the NUMA-
node the worker thread is currently running on. In contrast, the interleaved policy allocates
memory evenly from all NUMA-nodes and is designed to avoid worst case memory accesses.
We con�gured our test system to use this interleaved mode and measured the execution time
of Matrix Search with CLS and CLS-TP.

Figure 6.6 shows the results. CLS (interleaved) is up to 30% faster than CLS and nearly reaches
the execution time of LGS. While CLS-TP is already 38% faster than CLS, the interleaved version
even exceeds the performance of LGS-UC with all equipped workers and is up to 47% faster than
CLS. The performance of CLS-TP (interleaved) is about 3% lower than LGS-UC for the range
of 4 to 52 workers. Afterward, the performance of CLS-TP (interleaved) surpasses LGS-UC.
It is unexpected that CLS-TP in the interleaved mode outperforms our speci�cally tailored
scheduling algorithm LGS-UC and requires further analysis.
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Figure 6.6: Matrix Search – CLS-TP (interleaved) outperforms our custom tailored scheduling
algorithm LGS-UC (zoomed in).

6.4.2 LGS Variants

Optimizing the scheduling in CAF is a complex challenge. Many interacting parameters can be
adjusted, little changes can have a big impact and can cause contrasting results in di�erent
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benchmarks. These characteristics make it hard to predict which changes have the best result.
In this section, we present further LGS variants which seem promising based on our previous
knowledge, but are dead ends. We focus on the benchmark Matrix Search and a detailed
analysis.

In the previous section we showed that LGS is slower than CLS-TP due to by the convoy
e�ect. LGS-UC avoids this e�ect by manually unpinning the controllers. Hence, the convoy
e�ect only occurs in the Breadth First Search (BFS) scheduling strategy, using Depth First
Search (DFS) would also solve the problem. The LGS version which substitutes BFS with a
DFS strategy is called LGS-DFS. It is implemented by enqueuing idle actors at their HPU at
the head instead of at the tail. Originally, we designed LGS to enqueue actors at the tail of the
job queues to avoid interfering with local cache optimizations. LGS-DFS has the advantage
over LGS-UC that no e�ort from an application developer is necessary to avoid the convoy
e�ect. On the downside, enqueuing jobs at the head from a di�erent worker might trash their
cache and consequently cause a degradation in performance. LGS-UC preserves the e�cient
CLS sequential pattern while LGS-DFS cannot do so, because the controller is still pinned to a
speci�c HPU. A further drawback of this approach is that enqueuing jobs at the head requires
to acquire two locks instead of one to synchronize access to the job queue. We expect LGS-DFS
to be slower than LGS-UC due to the interrupt of the CLS sequential pattern and the impact of
the cache trashing is presumably low. The working set of a seeker exceeds the CPU caches by
multiple times and each execution will trash the cache anyway. Trashing of cached messages
is also expected to be insigni�cant, because they have a low memory footprint, are send in a
low frequency and are transmitted to pinned actors which mostly do not share a cache with
the controller. The expense of the additional synchronization is unclear.

Figure 6.7 compares the execution time of LGS-DFS with LGS and LGS-UC. Despite avoiding
the convoy e�ect LGS-DFS is up to 19% slower than LGS and shows that switching from BFS
to DFS does not solve our performance problems.

Figure 6.7 shows another variation of LGS called LGS-CO (LGS with Cache Optimizations).
The direct neighbors group g0 of LGS contains all PUs of a NUMA-node while we restricted
the direct neighbors of LGS-CO to PUs sharing the same L2-cache. It reduces the size of g0
for LGS-CO from eight PUs to two and a�ects weighted work-stealing. The actor pinning
behavior is not changed. The cache locality optimization has no e�ect on Matrix Search and
shows that Matrix Search is very insensitive to cache optimizations.
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Figure 6.7: Matrix Search – LGS-UC outperforms our other experimental schedulers (zoomed
in).

