
Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

Faculty of Engineering and Computer Science
Department of Information and

Electrical Engineering

Fakultät Technik und Informatik
Studiendepartment Informations-und
Elektrotechnik

Master Thesis

Viban Terence Yuven

Harnessing The Power Of Web 2.0 For Providing A Rich
User Experience In An eLearning Application

Viban Terence Yuven
Harnessing The Power Of Web 2.0 For Providing A Rich User

Experience In An eLearning Application

Master thesis based on the examination and study regulations for the
Master of Engineering degree programme
Information Engineering
at the Department of Information and Electrical Engineering
of the Faculty of Engineering and Computer Science
of the University of Applied Sciences Hamburg

Supervising examiner: Prof. Dr. Thomas C. Schmidt
Second examiner: Prof. Dr. Hans-Jürgen Hotop

Date of delivery March 1, 2010

Viban Terence Yuven

Thema der Master Thesis
Ausnutzung der Stärken des Web 2.0. für eine verbesserte Benutzererlebnis in einer
eLearning Anwendung
Stichworte
Ajax, annotation, Dojo, eLearning, Feedback, hyLOs, Google, Links, notes, tagging, Web
2.0, Wikipedia
Zusammenfassung
Die Lernprozesse sind aufgrund der Zunahme von neuen Technologien und Paradigmen der
Programmierung im Web umfassender geworden. Diese Technologien bieten Möglichkeiten,
um Inhalte mehrerer Quellen zu verwenden und neu zusammenzusetzen und dabei Inhalte in
einer Form zu schaffen und zur Verfügung zu stellen, die wiederum von anderen genutzt und
wiederaufbereitet werden können. Diese Master Thesis schafft eine eLearning Plattform,
die ihren Nutzern Möglichkeiten zum offenen und flexiblen gemeinschaftlichen eLearning
bereitet. Diese Plattform kann dazu dienen, Layers mit neuem Inhalt aus abgerufenem
Inhalt aus dem Web zu erzeugen und hinzuzufügen. Der hervorgebrachte Inhalt kann mit
anderen Nutzern und Gruppen geteilt werden. Ziel dieser eLearning Plattform wird es auch
sein, eine sehr reichhaltige Nutzererfahrung zu schaffen, indem der Nutzer mit einer höchst
interaktiven Bedieneroberfläche ausgestattet wird.

Viban Terence Yuven

Title of the paper
Harnessing The Power Of Web 2.0 For Providing A Rich User Experience In An eLearning
Application
Keywords
Ajax, annotation, Dojo, eLearning, feedback, hyLOs, Google, links,notes, tagging, Web 2.0,
Wikipedia
Abstract
The processes of learning have become broader due to the rise of new technologies and
programming paradigms on the Web. These technologies offer possibilities for consuming
and remixing content from multiple sources, while creating and providing content in a form
that can be consumed and remixed by others. This master thesis builds an eLearning
platform that offers possibilities for open and flexible collaborative eLearning, which can be
used to create and add layers of new content to content retrieved from the Web. The content
created can be shared with other users and groups. This eLearning platform will also aim
at achieving a very rich user experience by supplying the user with a highly interactive user
interface.

Contents

List of Figures 1

List of Source Code Snippets 3

List of Abbreviations 4

1 Introduction 6
1.1 Project Overview . 7
1.2 Thesis Outline . 8

2 eLearning Within Interactive Groups 9
2.1 eLearning and eLearning 2.0: Background 9
2.2 ELearning Standards and IEEE Learning Object Metadata - LOM 10
2.3 Hypermedia eLearning Object Systems - HyLOs 12
2.4 Interactive Group eLearning . 15

3 Web 2.0 and Ajax 17
3.1 Introduction and Definition . 17
3.2 Impact of Web 2.0 . 18
3.3 Ajax . 18

3.3.1 Ajax Techniques . 20
3.3.2 Ajax Patterns . 23

3.4 Ajax Technologies . 25
3.4.1 Client-side Scripting . 25
3.4.2 Server-side Scripting . 27

4 Requirement Analysis 29
4.1 System Tools . 29

4.1.1 General Use Case . 29
4.1.2 Use Case For The Overview Tool . 31
4.1.3 Activity Diagram For User-content Interaction 33

