
Masterarbeit
Theodor Nolte

Certificate Transparency Deployment Study

Fakultät Technik und Informatik
Studiendepartment Informatik

Faculty of Engineering and Computer Science
Department of Computer Science

Theodor Nolte

Certi�cate Transparency Deployment Study

Masterarbeit eingereicht im Rahmen der Masterprüfung

im Studiengang Master of Science Informatik
am Department Informatik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Thomas C. Schmidt
Zweitgutachter: Prof. Dr. Franz Korf

Eingereicht am: 1. November 2018

Theodor Nolte

Thema der Arbeit
Certi�cate Transparency Deployment Study

Stichworte
TLS, HTTPS, Web-PKI, Certi�cate Transparency

Kurzzusammenfassung
Um Webserver-Zerti�kate auditierbar zu machen, erweitert Certi�cate Transparency (CT) das
TLS-Ökosystem um sogenannte CT-Logs, welche ein nicht löschbares, ö�entliches
Verzeichnis darstellen. Das Hinzufügen eines Zerti�kats in ein CT-Log wird durch einen soge-
nannten Signed Certi�cate Timestamp (SCT) quittiert. Mit dem Übermitteln von zugehörigen
SCTs zusammen mit dem Webserver-Zerti�kat wird die Auditierbarkeit beim TLS-Handshake
nachgewiesen. In dieser Arbeit wird die Verbreitung und die zeitliche Entwicklung der Verbre-
itung von CT im produktiven Einsatz analysiert. Die Anzahl der Zerti�kate in CT-Logs hat
exponentiell zugenommen. Website-Support von CT hat in den vergangenen zwölf Monaten
von 26% auf gegenwärtig 58% zugenommen für die populärsten Domains, die per HTTPS
erreichbar sind.

Theodor Nolte

Title of the paper
Certi�cate Transparency Deployment Study

Keywords
TLS, HTTPS, Web-PKI, Certi�cate Transparency

Abstract
Certi�cate Transparency (CT) extends the TLS ecosystem by so-called CT logs which represent
an append-only public register in order to make webserver certi�cates auditable. The adding of a
certi�cate into a CT log will be receipt by a so-called Signed Certi�cate Timestamp (SCT). At the
TLS handshake, together with the webserver certi�cate, the transmission of the corresponding
SCTs prove the availability for auditing. In this thesis, we analyze the deployment of CT and
its evolution over time. The number of certi�cates in CT logs have seen exponentional growth.
Website support for CT has increased over a period of twelf month from 26% to currently 58%
for the most popular domains which are accessible via HTTPS.

Contents

1 Introduction 1

2 Certificate Transparency and Related Work 3
2.1 Functional Motivation . 3
2.2 Technical Conceptuation . 4

2.2.1 CT Log . 4
2.2.2 Publishing Certi�cates into CT Logs 13

2.3 Measurement of Certi�cate Transparency . 19

3 Webserver Deployment of Certificate Transparency 20
3.1 Methodology . 20
3.2 Implementation . 21
3.3 Results . 21

3.3.1 TLS Handshake Tries . 22
3.3.2 Signed Cert�cate Timestamps . 24
3.3.3 CT Logs . 27

4 CT Log Evolution 33
4.1 Methodology . 33
4.2 Implementation . 33
4.3 Results . 34

5 Conclusion and Outlook 39
5.1 Conclusion . 39
5.2 Outlook . 39

iv

List of Tables

3.1 TLS Handshake Tries (w/wo www. pre�x) . 23
3.2 TLS Handshake Tries on 2018-10-08 . 23
3.3 SCTs by deliver way (w/wo www pre�x) . 24
3.3 SCTs by deliver way (w/wo www pre�x) . 25
3.4 Certi�cates with or without SCTs (w/wo www pre�x) 25

4.1 Precert Entries by CA; CAs with the 10 most logged certi�cates 34
4.2 Precert Entries by CA in April 2018 from 2018-04-01 till 2018-04-26 35

v

List of Figures

2.1 Components and roles of Certi�cate Transparency (CT) 5
2.2 Interaction with components of Certi�cate Transparency and integration into

the TLS ecosystem . 7
2.3 merkle audit proof : PATH(c2, C[8]) = [i, d, n]. With the nodes

i, d, and n together with c2 it is possible to calculate the tree head H. The
result can be compared with the published STH of the CT log. 10

2.4 merkle consistency proof : PROOF(6, C[8]) = [m, k, l]. With the
nodes m, k and l it is possible to calculate the tree head H of CT log version
p. Also, it is possible to calculate the tree head H of the newer CT log version q. 11

2.5 Issuance of a webserver certi�cate and its usage during a TLS handshake;
without Certi�cate Transparency support . 14

2.6 Issuance of a webserver certi�cate and its usage during a TLS handshake; pre-
certi�cate is published instead of the certi�cate itself and SCT is integreated in
the certi�cate (by X.509v3 extension) . 15

2.7 Issuance of a webserver certi�cate and its usage during a TLS handshake; SCT
is sent to browser by TLS extension next to the certi�cate 17

2.8 Issuance of a webserver certi�cate and its usage during a TLS handshake; SCT
is sent to browser by stapled OCSP response 18

3.1 TLS handshake tries (alexa ranked) on 2017-09-28 24
3.2 TLS handshake tries (alexa ranked) on 2018-10-08 26
3.3 SCTs alexa ranked by Deliver Way on 2017-09-28 26
3.4 SCTs alexa ranked by Deliver Way on 2018-10-08 27
3.5 Certi�cates with or without SCTs (alexa ranked) 2017-09-28 28
3.6 Certi�cates with or without SCTs (alexa ranked) 2018-10-08 28
3.7 SCTs by CT log (alexa ranked) 2017-09-28 . 29
3.8 SCTs by CT log (alexa ranked) 2018-10-08 . 29
3.9 SCTs by CT log Operator 2017-09-28 . 30
3.10 SCTs by CT log Operator 2018-10-08 . 30
3.11 SCTs by CT log (alexa ranked) 2017-09-28 . 31
3.12 SCTs by CT log (alexa ranked) 2018-10-08 . 31

4.1 Cumulative growth of logged precerti�cates by Certi�cation Authority (CA) . 36
4.2 Relative update rate per CA and day. Let’s Encrypt dominates after starting to

log. 37

vi

List of Figures

4.3 Distribution of precerti�cate logging by CAs over di�erent CT logs for April
2018 . 38

vii

1 Introduction

The TLS ecosystem which provides for secure communication in the internet is based on trust
of users in the certi�cate authorities (CAs) which issue certi�cates. In the past, there have been
incidents where CAs misissued certi�cates which put this trust into question. The problem
with this misissued certi�cates is that they can go undetected for a long time and some CAs
have showed in the past that they have no interest in publishing this incidents.

The most spectacular incident of this kind was the break into the dutch DigiNotar CA in the
second quarter of 2011 [20]. The attacker gained access for all servers which issued certi�cates
and was able to issue at least 531 webserver certi�cates for example for popular domains
such as google.com, microsoft.com, or skype.com [10]. A wildcard certi�cate
for *.google.com was used for man-in-the-middle attacks mainly in Iran. The civil rights
organisation Electronic Frontier Foundation suspects the Iranian government to be behind of
this attacks [23]. It tooks more than �ve weeks betweeen the �rst attack on 2011-07-10 and
the revocation of trust in web browsers in August and September of 2011.

This misissuances – due to mistakes or initiated by an attacker – are wrong behavior of the
CAs. This concerns the main part of TLS. Because TLS is based in the trust that the CAs work
correctly; the trust that the identities asserted by the certi�cates have been checked correctly
by the CAs.