6.4.3 Scalability of Job Assignment Pa�erns

LGS changes the scheduling behavior of CLS. While this can cause a degradation in per-
formance, it can also improve the scalability for speci�c communication patterns like the
block-wise assignment pattern. In our previous Matrix Search measurements we assigned jobs
continuously such that when an actor �nish its work it informs the controller and immediately
receives the next job request. In a block-wise assignment an actor only receives a new job once
all other actors have also �nished their jobs. A controller which uses this pattern in conjunction
with local assignment of jobs can cause scalability problems. The actor of a local assigned
task is enqueued at the job queue of the current worker of the controller. While block-wise
assignment is an application speci�c behavior, locally assigning of jobs is the default method
in CLS. Figure 6.8 shows the execution time of the Matrix Search benchmark as a function
of the number of workers. Matrix Search was con�gured with one controller, 225 seekers, a
matrix with 3500 bytes in length and width and all jobs are assigned block-wise. The graph CLS

(local) and CLS-TP (local) assign their jobs locally which leads to the peek performance at 28
workers. Adding more workers is counter productive and lengthens the makespan signi�cantly.
This can be explained by two reasons. (1) The block-wise assignment of jobs interrupts the
CLS sequential pattern and (2) a local combined with a block-wise assignment piles up all
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jobs at the same worker at once. The former increases the idle time of workers and the latter
leads to the worst case scenario of an imbalanced workload. Work-stealing handles such a
workload hotspot very ine�ectively, because the odds that a thief �nd this hotspot declines
with the number of victims. After a number of unsuccessful attempts a thief even starts short
intermediate sleeps to reduce the CPU load. CLS-TP has the same scalability issue, but an
overall increased performance due to a reduced number of thread migrations between PUs
and an increased data locality. This scalability problem can be solved by manually forcing
CAF to spread the jobs evenly over the workers. The graph CLS (round robin) shows this
and indicates a much better performance. LGS inherently solves this with actor pinning and
requires no e�ort from the application developer. When actors are evenly pinned over all
scheduler workers a block-wise assignment cannot cause a workload hotspot.
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Figure 6.8: Matrix Search – LGS can prevent workload hotspots and related scalability problems.

6.5 Savina Measurements

In this section we study LGS with the Savina benchmarks. First, we summarize the performance
and data locality characteristics of LGS. We compare LGS and CLS-TP with CLS and examine
the advantage of LGS-CO and the interleaved mode over LGS. Subsequently, we analyze several
benchmarks in detail and reveal multiple scheduling issues.
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6.5.1 The Performance and Data Locality Summary

Comparing LGS with CLS

To summarize the overall performance of LGS compared to CLS in the Savina benchmarks we
performed measurements for both schedulers using 64 workers as shown in Figure 6.9. The
baseline (100%) signi�es the mean runtime of CLS over 10 measurements. A lower percentage
shows a better performance in favor of LGS, e.g., LGS �nished after 63% of the time required
by CLS for the 25-Apsp benchmark. Note that the graph only shows an overall trend and does
neither provide information about error distribution nor scalability.

6 out of 23 Savina benchmarks perform better with LGS than with CLS. The benchmarks
25-Apsp, 30-Bitonicsort and 09-Concsll show excellent results with a reduced execution time
of over 30%. In contrast, 10-Bndbu�er is nearly 9 times slower and LGS more than doubles
the execution time of 14-Logmap, 20-Facloc and 07-Big. To understand the impact of LGS in
each benchmark a detailed analysis is required, because the performance gain or loss can
have diverse causes. This includes the convoy e�ect as demonstrated with the Matrix Search
benchmark in Section 6.2.2, modi�cations of the balance of the workload or other scheduling
issues.