CONTENTS ii

4.1.4 Activity diagram for content retrieval 36
4.2 Group communication requirements . 37
4.3 User Interface requirements . 37

5 Application Design 39
5.1 System Architecture . 39
5.2 Application Front-end . 39

5.2.1 User-Interface design . 40
5.2.2 Ajax Engine . 45

5.3 Application Back-end . 46
5.3.1 Handling Links . 46
5.3.2 Handling Annotations . 48
5.3.3 Handling Notes . 50
5.3.4 Handling Feedback . 51
5.3.5 Group Communication . 52

5.4 General System Design Constraint . 53

6 System Specification 60
6.1 Authentication Service . 61
6.2 Content Retrieval Service . 62
6.3 Linking Service . 65
6.4 Annotation Service . 67
6.5 Note Service . 70
6.6 Message Service . 71
6.7 Group Service . 72
6.8 Database Model . 73

7 Application Implementation 79
7.1 Development Environment . 79
7.2 Software Architecture. 81
7.3 Application Functionality . 83

7.3.1 Getting Started: Dojo Toolkit and Application Module Paths 83
7.3.2 User Interface . 84
7.3.3 Loading Content from the Web . 84
7.3.4 System tools and Content Manipulation. 89
7.3.5 Group Interaction . 96
7.3.6 Messaging tools . 99

8 Test and Evaluation 100
8.1 Setting User Interest and Content Sharing Status 101
8.2 Adding, Displaying and Editing Content . 102

CONTENTS iii

8.2.1 Content Editors . 102
8.2.2 Annotation Display . 102
8.2.3 Link Display . 103
8.2.4 Displaying notes and feedback . 104

8.3 Group Work . 111

9 Summary and future work 118

Bibliography 122

A CD-Contend 125

List of Figures

2.1 Section of eLO showing descriptive meta data. 13
2.2 Section of eLO showing content entity within the paragraph tag with emdedded

link. 14

3.1 The traditional model for web applications (left) compared to the Ajax model
(right). 19

3.2 The hidden frame technique . 21

4.1 Use case showing system tools . 30
4.2 Use case showing viewing tools . 32
4.3 Activity diagram showing content manipulation by word selection 34
4.4 Activity diagram showing content manipulation by highlighting words within

current document . 35
4.5 Activity diagram showing content retrieval 36

5.1 System Architecture of the eLearning application 40
5.2 Basic User Interface layout template . 41
5.3 basic header layout . 41
5.4 Basic navigation section layout . 42
5.5 Basic layout of the miscellaneous section 43
5.6 (a) tab containers which hold a list of linked and annotated phrases, (b) content

pane which holds a lists of links attached to a particular phrase, (c) content
pane which displays the annotations added to a particular word or phrase. . 44

5.7 Basic layout of the miscellaneous section 44
5.8 Handling links on the back-end . 55
5.9 Handling annotations on the back-end . 56
5.10 Handling notes on the back-end . 57
5.11 Handling notes on the back-end . 58
5.12 Handling group messages . 59

6.1 Overview of the UI . 61

LIST OF FIGURES 2

6.2 Content retrieval tools . 63
6.3 Link editor and display . 66
6.4 Annotation editor used to add links to the content 67
6.5 Displaying annotations within document . 68
6.6 Editing an annotation . 69
6.7 Message Editor . 71
6.8 Group Menu . 72
6.9 Database Model . 78

7.1 Use case showing system tools . 82

8.1 Registration form showing the field of interest and the content setting status . 101
8.2 login section showing user authentication in progress 102
8.3 Changing the field of interest . 103
8.4 Setting the content sharing status for a particular user 104
8.5 Application content editors . 105
8.6 Editing-in-place . 106
8.7 Displaying annotations . 107
8.8 Displaying Links and showing linked words 108
8.9 Showing Links and annotated words on the misc container 109
8.10 Displaying annotation feedback and notes 110
8.11 Creating a group . 111
8.12 Group menu . 112
8.13 Activating, entering and leaving a group . 113
8.14 Activating, entering and leaving a group . 114
8.15 Displaying Links and showing linked words 114
8.16 Setting group synchronization status . 115
8.17 Sending a message . 116
8.18 new message notification . 116
8.19 displaying messages . 117