In order to remedy this lack of trust, Google pushed for Certi�cate Transparency by enforcing
websites to support CT to be displayed as trustworthy in the Google browser Chrome. The base
idea of Certi�cate Transparency (CT) is to have a public index of webserver certi�cates which
makes them publicly auditable. The index is created by so-called CT logs where certi�cates
will be published. This adds to the trust model of the TLS an new element, the public control.
Everyone – CAs, domain owners, and others – can monitor CT issued certi�cates.

Since April 2018, Google Chrome enforces for all websites to support CT, or they would be
displayed as unsure [15].

1

1 Introduction

In this thesis, we analyze the deployment of CT and its development. In detail, our contribu-
tions read:

• For a conceptual and technical background of CT.

• For CT log evolution. In April when CT support becomes required by Google Chrome
we can see an exponential growth of entries in CT logs.

• For webserver deployment of CT. We will see that the deployment of CT has been
intensely grown in the last year and is now widely in use by the most of the webservers.
Also, the diversity of the used CT logs have been improved.

The remainder of this thesis is structured as follows. In chapter 2 on page 3 the basics of
the Certi�cate Transparency ecosystem are shown and related work will be presented. In
chapter 2.3 on page 20 we analyze the deployment of Certi�cate Transparency. Section 4.3
on page 35 is about the evolution of CT-logs. Section 3 on page 20 is about the webserver
deployment of CT. Finally, this thesis concludes in chapter 5 on page 39 and gives an outlook.

2

2 Certificate Transparency and Related
Work

Certi�cate Transparency (CT) [11, 8] extends the TLS ecosystem by so-called CT logs [9] which
represent an append-only public register in order to make webserver certi�cates auditable. The
publication of a certi�cate into a CT log will be receipt by a so-called Signed Certi�cate Times-
tamp (SCT). At the TLS handshake, together with the webserver certi�cate, the transmission
of the corresponding SCTs prove the availability for auditing.

2.1 Functional Motivation

The HTTPS Public Key Infrastructure (web-PKI) without CT is based on the trust in the CAs
to issue certi�cates without making errors. There is no organizational or technical mechanism
to check for every certi�cate if it has been issued correctly.

CT mitigates this problem by making every webserver certi�cate auditable. The rationale
of CT is that every issued webserver certi�cate (which supports CT) will be published. This
enables everyone to check and verify the issuance of all certi�cates in the web-PKI. In particular
domain owners could learn of every issued certi�cate of its domain. And CAs could check
every certi�cate issued in its name.

CT extends the web-PKI by so-called CT logs where the webserver certi�cates will be
published. Every certi�cate would be publishd into one ore more, usually at least into two CT
logs. For the CT logs are no access restrictions, everyone can access them.

CT logs are append-only. This means there are technical mechanisms which makes it
impossible to remove already published certi�cates or exchange them by others without
noticing. Erroneous issued certi�cates are not hindered by CT. But they would be detected
with a high probability by domain owners, the issuing CA, or by others. There already exist
web-services which scan CT logged certi�cates systematically for misissuance [6].

CT extends the web-pki. No parts of the former web-pki are replaced. Nor is CT (just
another) CA which signes every issued certi�cate again.

CT publication achieves:

3

2 Certi�cate Transparency and Related Work

1. No CA can issue a certi�cate without the fact that the domain owner could easily detect
such a certi�cate. Because it is published in CT logs, he can search for it.

2. CAs and domain owners and also third parties can verify if certi�cates are wrongly
issued.

3. Users can verify if the web certi�cate of a visited domain is published. Then, they can
assume that the certi�cate due to its publication in CT logs has been checked by the
belonging CA and the domain owner.

2.2 Technical Conceptuation

The main components of the TLS Public Key Infrastructure are the CA which issues certi�cates,
the webserver which authenticates himself using certi�cates, and the webbrowser – acting as
the users client – which checks the webservers identity by inspecting its certi�cate.

CT adds the component CT log, and two roles: monitor and auditor [11]. The CT log, monitor,
and auditor are shown in �gure 2.1.

An entity acting as a monitor checks if a CT log behaves correctly. For example, it veri�es a
new version of a CT log still contains all old entries. Also, a monitor knows every CT log entry
and can watch for new CT log entries for a distinct domain. An example for such a monitor is
Comodos crt.sh [6] (called search) which monitors all known CT logs.

An auditor veri�es if a certi�cate is published in a CT log. To do this it needs the SCT of the
CT log which belongs to the certi�cate.

Both checks – as a monitor and as an auditor – are based on cryptographic operations as we
will see later in this chapter.

2.2.1 CT Log

A CT log publishes Webserver certi�cates. The CT log signs its publications and applies more
cryptographic operations to prove it correct behavior. Therefore a CT log has a private and a
public key.

The certi�cate entries are ordered by time and new entries will be appended only. This is
named as the append-only property of a CT log. Periodically, for example every �ve minutes,
the CT log publishes a new version, i.e. all newly added certi�cates become visible. When a
certi�cate is accepted for publication, the CT log responds with a so-called Signed Certi�cate
Timestamp (SCT). This SCT is a kind of a receipt, and is signed by the private key of the CT

4

2 Certi�cate Transparency and Related Work

misissued

certif
icates?lo

g
w

or
ks

co

rr
ec

tly
?

CT log

monitor

auditor

certificate
published?

public control

Figure 2.1: Components and roles of Certi�cate Transparency (CT)

5

2 Certi�cate Transparency and Related Work

log and can be veri�ed by its public key. Because the private key is secret, only the CT log is
capable to create a correct SCT.

The SCT distinctly points to the certi�cate entry. This entry not only contains the certi�cate
itself but also its chain up to the root CA and some meta data such as the insertion time into
the CT log.

The publication into CT logs is done anonymously and everyone can send a valid certi�cate
for publication to a CT log. As a protection against certi�cate-spam CT logs only accept
certi�cates which chains ends up by a root CA trusted by the web Public Key Infrastructure.

CT Log Proofs – CT Log from User Perspective

In contrast to a certi�cate authority, a CT log does not need to be trusted to work correctly.
Instead, a CT log proves its integrity. Two kind of proves exist, the so-called merkle audit proof,
and the merkle consistency proof.

Figure 2.2 shows an overview of the integration of CT into the TLS ecosystem. Typically,
a CA and a domain owner who runs a webserver uses a monitor in order to learn for new
certi�cates issued by a distinct CA or for a distinct domain (dotted green line between the CA
and the monitor, and between the webserver and the monitor). A CA has a strong interest to
know if it is compromised and if a certi�cate was issued in its name without permission (which
would be the worst case for a CA). A domain owner with a webserver has a strong interest
to know if a certi�cate was issued for its domain without permission. Such an misissued
certi�cate can be used by an attacker to show an user a wrong webpage who browses to the
domain. The dotted, green lines between the webserver and the auditor, and between the
browser and the auditor mean that both, the domain owner and the user of the browser have
an interest that the certi�cate is correctly published into the CT log.

The reason for a merkle audit proof is to answer an auditor as it were asking the question:
“Here is an SCT. Is the corresponding certi�cate published in this CT log?” The merkle audit
proof is a cryptographic proof of the publication of the certi�cate.

The monitor requests an merkle consistency proof as if it were asking the question: “Works

this CT log correctly, is its integrity correct?” The most important aspect is that the CT log
complies with the append-only property.