Next, we want to show how LGS a�ects the data locality of the Savina benchmarks. Figure
6.10 and Figure 6.11 compare the number of local and remote memory accesses between CLS
and LGS. The baselines in both �gures signify the mean of the number memory accesses of
CLS over 10 measurements. A lower percentage than 100 shows that LGS reduces the number
of accesses while a higher percentage shows an increase. Of the 23 Savina benchmarks, LGS
reduces the number of remote accesses in 16 cases and increases local accesses in 15 cases.
This suggests that LGS increases the data locality in about 70% of the cases. However, only 26%
of the benchmarks have an improved performance which indicates that in most benchmarks
the data locality optimizations play a minor role or are covered by scheduling issues.

A closer look at Figures 6.9, 6.10 and 6.11 reveals multiple interesting points. First, the
results are diverse and seem contradicting. For example, the benchmark 03-Fjthrput is 17%
slower with LGS compared to CLS despite less local and remote accesses. In contrast, 25-Apsp
is 36% faster and has less local and remote accesses. Second, some benchmarks have in total
much more or much less memory accesses without changing the problem complexity. For
example, benchmark 03-Fjthrput has 27% less remote accesses as well as 16% less local accesses.
This contradicts with our experience from our previous experiments. We show in Section 6.3
that LGS reduces slow remote memory accesses in the benchmark Matrix Search and trades it
for fast local memory accesses. We conjecture that reducing the number of remote memory
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accesses can improve the number of cache hits on the local NUMA-node and consequently
reduce the overall accesses to the main memory. In consequence, an increased number of
remote accesses might increase the cache miss rate. For example, 08-Concdict has 40% more
remote accesses and 55% more local access. A workload imbalance can be another reason
which increases the overall memory accesses due to many steal attempts. In the Sections 6.5.4,
6.5.3, 6.5.2 we examine several outstanding benchmarks in detail.
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Figure 6.9: Savina benchmarks – Comparison of the makespan between LGS and CLS (baseline).

Comparing CLS-TP with CLS

CLS-TP is a variant of CLS where the scheduler workers are hard pinned to speci�c PUs. This
prevents the scheduler from migrating threads between PUs. As presented in Section 6.3,
CLS-TP improves the performance of the benchmark Matrix Search by up to 37% in comparison
to CLS. In this section, we want to summarize the impact of CLS-TP on the performance of
the Savina benchmarks. Figure 6.12 shows the relative execution time with CLS as a baseline
(100%), measured with 64 scheduler workers. Only 7 out of 23 benchmarks pro�t from CLS-TP
while the other benchmarks have an increased execution time. The performance loss or gain is
in the range of ±10% for all benchmarks except for 03-Fjthrput and 14-Logmap. They stand
out with a performance loss of 33% and 52%, respectively. Further measurements reveal that
20 of the benchmarks have less remote memory access and 16 benchmarks less local memory
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Figure 6.10: Savina benchmarks – Comparison of remote memory accesses between LGS and
CLS (baseline).
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Figure 6.11: Savina benchmarks - Comparison of local memory accesses between LGS and CLS
(baseline).

55



6 Evaluation

accesses. Despite the increase of the data locality in most cases CLS-TP performs worse than
CLS. This indicates that other factors outweigh the increased data locality.
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Figure 6.12: Savina benchmarks – Comparison of the makespan between CLS-TP and CLS
(baseline).

Comparing LGS-CO with LGS

LGS-CO is a modi�cation of LGS designed to improve the cache locality. As described in
Section 6.4.2, LGS-CO improves the cache locality by stealing jobs from workers sharing the
same L2 cache �rst before expanding the range to a whole NUMA-node. Figure 6.13 shows
the performance of the Savina benchmarks with LGS-CO. It shows the relative execution
time of of LGS-CO with LGS as a baseline. The performance of 14 out of the 23 Savina
benchmarks has changed less than 3%. The benchmarks 10-Bndbu�er and 20-Facloc stand out
with a performance gain of 36% and 67% performance loss, respectively. The performance gain
of 36% seems like a good result, but the benchmark is still more than four times slower than
with CLS in use. In summary, LGS-CO rarely has advantage over LGS.