Listings

7.1 Activating the Firebug lite debugger window incorporated in Dojo 81
7.2 Publishing to a Topic in Dojo . 85
7.3 Creating and subscribing toaster widgets to topics 86
7.4 Calling the state object to add an item to the dojo.back history stack 87
7.5 Defining the changeURL fragment to be shown a long with the base URL on

the browser window . 87
7.6 Using dojo.query to get an array of all anchor tags within the loaded document 88
7.7 Destroying the link editor . 90
7.8 Loading a clean version of the document being displayed in the workspace . 91
7.9 CSS for setting the z-index of the div which holds the note 95
7.10 Messages pre-coded as PHP constanst . 97
7.11 Writing to the notify group table using the precoded messages 97
7.12 Interpreting the message read from the notify group table 98

List of Abbreviations

A
AJAX Asynchronuos Javascript And XML

A
API Application Programming Interface

A
ASP Active Server Pages

C
CSS Cascading Style Sheets

D
DB Database
DBA Database Admnistrator
DnD Drag and Drop
DOM Document Object Model

H
HTML HyperText Markup Language
hyLOs Hypermedia eLearning Object Systems

I
IDE Integrated Development Environment
IEEE Institute of Electrical and Electronics Engineers

J
JSF Java Server Faces
JSP Java Server Pages
JS JavaScript

LIST OF ABBREVIATIONS 5

JSON JavaScript Object Notation

L
LOM Learning Object Metadata

M
MIT Massachusetts Institute of Technology

O
OATS Open Annotation and Tagging System
OCW OpenCourseWare
OLTP OnLine Transaction Proccessing

P
PHP Personal Home Page (Hypertext Preprocessor)
PHP PDT PHP Development Tools Project

S
SQL Structured Query Language
SVG Scalable Vector Graphics

X
XHTML eXtensible HyperText Markup Language

U
UI User Interface
URL Uniform Resource Locator

Chapter 1

Introduction

The growth of the Internet as a global data communication system and the Web as one of
its main services has led to a border-less world where distance and time are no longer an
issue when it comes to eLearning. This globalization has led to an inter-networked commu-
nity which allows massive transmission of text, images, sound etc. The Web now holds a
huge amount of information and educational content, some of which is free and from trusted
sources, e.g. some online course materials offered by most renowned universities under the
name OpenCourseWare (OCW)1 is free of charge and of high educational value. Another
example of a major information source on the Web is Wikipedia, which is a free, collabo-
rative, multilingual encyclopedia with about 13 million articles on different subjects. Search
engines of which Google is the most widely used, can be used to sift through this information
when information on a particular subject is required. However, given the amount of informa-
tion available on the Web today, gathering and retaining information can sometimes be very
tedious.

One other important issue that has affected eLearning in the past decade is the revolution
in technology. One of such technologies which focus on services rather than software is
Web 2.0. It has transformed the Web into an appropriate platform for development of highly
interactive information systems and groupware applications. For example, a Web 2.0 site
allows its users to interact with other users or to change website content, in contrast to
non-interactive websites where users are limited to the passive viewing of information that
is provided to them. Content can be found easily using keywords. This is usually possible
due to the categorization of content by users adding tags, which are short, usually one-word
descriptions to facilitate searching, without dependence on pre-made categories. Collections
of tags created by many users within a single system may be referred to as folksonomies. The
ability to create and update content leads to the collaborative work of many rather than just
a few Web authors. In wikis, users may extend, undo and redo each other’s work. In blogs,
posts and the comments of individuals build up over time. These resources (wikis, blogs,

1MIT was one of the first to begin with OCW, http://ocw.mit.edu/OcwWeb/web/home/home/index.htm

CHAPTER 1. INTRODUCTION 7

forums, etc.) can be offered to the users easily to expand their learning environment and
experience. Links can be used to connect information together into a meaningful information
ecosystem using the model of the Web. In eLearning media of similar type and information
from multiple sources can be combined into a single representation. With the aid of special
programming APIs, frameworks and toolkits, services and applications can be built that are
independent of the end users accessing methods. Such services would run on all major
browsers and are searchable and accessible over the network.

However, extensive use of technology does not always lead to better ways of learning.
The challenge is designing simple yet powerful, open and flexible systems that use Web
2.0 technologies to gather, retain and interact with content from the Web in collaboration
with other users based on shared interest. Such simple systems will normally use the Web
browser as a client because it offers the ability to update and maintain applications without
distributing and installing software on potentially thousands of client computers. Moreover
browsers support cross-platform compatibility.