Merkle Hash Tree

Internally, the CT Log is build on a merkle hash tree [13]. A merkle hash tree (short: merkle
tree) is a binary tree where an intermediate node is the hash of the concatenation of the two

6

2 Certi�cate Transparency and Related Work

misissued

certif
icates?lo

g
w

or
ks

co

rr
ec

tly
?

webserver

TLS handshake

CT log

CA

client
browser

monitor

auditor

certificate
published?

public control

certificate

SCTcertificate

merkleconsistencyproof

merkle auditproof

Figure 2.2: Interaction with components of Certi�cate Transparency and integration into the
TLS ecosystem

7

2 Certi�cate Transparency and Related Work

children of that node. The leafs of the merkle tree are the hashes of the certi�cates (more
exactly: the full certi�cate chain up to the root CA certi�cate).

The most easy way to cryptographically prove the publication of certi�cates by a log would
be to hash the concatenation of all certi�cates and then sign this hash. To prove the publication
of one single certi�cate by an auditor, the log would need to send all other certi�cates to the
auditor. Then, the auditor could calculate the hash and could compare its result with the hash
signed by the log. If any certi�cate di�ers it would lead to another hash. The time required for
computing and the size of transferred data grows linear to the number of the certi�cate entries
of the log. This corresponds to a complexity class of O(n).

RFC 6962 [11] de�nes how to build the merkle tree of a CT log as follows:
Given a list of n entries:

C[n] := {c0, c1, ..., cn-1}.

The hash of an empty list is the hash of the empty byte-string:

MTH({}) := HASH()

The hash of a list with one entry, i.e. a leaf entry of the binary tree, is de�ned as:

MTH({c0}) := HASH(0x00 || c0)

The internal nodes of the binary tree are de�ned recursively. For m > 1 let k be the largest
power of 2 which is smaller than m (i.e. k < m <= 2k). Then is:

MTH(C[m]) := HASH(0x01 || MTH(C[0:k]) || MTH(C[k:m]))

Where C[i:j] is a list of j-i entries ci till cj-1:

C[i:j] := {ci, ci+1, ..., cj-1}

HASH is a hash algorithm which output length is always of HASH_SIZE bytes. Currently
for CT only the hashing algorithm SHA-256 [1] is used. So the HASH_SIZE
is 256/8 = 32. The hash of the empty list then is: MTH({}) = HASH() =
e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855.

The node MTH(C[n]) of all entries – the root of the binary tree – is named tree head.
Periodically, the merkle tree will be re-created based on all current and in the meantime newly
added certi�cate entries. The new tree head will be signed by the private key of the CT log
and published to a new CT log version. This is the so-called Signed Tree Head (STH).

8

2 Certi�cate Transparency and Related Work

Merkle Audit Proof

The merkle audit proof provides evidence for a given certi�cate to be included into a merkle
tree as a leaf hash. The CT log answers an auditor for an inclusion proof request (question
certi�cate published? in �gure 2.2) with such an merkle audit proof.

Technically, the inclusion proof PATH(m, C[n]) is provided as a list of nodes of the
merkle tree for a given certi�cate entry m from all certi�cate entries C[n] of a CT log which
are required to calculate the tree hash which is published as the STH by the CT log.

The inclusion proof is de�ned as: If there is exactly one entry (C[1] = {c0}), then the
inclusion proof for a binary tree which contains only one single leaf is empty:

PATH(0, {c0}) = ()

In case of more than one entry (n > 1) the inclusion proof is de�ned recursively: Let k be
the biggest power of 2 which is smaller than n (k < n <= 2k). The inclusion proof for the
m+1 element cm of a list of n elements (m < n) is:

m < k:

PATH(m, C[n]) := PATH(m, C[0:k]) : MTH(C[k:n])

m => k:

PATH(m, C[n]) := PATH(m - k, C[k:n]) : MTH(C[0:k])

The colon-opreator : means the concatenation of the element after the list:
appended_list = list : element.

For example, the inclusion proof of the merkle tree in �gure 2.3 of the certi�cate entry c2 is
calculated as:

PATH(2, C[8])
= PATH(2, C[0:4]) : MTH(C[4:8])
= PATH(0, C[2:4]) : MTH(C[0:2]) : MTH(C[4:8])
= PATH(0, C[2:3]) : MTH(C[3:4]) : MTH(C[0:2]) : MTH(C[4:8])
= () : MTH(C[3:4]) : MTH(C[0:2]) : MTH(C[4:8])
= [MTH(C[0:2]), MTH(C[3:4]), MTH(C[4:8])]
= [i, d, n]

9

2 Certi�cate Transparency and Related Work

merkle tree H

nm

hgfea b

lk

c0 c1 c4 c5 c6 c7

merkle auditproof

ji

dc

c2 c3

MT
H(
C[
3:
4]
)

=
HA
SH
(0
x0
0
||
 c
3)

MTH(C[4:8])
= HASH(0x01 || k || l)

MT
H(
C[
0:
2]
)

MT
H(
C[
8]
)

Figure 2.3: merkle audit proof : PATH(c2, C[8]) = [i, d, n]. With the nodes i,
d, and n together with c2 it is possible to calculate the tree head H. The result can
be compared with the published STH of the CT log.

10

2 Certi�cate Transparency and Related Work

merkle tree H

m

fe

dca b

ji

c0 c1 c2 c3 c4 c5

k

merkleconsistencyproof

merkle tree

nm

hgfedca b

ji

c0 c1 c2 c3 c4 c5 c6 c7

log version: p

log version: q (q > p)

lk

H'

Figure 2.4: merkle consistency proof : PROOF(6, C[8]) = [m, k, l]. With the nodes
m, k and l it is possible to calculate the tree head H of CT log version p. Also, it
is possible to calculate the tree head H of the newer CT log version q.

11

2 Certi�cate Transparency and Related Work

Consistency Proof

The merkle consistency proof provides evidence for the append-only property of a CT log.
Append-only means that new entries could only be appended to a log. In the reverse conclusion
all entries of a former log version must be the �rst entries in a later log version. Now, both
log versions will be matched to each other and all entries of the former log version must be
contained in the later log version in the same order as the �rst entries before any newly added
entries.

Let version p be a former, already proofed log version about m entries, i.e. the tree head
is MTH(C[0:m]). Let version q be the new log version version about n entries, i.e. with
a tree head MTH(C[n]). Now, we have to prove if log version q is consistent against log
version p. Both log versions need to be identical in its m �rst entries, which has to be checked
now. Therefore, we need a (best minimal) list of nodes in the new log version to be able to
calculate both the tree head of the log version q and the tree head of the log version p. If the
calculated tree heads match each with the published STHs of both versions, then the new log
version q is consistent to the former log version p.

The consistency proof for a list of n entries
C[n] = {c0, c1,... , cn-1} of a log version q to a former log version p with m
entries and with a tree head MTH(C[0:m]) is de�ned as:

PROOF(m, C[n]) := SUBPROOF(m, C[n], true)

For SUBPROOF is:

m = n, m is the argument value of PROOF:

SUBPROOF(m, D[m], true) := ()

m = n, else:

SUBPROOF(m, C[m], false) := {MTH(C[m])}

For m < n is SUBPROOF recursively de�ned:
Let k be the biggest power of 2 which is smaller than n (i.e. k < n <= 2k).

m < n and m <= k:

SUBPROOF(m, C[n], b) := SUBPROOF(m, C[0:k], b) : MTH(C[k:n])

12

2 Certi�cate Transparency and Related Work

m < n and m > k:

SUBPROOF(m, C[n], b) := SUBPROOF(m - k, C[k:n], false) : MTH(C[0:k])

For example, the consistency proof of the merkle tree in �gure 2.4 with the log versions p
and q can be calculated as:

PROOF(6, C[8]) = SUBPROOF(6, C[0:8], True)
= SUBPROOF(2, C[4:8], False) : MTH(C[0:4])
= SUBPROOF(2, C[4:6], False) : MTH(C[6:8]) : MTH(C[0:4])
= {MTH(C[4:6])} : MTH(C[6:8]) : MTH(C[0:4])
= [MTH(C[0:4]) : MTH(C[4:6]) : MTH(C[6:8])]
= [m, k, l]

2.2.2 Publishing Certificates into CT Logs

When a certi�cate is accepted by a CT log it returns as a receipe the signed certi�cate timestamp

(SCT). The is a link to the CT log entry of the certi�cate and is handed over by the webserver to
the client browser at the TLS handshake [7]. While the SCT itself is evidence for the client that
the certi�cate is published, the client (theoretically) could verify the log entry as an auditor.