The Interleaved Mode

The interleaved mode is a memory allocation pattern which allocates memory evenly from all
NUMA-nodes. In Section 6.4.1 we compared di�erent baselines and found that CLS-TP used
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Figure 6.13: Savina benchmarks – Comparison of the makespan between LGS-CO and CLS
(baseline).

in the interleaved mode can outperform LGS. In this section, we examine whether CLS-TP
(interleaved) and CLS (interleaved) outperform LGS in the Savina benchmark suite. Figure 6.14
and 6.15 show the relative execution time for CLS (interleaved) and CLS-TP (interleaved) with
CLS as a baseline. CLS (interleaved) increases the performance of about half of the Savina
benchmarks but also decrease the other half. The performance of most of the benchmarks
varies between -4% and +4% while the benchmarks 30-Bitonicsort and 24-Quicksort stand out
with -15% and +26%, respectively. CLS-TP (interleaved) only improves 6 out of 23 benchmarks
which is one benchmark less then with CLS-TP as shown in Figure 6.12. Apart from that,
CLS-TP (interleaved) has a similar performance characteristics to CLS-TP. In summary, CLS-TP
(interleaved) and CLS-TP have very similar performance characteristics. CLS (interleaved) and
CLS-TP (interleaved) are not a general substitute for CLS and provide only an improvement
over CLS, CLS-TP or LGS in rare cases.

6.5.2 Pushing Actors to Sleeping Workers

The Savina benchmark 01-Ping-Pong heavily favors communication locality. As the name
suggests, it deploys two actors that exchange a de�ned number of messages, in our case 2∗106.
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Figure 6.14: Savina benchmarks – Comparison of the makespan between CLS (interleaved) and
CLS.
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Figure 6.15: Savina benchmarks – Comparison of the makespan between CLS-TP (interleaved)
and CLS.
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Figure 6.16 shows the runtime as a function of the number of workers for the benchmark.
Both CAF deployments, CLS and LGS, outperform the JVM-based frameworks Akka and
Habanero. The graph plots an additional measurement for CAF: LGS-Alt. LGS-Alt exhibits
enormous error bars and a very unstable runtime behavior. This is an artifact of undesirable
scheduling that can happen when a job is pushed to a sleeping worker. This behavior was
discussed in Section 4.3 alongside a mitigation strategy that is implemented for the LGS
measurements.
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Figure 6.16: Savina 01-PingPong – Two actors repeatedly exchange messages in a ping-pong
style communication pattern.

Part of the mitigation strategy prevents actors from adopting a distant node as the HPU if
they are stolen before their �rst execution. This allows LGS to avoid intermediate sleeps of
involved workers as well as communication between distant NUMA-nodes. To show that the
behavior of LGS-Alt is not solely explained by the communication distance we performed a
measurement where we prevented workers from sleeping. Under those condition, LGS-Alt still
performs about 30% worse than LGS, but exhibited a stable runtime behavior.

The Ping Pong benchmark stressed a performance problem that could occur under speci�c
situations. After implementing a mitigation strategy, LGS only shows slightly worse perfor-
mance than CLS although the benchmark mainly relies on communication locality. Incidentally,
the adjustments to LGS also ensure an optimal execution locality for this benchmark.
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6.5.3 The Delicate Di�erence Between Data and Communication Intensive
Applications

In our next measurement we compare a data-intensive application to a communication-
intensive application. For this purpose, we use the benchmarks Concurrent Dictionary (08-
Concdict) and Concurrent Sorted Linked-List (09-Concsll) from the Savina suite. Both provide a
central data structure encapsulated in an actor. A number of other actors accesses the data
structure by sending read and write requests. Concdict uses a dictionary with a read/write
complexity of O(1) while Concsll uses a sorted linked list with a complexity of O(N). Note,
the benchmarks cannot be compared directly. Due to their di�erent complexity, Concdict is
performed with 100 actors, each sending 50 thousand messages, while Concsll is performed
with 20 actors, each sending 8 thousand messages.