1.1 Project Overview

In the course of this thesis, an eLearning application which supports the idea of a virtual
learning environment is built. This learning environment gives its users possibilities to gather
and interact with information from the Web. During this process a couple of tools are used
by the user, which enables the system to categorize and retain the location of the content.

The system gives users the opportunity to collaborate within the context of the group or
to work alone. Communication within the group is transparent and open, but this is up to the
user to decide. Group work concentrates on two main issues; content and collaboration. In
this application, group work does not automatically mean collaboration. Users might decide
to create and use group content without actively collaborating with others.

The system design also allows layers of new content to be created and added to existing
content.

The system uses the Web browser as a platform for hosting its powerful and highly inter-
active user interface (UI). The UI is designed to display a lot of information at any one time
in ways that are intuitive to the user.

The design issues considered when building this project, result in an application which
offers content gathering and interaction capabilities to its users, provides them with an in-
teractive user interface and offers flexibility in the way in which they use the application and
collaborate with each other.

CHAPTER 1. INTRODUCTION 8

1.2 Thesis Outline

The thesis is outlined in such a way that, it begins with a brief theoretical background on
concepts, which are important to this project. It then moves on to discuss the following
software development stages: analysis, design, specification, implementation and testing of
the system. It concludes with a summary of what has been achieved and offers suggestions
on how the system can be improved and expanded.

Chapters 2 gives a brief introduction on the meaning eLearning. It introduces and dis-
cusses the IEEE LOM elearning standard used in one of the main content sources for this
project - hyLOs. hyLOs is briefly introduced. This chapter completes by discussing the im-
pact of collaboration in interactive group elearning.

Web 2.0 and one of its main technologies, Ajax, are the subject of chapter 3. This chapter
begins with a brief introduction to Web 2.0 and Ajax and then discusses techniques, patterns
and technologies used in Ajax programming.

Chapter 4 gives a complete requirement analysis of the system. It begins by using a use
case diagram of the system tools to show what is expected of the system. Activity diagrams
are used to show and discuss how content retrieval and user-content interaction are to be
realised. Requirements analysis for group communication and user interface are also carried
out in this chapter.

Chapter 5 discusses the system design. A general system architecture is discussed. This
is followed by the design of the front-end and the back-end of the application. This chapter
also examines system design constraints.

In chapter 6, the system specification is discussed. The functionality offered by the appli-
cation is discussed as services. This chapter concludes with the discussion of the database
model.

The next chapter 7 lays out the implementation of the design proposed in chapter 5. It
begins with a short introduction to the design environment, followed by a general software
architecture used and concludes with an explanation of the core functionality of the system.
Source code snippets are given whenever possible otherwise precise references are made
to the CD attached to this report.

After implementation, the results of the usability test carried out are presented in chapter
8. Screen shots are used to demonstrate the functionality and UI of the application. The test
results are evaluated for the following browsers; Mozilla Firefox, Safari and Internet Explorer
and the results documented with respect to each browser.

The summary of work carried out in the application is given in chapter 9. This chapter
also gives suggestions on how the system can be improved based on the test results and
also on how the system can be expanded to offer more useful functionality to its users.

Chapter 2

eLearning Within Interactive Groups

2.1 eLearning and eLearning 2.0: Background

eLearning is one of the most important educational innovations of the past 3 decades.
eLearning can best be understood in the broader context of using technology to meet so-
ciety’s needs for learning [6]. Following the success of the internet and the connection pos-
sibilities it offered, eLearning was over-hyped leading to unrealistic expectations in the late
90s 2,. At the time, the hype simply outpaced the existing technology.

Today, the term eLearning 2.0 is being used to described the eLearning trend that has
emerged and evolved as a result of Web 2.0 technologies (see chapter 3), which has brought
a major change in the way people use the Internet. This trend manifested itself in the field
of learning in what is called "learner-centered" or constructivist learning. In his article "Con-
structivism and Discovery Learning" 3, the basic tenets of constructivism are identified as
follows:

• Knowledge is constructed from and shaped by experience.

• Students must take an active role and assume responsibility for their learning.