The design of CT respects practical aspects of the deployment and there are di�erent kinds
to publish a certi�cate. The publication could be applied by the CA itself which issues the
certi�cate, the domain owner, or by any other party. The steps for the CA and the domain
owner for a website di�er for each kind of publication. This also concerns the way how an
SCT will be delivered to a client during the TLS handshake.

Issue Certificate without Publication into CT Log

Figure 2.5 shows the issuance of a certi�cate in the context of the web-PKI. The CA creates
a certi�cate which will be handed over to the domain owner of the webserver. With this
certi�cate (including the corresponding certi�cate chain), the webserver authenticates himself
to a client during the TLS session.

There is no CT log and certi�cates will not be published. The TLS server does not o�er an
SCT and no TLS client checks an SCT.

13

2 Certi�cate Transparency and Related Work

webserver

certificate

certificate

TLS handshake

certificate issuance
CA

client
browser

Figure 2.5: Issuance of a webserver certi�cate and its usage during a TLS handshake; without
Certi�cate Transparency support

14

2 Certi�cate Transparency and Related Work

webserver

certificate
with SCT

TLS handshake

certificate issuance

CT log

CA

client
browser

publication

precertificate

SCT

certificate
with SCT

register certificate

log promise

1

2

3

by cert

Figure 2.6: Issuance of a webserver certi�cate and its usage during a TLS handshake; pre-
certi�cate is published instead of the certi�cate itself and SCT is integreated in the
certi�cate (by X.509v3 extension)

15

2 Certi�cate Transparency and Related Work

Issue Precertificate

In �gure 2.6 the kind of publication is shown where the SCTs are embedded into the certi�cate
itself. The CA needs to adopt its processes on certi�cate issuance in order to publish a so-called
Precerti�cate before of the creation of the �nal certi�cate. The Precerti�cate contains all parts of
the �nal certi�cate except of the SCTs. Also, a Precerti�cate contains a special poison extension
(OID 1.3.6.1.4.1.11129.2.4.3) which is critical and prevents the usage of such a certi�cate on
TLS handshakes for authentication. When all SCTs are available the �nal cert will be created
by replacing the poison extension by another X.509v3 extension (OID 1.3.6.1.4.1.11129.2.4.2),
steps 1 and 2 in the �gure 2.6.

Using this kind of publication the webserver supports CT inherently. The SCTs required by
an TLS handshake which supports for CT is inseparable embedded into the certi�cate and will
be automatically handed over to the client.

TLS-Extension

Figure 2.7 shows a kind of issuance, where the domain owner can publish a webserver certi�cate
if the CA does not adopt its certi�cation process for CT publication.

After the certi�cate issuance the domain owner sends the certi�cate to an CT log and gets
an SCT as a reply. Now the webserver will be con�gured to hand over the SCT at the TLS
handshake via a TLS-Extension next to the certi�cate.

This is useful for the transitional period, when there are CAs which does not adopt its
certi�cate issuance processes for CT publication. Also, already issued certi�cates could be
published into CT logs afterwards.

Notably is that the publication of (valid) certi�cates into CT log is applied without any
authentication. In order to be accessed by an CT log it is only required that the certi�cate
issued by a CA which has a chain reaching to a root CA accepted by the web-PKI. There is not
check who sends the certi�cate to the CT log.

OCSP-Extension

Also, in the kind of CT publication in �gure 2.8 the SCT will be handed over to the client on
the TLS handshake next to the certi�cate. Both, the CA and the webserver needs to adapt
its processes. The CA issues the certi�cate to the domain owner of the webserver and also
publishes it into a CT log. The gathered SCT then will be handed over to the webserver within
of a OCSP status request. Then, the webserver sends the SCT to the TLS client during a stapled
OCSP response of a OCSP request by the client (steps 2 and 3 [orange]).

16

2 Certi�cate Transparency and Related Work

webserver

certificate

TLShandshake

certificate issuance

CT log

CA

client
browser

publication

SCT

SCTcertificate

re
gis

te
r c

er
tifi

ca
te

log promise
certificate

1

2
3

by tls

Figure 2.7: Issuance of a webserver certi�cate and its usage during a TLS handshake; SCT is
sent to browser by TLS extension next to the certi�cate

17

2 Certi�cate Transparency and Related Work

webserver

certificate

TLS handshake

certificate issuance

CT log

CA

client
browser

publication

certificate

register certificate

log promise

SCT

certificate

OCSP response

SCT

SCT

O
C

S
P

 q
ue

ry

1

2

1
2 3

by ocsp

Figure 2.8: Issuance of a webserver certi�cate and its usage during a TLS handshake; SCT is
sent to browser by stapled OCSP response

18

2 Certi�cate Transparency and Related Work

This kind of publication is suitable if the full certi�cate issuance and publication into CT
logs has to be applied automatically. OCSP was choosen for practical reasons. CAs already
support OCSP for revocation status requests.

2.3 Measurement of Certificate Transparency

In [28] was researched for the combination of di�erent perspectives for the web-PKI with the
goal to get a complete view of the certi�cate ecosystem. This research was applied before CT
had become mandatory.

Also [3] was conducted before CT was mandatory. Among other new security features
to mitigate the risk of certi�cate misissuance they describe basic properties of CT logs and
certi�cates in the context of CT.

The performance impact at the TLS handshake which comes with CT was analyzed in [14].

19

3 Webserver Deployment of Certificate
Transparency

3.1 Methodology

It will be examined the support or CT on TLS encrypted website requests.
On the examination three Steps will be applied: (1) Selection of the domain names of the

websites; (2) Saving of the certi�cates gathered on the TLS handshakes with the webservers;
(3) Determination and saving of the SCTs accompanied by the TLS handshakes.

(1) Selection of the domain names of the websites In order to measure the deployment of CT
on HTTPS websites a set of domain names is required. Therefore, the Alexa Global Top 1M
list [2] will be taken. This list contains 1 million domains names ordered by its popularity
starting with the most popular domain as the �rst entry. This makes it possible to map the
deployment of CT to the popularity of domain names. Other web surveys also use the Alexa
Global Top 1M list [22], for example [30].
(2) Saving of the certi�cate gathered on the TLS handshake with the webservers The domain

names will be mapped to the TLS certi�cates. In an intermediate step the domain names will
be mapped to IP addresses by DNS resolver requests. It is kept unconsidered the possibility
to get di�erent IP addresses a domain address when asking di�erent DNS resolver. Also, the
possibility that in Content Delivery Networks hosted websites could use di�erent webserver
certi�cates will not be considered. This keeps open for further analyses.