Figure 6.17 and 6.18 depict the makespan for Concsll and Concdict in seconds as a function
of the number of scheduler workers. We run the benchmarks with the parameters as described
in Section 6.2.1. For Concsll, most frameworks exhibit similar performance except for Akka and
CAF (CLS) which perform worse than the rest. The best performance is shown by CAF (LGS)
which outperforms the other CAF scheduler by up to 32.5%. For Concdict, both CAF scheduling
strategies perform well while CLS is 17.6% faster on average. The remaining frameworks
perform poorly, where most show a strong runtime increase at the beginning and slightly rise
thereafter.

Despite the similarities between Concsll and Concdict, LGS only shows better performance
in the former benchmark. This is due to the di�erent characteristics of the data structure and
the resulting memory access. The data actor of Concsll is more sensitive to EL than Concdict,
because it traverses the sorted linked list on every read and write access. In contrast, the
dictionary of Concdict has a constant access time and a low access complexity which reduces
the importance of EL and shifts the focus towards CL. Figure 6.19 and 6.20 show local and
remote memory accesses of Concsll and Concdict. For Concsll, LGS improves the execution
locality by reducing the number of remote accesses and the cache locality by reducing the
number of local memory accesses. For Condict, it causes an increase of the overall memory
accesses.

This knowledge can be exploited to improve the performance of Concdict with a modi�cation
of LGS. While non data actors pro�t from an high CL, the data actor might still pro�t from
an high EL. As a test, we combined these contrary goals by unpinning all actors, but the data
actor and call this scheduling strategy LGS-UW (Unpinned Worker). As shown in Figure 6.18,
this approach slightly improves the performance by up to 4%.
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Figure 6.17: Savina 09-Concsll – Actors synchronize accesses into a linked list through a central
coordinator.
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Figure 6.18: Savina 08-Concdict – Actors synchronize accesses into a dictionary through a
central coordinator.
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Figure 6.19: Savina 09-Concsll – LGS reduces the overall memory accesses by improving the
execution locality as well as the cache locality.
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Figure 6.20: Savina 08-Concdict – LGS reduces the communication locality and causes an
increase of the overall memory accesses.
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6.5.4 A Cause for a High Number of Steal A�empts

For some benchmarks, we observed that LGS causes a very high number of steal attempts
compared to CLS. This includes the benchmarks 10-Bndbu�er, 14-Logmap, 07-Big, and 11-

Philosopher. In the following, we investigate the benchmark 11-Philosopher and show a schedul-
ing pattern which leads to a high number of steal attempts.

The Benchmark 11-Philosopher stands out with about 50 times more steal attempts with
LGS compared to CLS. Furthermore, it has about 7 times more remote memory accesses and
6 times more local accesses. However, the performance is only 4% worse at 64 cores. The
Dinning Philosopher is a classical synchronization problem. Multiple resources are shared
between workers and each worker requires multiple resources exclusively to do a speci�c task.
In this benchmark, the problem is solved by an arbitrator actor which manages all resources
while philosophers request them in a polling manner. If both required resources are free, the
arbitrator assigns them to the requester and denies the request otherwise. Figure 6.21 shows
the number of scheduling events, steals and steal attempts for LGS and CLS as a function of
the number of scheduler workers. A detailed description of these events is given in Section 6.3.

In addition to the high number of steal attempts, the non constant number of scheduling
events is conspicuous. LGS has on average 7% less scheduling events than CLS. We guess this
is due to the di�erent scheduling sequences of actors in CLS and LGS. While the former uses
a depth �rst search (DFS) strategy, the latter uses mix of DFS and breadth �rst search (BFS).
This changes the order of actors in the job queues and the odds for accepted requests of the
philosophers. 11-Philosopher is the only benchmark with a non constant number of scheduling
events.