• Learning is a collaborative process and students create their own meaning from ob-
taining multiple perspectives.

• Learning should occur in a realistic setting.

• Learners should choose their own path through content and activities.

• Content should be presented holistically, not broken into separate smaller tasks

2The State of eLearning: Looking at History with the Technology Hype Cycle by Kevin Kruse, http://www.e-
learningguru.com/articles/hype1_1.htm

3Constructivism and Discovery Learning by Kevin Kruse, http://www.e-learningguru.com/articles/art3_6.htm

CHAPTER 2. ELEARNING WITHIN INTERACTIVE GROUPS 10

I disagree with the last point in the list above. In my opinion, users can better assimilate
information when it is broken down into smaller units. These units are called eLearning
objects and are discussed in detail in section 2.2.

2.2 ELearning Standards and IEEE Learning Object Meta-
data - LOM

Learning technology standards are important for the following reasons 4:

• they can be used to mix and match content from many sources

• they can be used to develop interchangeable content that can be reused, assembled
and disassembled quickly and easily

• they can be developed independent of vendor’s proprietary learning technology

• they can lead to wise and risk adverse learning technology investments.

In the context of eLearning, terms which are central to many discussions and have led to
some major standards include:

• learning objects

• learning object description via metadata

• learning object repositories

A working group was established by IEEE LTSC (Institute of Electrical and Electronics
Engineers, Inc. Learning Technology Standards Committee) 5 a major standard body to
work towards the standardization of learning objects. This working group defines learning
objects as follows: "Learning Objects are any entity, digital or non-digital, which can be used,
re-used or referenced during technology supported learning".

The second important aspect is metadata. Metadata literally means "data about data".
The Learning Object Metadata (LOM) group 6 has developed and standardized LOM stan-
dard which focuses on the minimal set of attributes needed to allow Learning Objects to
be managed, located, and evaluated. The eLearning objects from HyLOs, one of the main
content sources used in this thesis, are built according to the IEEE LOM standard.

4Everything you ever wanted to know about learning standards but were afraid to ask by Wayne Hodgins
and Marcia Conner., http://linezine.com/2.1/features/wheyewtkls.htm

5http://www.ieeeltsc.org:8080/Plone
6http://www.ieeeltsc.org:8080/Plone/working-group/learning-object-metadata-working-group-12/learning-

object-metadata-lom-working-group-12

CHAPTER 2. ELEARNING WITHIN INTERACTIVE GROUPS 11

IEEE LOM is an open multi-part standard developed to define the structure of a metadata
instance of an eLearning object.

This standard has the purpose to facilitate search, evaluation, acquisition and use of
eLearning objects. This multi-part Standard also facilitates the sharing and exchange of
learning objects, by enabling the development of catalogs and inventories while taking into
account the diversity of cultural and lingual contexts in which the learning objects and their
metadata are reused [10].

LOM has hierarchy of elements with nine main categories of meta-data. According to the
LOM standard each metadata instance describes the relevant characteristics of the eLearn-
ing object to which it applies. These characteristics can be grouped into the following nine
categories as described by the LOMv1.0 Base Schema [10];

• General: groups the general information that describes the learning object as a whole.

• Lifecycle: groups the features related to the history and current state of this learning
object.

• Meta-Metadata: groups information about the metadata instance itself (rather than the
learning object that the metadata instance describes).

• Technical: groups the technical requirements and technical characteristics of the learn-
ing object.

• Educational: groups the educational and pedagogic characteristics of the learning ob-
ject.

• Rights: groups the intellectual property rights and conditions of use for the learning
object.

• Relation: groups features that define the relationship between the learning object and
other related learning objects.

• Annotation: provides comments on the educational use of the learning object and
provides information on when and by whom the comments were created.

• Classification: describes this learning object in relation to a particular classification
system. This category can also be used to provide certain types of extensions to the
LOMv1.0 Base Schema, as any classification system can be referenced

The above categories are grouped into subcategories leading to a model which consist of
a hierarchy of data elements. For the LOMv1.0 Base Schema, the simple data elements of
leaf nodes, have values which are defined by their value space and data types. The data
elements are described by the following characteristics [10];

CHAPTER 2. ELEARNING WITHIN INTERACTIVE GROUPS 12

• name: the name by which the data element is referenced.