For every entry of the Alexa Global Top 1M list as a domain name the entry itself will
be taken and the entry applied by a ‘www.’ pre�x. In order to gather the certi�cates of the
webserver, the webpages will be requested via HTTPS. If the webserver supports HTTPS, the
certi�cate will be transmitted during the TLS handshake.
(3) Determination and saving of the SCTs accompanied by the TLS handshakes SCTs could

be passed during the TLS handshake via three mechanisms, by-cert, by-TLS-extension, and
by-OCSP-response. This mechanisms are discussed in 2.2.2. For every TLS handshake all three
mechanisms will be tried to use in order to fetch all SCTs which are provided together with a
webserver certi�cate.

20

3 Webserver Deployment of Certi�cate Transparency

3.2 Implementation

For the TLS handshake, in order to fetch the SCTs, and to read out the data from the SCTs, the
author developed a software component named ctutlz [27] which is hosted as an open source
project at github. A second component uses the library functions provided by ctutlz and runs
the examination process and creates the analysis of the gathered data.

Both components are written in Python. To accomplish for the task to support CT a good
maintained OpenSSL wrapper library can be used [19]. In order to draw �gures the python
software matplotlib [25] will be utilized. The author is familiar in coding with python which
was not the last reason to chose for this programming language.

The implementation of the code to fetch the SCTs was a complex task burden with many
false attempts. This approaches did not work:

• The module ssl of the standard python library [26] does not support OCSP-requests
nor CT.

• m2crypto, a comprehensive python crypto library [12], does not support CT.

• pyOpenSSL [19], the most complete OpenSSL wrapper and crypto library in python
does not support all CT functionalities required to gather the SCTs during the TLS
handshakes. The same is for the module cryptography [18] which is used by pyOpenSSL
to call OpenSSL callback functions. Also, there is lack in the functionality for the
veri�cation of SCTs.

• OpenSSL [17] supports CT and the functionality to gather the SCTs in all three possible
ways (by-cert, by-TLS, by-OCSP). But an implementation which uses OpenSSL as a
command in an own process out of the python code was too slow. And it would be
necessary to apply several command calls of openssl s_client for a domain to
be able to gather the SCTs in all three possible kinds.

3.3 Results

The SCTs of the domains of the Alexa Global Top 1M list [2] have been gathered two times,
on 2017-09-28, and one year later on 2018-10-08. Certi�cates issued after 2018-04-30 must be
ct-logged in order to comply for CT Chrome Policy [15, 4]. So an increase of CT support in
general in the results of 2018 is to be expected.

21

3 Webserver Deployment of Certi�cate Transparency

3.3.1 TLS Handshake Tries

22

3 Webserver Deployment of Certi�cate Transparency

Table 3.1: TLS Handshake Tries (w/wo www. pre�x)

2017-09-28 2018-10-08
count percent percent count

all 2,000,000 100.00 100.00 2,000,000

timeout 223,868 11.19 8.19 163,870
no certi�cate 446,313 22.32 20.48 409,551
certi�cate (no EV) 1,283,926 64.20 69.78 1,395,582
EV certi�cate 45,893 2.29 1.55 30,997

Table 3.1 lists the statistical results of the TLS handshakes tries on 2017-09-28 and on 2018-10-08
of the domains with and without ‘www’ pre�x of the Alexa Global Top 1M list. The number
of timeouts have been declined by 3% to about 8.2%. The proportion of tries where no TLS
connection could be established declined by a �fth to about 20%. The number of extended
validation certi�cates also have been declined by a �fth to about 1.6%, but the number of
non-ev certi�cates increased by nearly 112,000 to about 70%.

Table 3.2: TLS Handshake Tries on 2018-10-08

without ’www’ pre�x with ’www’ pre�x
count percent percent count

all 1,000,000 100.00 100.00 1,000,000

timeout 85,769 8.58 7.81 78,101
no certi�cate 203,619 20.36 20.59 205,932
certi�cate (no EV) 696,273 69.63 69.93 699,309
EV certi�cate 14,339 1.43 1.67 16,658

Table 3.2 compares the statistical results of the handshakes tries on 2018-10-08 of the domains
of the Alexa Global Top 1M list with ‘www’ pre�x and without ‘www’ pre�x. Notably is that the
proportion of timeouts of domains without ‘www’ pre�x with about 8.6% is nearly 10% higher
than the proportion of timeouts of domains with ‘www’ pre�x. In both cases, the proportion
of timeouts is nearly constant in the complete range of the alexa ranking. The proportions
where the server answered but sent no TLS server certi�cate (‘no certi�cate’, i.e. HTTP only /
HTTPS not supported) are nearly the same. Even the proportions of TLS-handshakes with

23

3 Webserver Deployment of Certi�cate Transparency

EV or non-EV certi�cates do not di�er signi�cantly. The following graphs and diagrams only
for on type of domain, with or without (w/wo) ‘www’ pre�x would not show meaningful
di�erences. Therefore, the following results are about both types of domains.

0 200000 400000 600000 800000 1000000
alexa rank

0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n

ev-certificate

certificate

no certificate

0.03

0.75

TLS handshakes (including without certificate)

Figure 3.1: TLS handshake tries (alexa ranked) on 2017-09-28

The distribution of the results of the TLS handshake tries by decreasing popularitiy i.e. rising
alexa rank shows �gure 3.1 for 2017-09-28 and �gure 3.2 for 2018-10-08. Both plots are alike
but the number of outliers in the results have increased in 2018. The distribution is relatively
stable in the complete alexa range. Both, EV and non-EV certi�cates are more popular for the
most popular domains. While starting with an alexa rank of about 20,000 in 2017 a continually
light increase with growing alexa rank could be registered. This increase has nearly vanished
in 2018 and lays behind the amount of outliers. In 2017 and in 2018 the proportion of EV
certi�cates continually decreases for less popular domains.

3.3.2 Signed Certficate Timestamps

Table 3.3: SCTs by deliver way (w/wo www pre�x)

2017-09-28 2018-10-08
count percent percent count

all 1,038,227 100.00 1,906,975 100.00

24

3 Webserver Deployment of Certi�cate Transparency

Table 3.3: SCTs by deliver way (w/wo www pre�x)

2017-09-28 2018-10-08
count percent percent count

by-cert 865,852 83.40 1,791,759 93.96
by-tls-extension 172,099 16.58 114,650 6.01
by-ocsp-response 276 0.03 566 0.03

Table 3.3 shows that in the last 12 month the sum of SCTs was nearly doubled. The Proportion of
SCTs delivered by-cert now dominates with nearly 94%. The number of SCTs by-tls-extension
decreased not only in proportion but also absolute by nearly 60,000 SCTs. While the number of
SCTs delivered by stapled OCSP response have more than doubled they still are insigni�cant
with a proportion of 0.03%.

Figure 3.3 showes that in 2017 the proportion of SCTs by-tls has its highest highest value
on most popular domains and continually decreases till an alexa-rank of about 400,000. Then
constant it remains relatively constant for the higher alexa ranks.

In 2018 this curve has completely diminished as shown in �gure 3.4. The proportion of SCTs
by-certi�cate were completely higher than in 2017-09-28 among a fewer spikes. The lowest
proportion of SCT by-certi�cate in 2018 could be seen on the least popular domains.

For the spikes the author has no explanation; maybe they were related to temporary loss of
internet connectivity during the measurement.