The high number of steal attempts has the following cause. On startup, 80 philosopher
actors are spawned, evenly distributed over all scheduler workers and pinned. The arbitrator
is a bottleneck in this benchmark and most philosophers are idle and wait its response. Con-
sequently, most scheduler workers are idle as well and try to steal work from other workers
which increases the number of steal attempts. After a precon�gured number of steal attempts,
a worker starts intermediate sleep to reduce the contention on the job queues and to reduce
the CPU load. The sleep intervals extend over time to reduce the CPU load further. After a
successful steal or execution of an actor the sleep duration is reset. LGS pushes idle philoso-
phers to their HPU. The next time the HPU wakes up, it checks its own job queue and execute
the philosopher which resets the sleep interval. In CLS, the sleep interval is only reset after
a successful steal. Therefore, LGS resets the sleep interval of workers more often than CLS
and causes a higher number of steal attempts. This increases the number of local and remote
memory accesses, increases the contention at job queues and can increase the makespan.
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Figure 6.21: Savina 11-Philosopher – A central arbitrator manages shared resources.
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7 Conclusion and Outlook

CPU Cores on modern processor architectures do not have uniform access to memory. Instead,
cores are bundled with caches and memory banks into NUMA-nodes, thereby experiencing
performance that depends on data proximity. The architecture is accessible to developers
via a NUMA API allowing to keep tasks in close proximity to their active memory. This can
signi�cantly improve performance.

In this work, we introduced locality-guided scheduling (LGS) which exploits knowledge
about the host architecture to improve scheduling for actor-based applications in CAF. LGS
shifts the focus of the default CAF scheduler (CLS) from communication locality (CL) towards
execution locality (EL). While CL in�uences the performance of inter-actor message exchange,
EL a�ects the execution time of actors. These types of data locality may con�ict, hence LGS
aims at a trade-o� between CL and EL.

LGS combines a weighted work-stealing approach with soft actor pinning. The former is a
specialization of the random work-stealing scheduling algorithm and balances the workload
by preferably picking victims from memory vicinity. The latter schedules actors close to their
initial worker for facilitating fast access of their state. Both approaches require no additional
e�ort from application developers and have little runtime overhead.

We performed extensive measurements of LGS to evaluate the e�ects on data locality and
performance. We designed a data-intensive Matrix Search benchmark and translated the
JVM-based actor benchmark suite Savina to C++. The former is designed to showcase the
bene�ts of LGS, while the latter allows to explore the behavior of LGS in a wide range of
diverse scenarios.

First experiments with LGS and Matrix Search showed signi�cant performance and data
locality improvements. However, a detailed study reveals that these improvements are caused
by a side e�ect and actor pinning can even reduce the performance. The performance degrada-
tion is caused by scheduling problems like the convoy e�ect. With a custom tailored version
of LGS which allows to unpin speci�c actors manually, we can avoid this scheduling e�ect and
improve the performance of Matrix Search by up to 44% compared to CLS.
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7 Conclusion and Outlook

LGS applied to the Savina suite improves the data locality of 16 out of 23 benchmarks.
However, only 8 benchmarks have an improved performance which indicates that various
benchmarks su�er from scheduling problems similar to Matrix Search. A detailed investigation
of several Savina benchmarks con�rmed this.

In summary, LGS can improve data locality and performance, but it is unsuitable as the
default scheduler in CAF. Due to several scheduling problems we identi�ed, it requires manual
adjustments which is only pro�table in special cases.

We also experimented with Linux standard tools and con�gurations which allows thread
pinning and switching between di�erent memory access modes and showed the impact on
performance and data locality. While we signi�cantly improved the performance of Matrix
Search with such methods, Savina benchmarks only pro�ted in rare cases.

In our future work we will extend CAF with a memory management layer. This enables
actors to allocate memory from speci�c NUMA-nodes and can avoid memory scattering across
nodes and consequently improves the data locality. A CAF speci�c memory management layer
also reduces the cost of memory allocations. In contrast to a generic memory management, CAF
has deep knowledge of its memory speci�c requirements like the size of actors and messages
which allows to improve prefetching and recycling of memory.
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