Table 3.4: Certi�cates with or without SCTs (w/wo www pre�x)

2017-09-28 2018-10-08
count percent percent count

all 1,329,819 100.00 100.00 1,426,577

no SCTs 990,221 74.46 42.49 606,086
1 or more SCTs 339,598 25.54 57.51 820,491

1 SCT 53 0.00 0.00 9
2 SCTs 111,717 8.40 43.10 614,866
3 SCTs 130,358 9.80 10.88 155,205
4 SCTs 63,970 4.81 2.90 41,399
5 or more SCTs 33,500 2.52 0.63 9,012

25

3 Webserver Deployment of Certi�cate Transparency

0 200000 400000 600000 800000 1000000
alexa rank

0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n

ev-certificate

certificate

no certificate

0.02

0.78

TLS handshakes (including without certificate)

Figure 3.2: TLS handshake tries (alexa ranked) on 2018-10-08

0 200000 400000 600000 800000 1000000
alexa rank

0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n

by certificate

by tls extension

by ocsp response

0.84

SCTs by deliver way

Figure 3.3: SCTs alexa ranked by Deliver Way on 2017-09-28

26

3 Webserver Deployment of Certi�cate Transparency

0 200000 400000 600000 800000 1000000
alexa rank

0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n

by certificate

by tls extension
by ocsp response

0.94

SCTs by deliver way

Figure 3.4: SCTs alexa ranked by Deliver Way on 2018-10-08

Table 3.4 showes that in 2018 more than 57% of certi�cates are delivered with SCTs As in
the last year three was the most often occurrence of SCTs accompanied by a certi�cate at the
TLS handshake the most certi�cate (43%) now come with two SCTs. Nearly 11% come with
three SCTs, nearly 3% with four SCTs, �ve or more SCTs are negligible. Two SCTs seems to
become the usable case of CT-supported certi�cates.

Figure 3.5 showes the proportions of the number of SCTs accompanied by a certi�cate in
2017, �gure 3.6 in 2018. The comparison of the both �gures show the increase of webserver
which support CT. While the proportions are relatively stable for the less popular domains.
The most popular domains have an increased proportion for CT support. But till now the top
most domains still have a proportion of about 30% which do not support CT now. This is a
relative high value.

3.3.3 CT Logs

The proportions of SCTs by CT log are shown in �gure 3.7 for 2017 and in �gure 3.8 for 2018.
While in 2017 about 70% of SCTs came from only three CT logs, now the SCTs are distributed
more even on a bigger number of CT logs.

Also – apart from Google – the distribution of the total number of SCTs by CT log operators
is more even distributed in 2018 as shown in �gure 3.10 than in 2017 which is shown in
�gure 3.9.

27

3 Webserver Deployment of Certi�cate Transparency

0 200000 400000 600000 800000 1000000
alexa rank

0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n

without sct

2 scts

3 scts

4 scts
5 or more scts

0.740.74

0.83

0.93
0.97

Certificates with or without SCTs

Figure 3.5: Certi�cates with or without SCTs (alexa ranked) 2017-09-28

0 200000 400000 600000 800000 1000000
alexa rank

0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n

without sct

2 scts

3 scts

4 scts
5 or more scts

0.420.42

0.86

0.960.99
Certificates with or without SCTs

Figure 3.6: Certi�cates with or without SCTs (alexa ranked) 2018-10-08

28

3 Webserver Deployment of Certi�cate Transparency

0 200000 400000 600000 800000 1000000
0.0

0.2

0.4

0.6

0.8

1.0

ct.googleapis.com/pilot/

ct.ws.symantec.com/

ct.googleapis.com/rocketeer/

ct1.digicert-ct.com/log/

ct.googleapis.com/skydiver/
ct.googleapis.com/aviator/
ctlog.wosign.com/

0.28

0.51

0.70

0.79

0.87

0.96

SCTs by CT-Log

Figure 3.7: SCTs by CT log (alexa ranked) 2017-09-28

0 200000 400000 600000 800000 1000000
0.0

0.2

0.4

0.6

0.8

1.0

ct.googleapis.com/rocketeer/

ct.googleapis.com/icarus/

ct.googleapis.com/pilot/

sabre.ct.comodo.com/

ct.googleapis.com/skydiver/
ct.cloudflare.com/logs/nimbus2018/
mammoth.ct.comodo.com/

0.18

0.30

0.41

0.52

0.63

0.74

SCTs by CT-Log

Figure 3.8: SCTs by CT log (alexa ranked) 2018-10-08

29

3 Webserver Deployment of Certi�cate Transparency

0

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

60
00

00

#SCT

Comodo [10]

Venafi [25]

StartCom [1789]

WoSign [43591]

DigiCert [89725]

Symantec [263667]

Google [628529]

SCTs by CT-Log-Operator (accepted by chrome only)

Figure 3.9: SCTs by CT log Operator 2017-09-28

0

20
00

00

40
00

00

60
00

00

80
00

00

10
00

00
0

#SCT

Venafi [851]

DigiCert [286647]

Cloudflare [306936]

Comodo CA Limited [331365]

Google [980074]

SCTs by CT-Log-Operator (accepted by chrome only)

Figure 3.10: SCTs by CT log Operator 2018-10-08

30

3 Webserver Deployment of Certi�cate Transparency

0 200000 400000 600000 800000 1000000
0.0

0.2

0.4

0.6

0.8

1.0

Google

Symantec

DigiCert
WoSign

0.61

0.87

0.96

SCTs by CT-Log-Operator (chrome accepted only)

Figure 3.11: SCTs by CT log (alexa ranked) 2017-09-28

0 200000 400000 600000 800000 1000000
0.0

0.2

0.4

0.6

0.8

1.0

Google

Comodo CA Limited

Cloudflare

DigiCert

0.51

0.69

0.85

SCTs by CT-Log-Operator (chrome accepted only)

Figure 3.12: SCTs by CT log (alexa ranked) 2018-10-08

31

3 Webserver Deployment of Certi�cate Transparency

The reason why Google dominates here is due to the demand of the Chrome Policy [5] that
at least two SCTs must be accompanied by a certi�cate and at least one SCT must come from
a Google CT log (and also at least one SCT must belong to a CT log not from Google). This
correlates well with the proportions in �gure 3.11 for 2017 and �gure 3.12 for 2018. The falling
of Google from 61% to 50% of proportion correlates with the ‘trend’ to use only two SCTs
instead of three or more.

32

4 CT Log Evolution

The investigation of the CT log evolution was applied in the context of the paper The Rise of
Certi�cate Transparency and Its Implications on the Internet Ecosystem [21]. This paper was ac-
cepted by the ACM Internet Measurement Conference 2018 in Boston
(https://conferences.sigcomm.org/imc/2018/).

4.1 Methodology

It will be examined the evolution of the CT logs. Therefore, the rate of increase for all Chrome
accepted CT logs will be analyzed for Precerti�cate entries only. CT log entries of �nal
certi�cates could be added to a CT log by any party. Precerti�cate entries can be added by the
CAs itself. The examination includes the steps (1) Gather data sets of CT log entries; (2) Save
Precerti�cate entries only; (3) Apply statistical analysis on the Precerti�cate entries.
(1) Gather data sets of CT log entries It is only possible to download certi�cate entries from

CT logs by index. The API does not provide a mechanism to �lter for attributes such as entry
type or domain name. So, for the analysis of Precerti�cate entries all entries for a CT log needs
to be downloaded.
(2) Save Precerti�cate entries only Only the CT log entries will be stored into a database for

further analyses.
(3) Apply statistical analysis on the Precerti�cate entries In order to investigate the CT log

evolution several statistical evaluations will be applied on the saved Precerti�cate entries. An
update rate will be calculated which is the average of the number of logged Precerti�cates for
a CA for the days only when logging was applied by the CA.

4.2 Implementation

The dataset of all CT log entries accepted by the Google Chrome browser was created by the
working group Lehrstuhl fuer Netzarchitekturen und Netzdienste at the Technische Universitaet
Muenchen (TUM) using Bro [29]. It already contained of Postgres Database exports sorted by
Percerti�cate entries and �nal certi�cate entries for each CT log.

33

4 CT Log Evolution

The original data set of all CT log entries as uncompressed JSON �les till April 2018 which
was also gathered by the author is of more than 6TB of data.

For the statistical analysis the author extended the software for the statistical analysis of the
webserver deployment of CT.

4.3 Results

Table 4.1: Precert Entries by CA; CAs with the 10 most logged certi�cates

date of �rst entry update rate day maximum day max date

Let’s Encrypt 2018-03-29 2,239,669.93 2,948,832 2018-04-17
DigiCert 2016-04-30 19,763.89 244,816 2017-12-04
Comodo 2016-05-03 12,836.65 442,491 2018-04-03
GlobalSign 2016-06-30 2,917.11 17,612 2018-02-04
StartCom 2017-01-10 1,823.19 5,757 2016-09-09
Western Digital 2018-04-11 85,416.14 309,339 2018-04-19
Go Daddy 2014-12-23 425.96 57,392 2018-04-11
Entrust 2014-07-21 250.10 7,917 2018-04-17
Cybertrust JP 2015-01-07 225.08 7,020 2015-10-21
Hostpoint AG 2016-03-01 190.64 3,112 2016-07-04

When the experimental RFC 6962 [11] was released on June 2013 only a few number of CT
log entries was made, mostly for testing purposes. But there were opposite views for a public
register of webserver certi�cates, mainly for privacy and security reasons as of to protect
business interests [21].

The �rst of the top-most logging CAs started to publish into CT logs in July 2014 as shown
in table 4.1. Let’s Encrypt was the least CA of the top 10 which started to log but immediately
dominates the number of entries with an update rate of more than 2.2M certi�cates per day.

The domination of Let’s Encrypt is also visible in �gure 4.2 which shows the relative update
rate of the top 10 CAs. Before CT had become mandatory in April 2018, the most CT log
publications were made by DigiCert.

34

4 CT Log Evolution

Table 4.2: Precert Entries by CA in April 2018 from 2018-04-01 till 2018-04-26

average update rate sum number of days logged

Let’s Encrypt 2,291,499.04 2,291,499.04 59,578,975 26
DigiCert 96,008.38 99,848.72 2,496,218 25
Comodo 328,337.46 328,337.46 8,536,774 26
GlobalSign 6,072.81 6,315.72 157,893 25
StartCom 0.00 0.00 0 0
Western Digital 45,993.31 85,416.14 1,195,826 14
Go Daddy 13,914.12 14,470.68 361,767 25
Entrust 4,356.65 4,530.92 113,273 25
Cybertrust JP 235.62 291.71 6,126 21
Hostpoint AG 0.00 0.00 0 0

As we can see in �gure 4.1 before of April 2018 the number of cumulated CT log entries
grew relatively constantly and doubled about every one or two years. Then, when CT support
was mandatory for webserver certi�cates in Chrome [24, 16] in April, all active CAs (i.e. not
StartCom, nor Hostpoint AG) logged with an higher update rate. But Let’s Encrypt which
started in the end of March immediately outnumbers the rates of all other CAs added together.
This is also visible in Table 4.2 by comparing the sum of publications made by Let’s Encrypt in
April 2018 with the sums of the other CAs.

The heatmap in �gure 4.3 shows for each CA the CT logs where the most Precerti�cates are
logged. Not only Let’s Encrypt but also DigiCert and Comodo are logging mostly into a small
set of CT logs.

35

4 CT Log Evolution

20
15

-06

20
16

-02

20
16

-10

20
17

-06

20
18

-02
0M

20M

40M

60M

80M

100M

Lo
g

En
tri

es
 [#

]

Let's Encrypt
DigiCert
Comodo
GlobalSign
StartCom
other

Figure 4.1: Cumulative growth of logged precerti�cates by Certi�cation Authority (CA)

36

4 CT Log Evolution

20
15

-07

20
16

-02

20
16

-08

20
17

-03

20
17

-09

20
18

-04
0

20

40

60

80

100

Re
la

tiv
e

Up
da

te
 R

at
e

[%
]

Figure 4.2: Relative update rate per CA and day. Let’s Encrypt dominates after starting to log.

37

4 CT Log Evolution

Figure 4.3: Distribution of precerti�cate logging by CAs over di�erent CT logs for April 2018

38

5 Conclusion and Outlook

5.1 Conclusion

The TLS ecosystem is based on the trust of users in the CAs to correctly issue certi�cates. CT
adds a control element by making webserver certi�cates used by HTTPS website requests
auditable in a public manner.

During the last twelfe month the deployment of CT has achieved a relative prosper develop-
ment. About 75% of the HTTPS enabled websites support CT. But there is still a relative big
proportion of 30% of the top domain names which do not support CT till now.

Currently, nearly all CAs are publishing certi�cates on its issuance into CT logs. So more
than 90% of the delivered SCTs during the TLS handshakes with the most popular domains
are embedded in the certi�cates itself which means that corresponding Precerti�cates were
published into CT logs. From this it follows that a nearly complete view of the web-PKI is now
possible by analyzing Precerti�cate entries of CT logs.

The distribution of CT logs has been improved on the one side. While twelve month ago
about 70% of the SCTs of the most popular domains came from only three CT logs, now they
are distributed more diverse into seven CT logs. On the other side, due to the massive number
of published Precerti�cates by Let’s Encrypt into two CT logs only, the distribution of CT log
entries over all CT logs currently is highly concentrated.

5.2 Outlook

For a domain owner CT makes it possible to detect misissuance for its domain. He has to
become active himself to use a monitor in order to achieve this. While a big proportion of
domain owner probably would not set up for a CT log monitoring it would be desirable if there
could be a systematic approach to automatically detect such an misissuance. For example,
CT log monitoring could be enhanced by matching the issuing CA with Certi�cate Authority
Authorization (CAA) rules set in the Domain Name System.

After the exponential growth of the number of CT log entries in April 2018 a new measuring
of the CT log evolution would show more interesting developments and is therefore desirable.

39

5 Conclusion and Outlook

This is one of the next tasks to be achieved. The author already extended ctutlz for the download
and parsing of CT log entries (sub-module ctutlz/rfc6962.py).

40

Bibliography

[1] D. Eastlake 3rd and T. Hansen. US Secure Hash Algorithms (SHA and SHA-based HMAC
and HKDF). RFC 6234, IETF, May 2011.

[2] Alexa. Top 1M sites. https://www.alexa.com/topsites. http://s3.dualstack.
us-east-1.amazonaws.com/alexa-static/top-1m.csv.zip,
accessed on 26. October 2018.

[3] Johanna Amann, Oliver Gasser, Quirin Scheitle, Lexi Brent, Georg Carle, and Ralph Holz.
Mission Accomplished? HTTPS Security after DigiNotar. In IMC, 2017.

[4] Chromium. Certi�cate Transparency in Chrome. https://github.com/
chromium/ct-policy/blob/master/ct_policy.md, accessed on 28. Oc-
tober 2018.

[5] Chromium. Certi�cate Transparency in Chrome. https://github.com/
chromium/ct-policy/blob/master/ct_policy.md, 2018.

[6] COMODO CA. crt.sh. https://crt.sh/, accessed on 31. October 2018.

[7] Michael Driscoll. The Illustrated TLS Connection. https://tls.ulfheim.net/,
accessed on 30. October 2018.

[8] Google. Certi�cate Transparency. https://www.
certificate-transparency.org/, accessed on 30. October 2018.

[9] Google. Certi�cate Transparency - Known Logs. https://www.
certificate-transparency.org/known-logs, accessed on 30. Oc-
tober 2018.

[10] Hans Hoogstraaten and others, Fox-IT BV. Black Tulip: Report of the investigation
into the DigiNotar Certi�cate Authority breach. http://heise.de/-1741726,
accessed on 31. October 2018.

41

http://s3.dualstack.us-east-1.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.dualstack.us-east-1.amazonaws.com/alexa-static/top-1m.csv.zip
https://github.com/chromium/ct-policy/blob/master/ct_policy.md
https://github.com/chromium/ct-policy/blob/master/ct_policy.md
https://github.com/chromium/ct-policy/blob/master/ct_policy.md
https://github.com/chromium/ct-policy/blob/master/ct_policy.md
https://crt.sh/
https://tls.ulfheim.net/
https://www.certificate-transparency.org/
https://www.certificate-transparency.org/
https://www.certificate-transparency.org/known-logs
https://www.certificate-transparency.org/known-logs
http://heise.de/-1741726

Bibliography

[11] B. Laurie, A. Langley, and E. Kasper. Certi�cate Transparency. RFC 6962, IETF, June 2013.

[12] Matej Cepl. M2Crypto. https://gitlab.com/m2crypto/m2crypto/
blob/master/README.rst, accessed on 31. October 2018.

[13] Merkle, R. A digital signature based on a conventional encryption function. In Proceedings
of CRYPTO, pages 369 - 378. Springer, 1988.

[14] Carl Nykvist, Linus Sjöström, Josef Gustafsson, and Niklas Carlsson. Server-Side Adoption
of Certi�cate Transparency. In PAM. Springer, 2018.

[15] Devon O’Brien. Certi�cate Transparency Enforcement in Google Chrome.
https://groups.google.com/a/chromium.org/forum/#!msg/
ct-policy/Qqr59r6yn1A/2t0bWblZBgAJ, accessed on 28. October 2018.

[16] Devon O’Brien. Certi�cate Transparency Enforcement in Google Chrome.
https://groups.google.com/a/chromium.org/forum/#!msg/
ct-policy/wHILiYf31DE, 2018.

[17] OpenSSL Software Foundation. OpenSSL. https://www.openssl.org/, Abruf-
datum: 12. November.

[18] Python Cryptographic Authority (pyca). pyca/cryptography. https://github.
com/pyca/cryptography, accessed on 31. October 2018.

[19] Python Cryptographic Authority (pyca). pyOpenSSL - github-Repository. https:
//github.com/pyca/pyopenssl, accessed on 31. October 2018.

[20] Ronald Eikenberg, heise online. Protokoll eines Verbrechens: DigiNotar-Einbruch weitge-
hend aufgeklärt. http://heise.de/-1741726, accessed on 31. October 2018.

[21] Quirin Scheitle, Oliver Gasser, Theodor Nolte, Johanna Amann, Lexi Brent, Georg Carle,
Ralph Holz, Thomas C. Schmidt, and Matthias Wählisch. The Rise of Certi�cate Trans-
parency and Its Implications on the Internet Ecosystem. In Proc. of ACM Internet Mea-

surement Conference (IMC 2018), New York, NY, USA, October 2018. ACM. accepted for
publication.

[22] Quirin Scheitle, Oliver Hohlfeld, Julien Gamba, Jonas Jelten, Torsten Zimmermann,
Stephen D. Strowes, and Narseo Vallina-Rodriguez. A long way to the top: Signi�cance,
structure, and stability of internet top lists. CoRR, abs/1805.11506, 2018.

42

https://gitlab.com/m2crypto/m2crypto/blob/master/README.rst
https://gitlab.com/m2crypto/m2crypto/blob/master/README.rst
https://groups.google.com/a/chromium.org/forum/#!msg/ct-policy/Qqr59r6yn1A/2t0bWblZBgAJ
https://groups.google.com/a/chromium.org/forum/#!msg/ct-policy/Qqr59r6yn1A/2t0bWblZBgAJ
https://groups.google.com/a/chromium.org/forum/#!msg/ct-policy/wHILiYf31DE
https://groups.google.com/a/chromium.org/forum/#!msg/ct-policy/wHILiYf31DE
https://www.openssl.org/
https://github.com/pyca/cryptography
https://github.com/pyca/cryptography
https://github.com/pyca/pyopenssl
https://github.com/pyca/pyopenssl
http://heise.de/-1741726

Bibliography

[23] Seth Schoen and Eva Galperin. Iranian Man-in-the-Middle Attack
Against Google Demonstrates Dangerous Weakness of Certi�cate Au-
thorities. https://www.eff.org/deeplinks/2011/08/
iranian-man-middle-attack-against-google, accessed on 31.
October 2018.

[24] Ryan Sleevi. Certi�cate Transparency in Chrome - Change to Enforce-
ment Date. https://groups.google.com/a/chromium.org/forum/
#!msg/ct-policy/sz_3W_xKBNY, 2017.

[25] The Matplotlib development team. https://matplotlib.org/, accessed on 31.
October 2018.

[26] The Python Standard Library. ssl – TLS/SSL wrapper for socket objects. https:
//docs.python.org/3/library/ssl.html, accessed on 31. October 2018.

[27] Theodor Nolte. ctutlz. https://github.com/theno/ctutlz, accessed on 31.
October 2018.

[28] Benjamin VanderSloot, Johanna Amann, Matthew Bernhard, Zakir Durumeric, Michael
Bailey, and J Alex Halderman. Towards a Complete View of the Certi�cate Ecosystem. In
IMC. ACM, 2016.

[29] Vern Paxson and Robin Sommer. The Bro Network Security Monitor. https://www.
bro.org/, accessed on 31. October 2018.

[30] Matthias Wählisch, Robert Schmidt, Thomas C. Schmidt, Olaf Maennel, Steve Uhlig, and
Gareth Tyson. RiPKI: The Tragic Story of RPKI Deployment in the Web Ecosystem. In
Proc. of 14th ACM Workshop on Hot Topics in Networks (HotNets), pages 11:1–11:7, New
York, Nov. 2015. ACM.

43

https://www.eff.org/deeplinks/2011/08/iranian-man-middle-attack-against-google
https://www.eff.org/deeplinks/2011/08/iranian-man-middle-attack-against-google
https://groups.google.com/a/chromium.org/forum/#!msg/ct-policy/sz_3W_xKBNY
https://groups.google.com/a/chromium.org/forum/#!msg/ct-policy/sz_3W_xKBNY
https://matplotlib.org/
https://docs.python.org/3/library/ssl.html
https://docs.python.org/3/library/ssl.html
https://github.com/theno/ctutlz
https://www.bro.org/
https://www.bro.org/

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig verfasst und

nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, 1. November 2018 Theodor Nolte

	1 Introduction
	2 Certificate Transparency and Related Work
	2.1 Functional Motivation
	2.2 Technical Conceptuation
	2.2.1 CT Log
	2.2.2 Publishing Certificates into CT Logs

	2.3 Measurement of Certificate Transparency

	3 Webserver Deployment of Certificate Transparency
	3.1 Methodology
	3.2 Implementation
	3.3 Results
	3.3.1 TLS Handshake Tries
	3.3.2 Signed Certficate Timestamps
	3.3.3 CT Logs

	4 CT Log Evolution
	4.1 Methodology
	4.2 Implementation
	4.3 Results

	5 Conclusion and Outlook
	5.1 Conclusion
	5.2 Outlook