• explanation: the definition of the data element.

• size: the number of values allowed:

• order: whether the order of the values is significant (applies only to leaf nodes, which
are allowed to have values as opposed to aggregate nodes which do not have individ-
ual values).

• example: an illustrative example.

• value space: the set of allowed values for the data element – typically in the form
of a vocabulary or a reference to another standard which in this case is ISO/IEC
11404:1996 Information technology Standard for Programming languages, their en-
vironments and system software interfaces and Language independent data types.

• datatype: indicates whether the values are LangString, DateTime, Duration, Vocabu-
lary, CharacterString or Undefined.

Vocabularies are defined for some data elements. A vocabulary is a recommended list
of appropriate values. Metadata that rely on such recommended list will have the highest
rate of semantic interoperability according to the LOM standard. In some instances, the data
elements may consist of list of values which may be ordered(order of items e.g. authors in a
publication is significant), or unordered (list bears no meaning).

The above mentioned categories and data elements form the bases of the LOMv1.0 Base
Schema.

IEEE LOM standard has the main advantage that it offers flexibility since any metadata
element is optional and also because existing vocabularies can be extended to include values
which are not in the list. A source content relevant in thesis that uses the IEEE LOM standard
is the Hypermedia eLearning Object Systems (hyLOs).

2.3 Hypermedia eLearning Object Systems - HyLOs

HyLOs is an eLearning Content Management System that has been designed to provide full
educational content. An eLearning CMS refers to a CMS that maintains and publishes its
content on the Web in form of Web pages. It allows authoring, instructional composition and
dynamic presentation of eLearning content.

HyLOs is built upon a more general Media Information repository (MIR) [9]. MIR is an
open system supporting the standards XML, CORBA and JNDI. It provides general support
of media data handling, authentication, user and connection handling. Its core is formed by

CHAPTER 2. ELEARNING WITHIN INTERACTIVE GROUPS 13

a media object database, implementing a duality of object oriented information model and
relational structure. All data within the MIR data store is published in XML format. This leads
to a separation of content from structural information, application logic and design elements.
The MIR adaptive context linking environment (MIRaCLE) as used as the linking environ-
ment [9] in hyLOs. With the help of this linking extension, different hyperlink layers may be
applied to the same content. These layers are defined by the content creator. Hyperlinks are
generally made up of anchors and links which can be stored separately in a link base. Links
concatenate anchors and identify sub-portions of content. Anchors can be expressed within
XLINK statements by XPOINTER/XPATH Expressions [28]. Links denote the relationship be-
tween two or more anchors. Anchors have semantic descriptions which can be gotten from
the LOM metadata.

Section of eLO in HyLOs

Main categories

Figure 2.1: Section of eLO showing descriptive meta data.

CHAPTER 2. ELEARNING WITHIN INTERACTIVE GROUPS 14

Section of eLO in HyLOs

Leaf node of the “lifecycle” branch

Leaf nodes of “contribute”

Main category or branch

Leaf node of “content” with an image

Leaf node of “content” with an embedded link

Embedded link

Figure 2.2: Section of eLO showing content entity within the paragraph tag with emdedded
link.

HyLOs is based on a cellular eLearning Object (eLO) information model encapsulating
meta data conforming to the LOM standard. The metadata and particular content entities
such as titles, authors, keywords or information about courses, etc., are singled out as shown
in figure 2.1. The separation of entities in this way provides content normalization and allows
easy updating of content for authors and automatic generation of navigational overviews and
updates. All other content units are organized in paragraphs (as in figure 2.2), which are
collected to pages by means of external structures. This allows for easy re-use of content
entities of paragraph dimensions by applying multiple structural references in a static or dy-
namic way. HylOs implements these concepts for practical implementation by using XML
technologies and provides the consistent separation of content, structure, logic and design
elements. For more information on the hyLOs eLearning CMS see the following references
[9], [8],[21],[7]

CHAPTER 2. ELEARNING WITHIN INTERACTIVE GROUPS 15

2.4 Interactive Group eLearning

Learning in groups is a form of collaborative learning where users are responsible for their
actions, including learning and respecting the abilities and contributions of their peers. Col-
laborative learning is an umbrella term for a variety of approaches in education that involve
joint intellectual effort by students or students and teachers [24]. According to Wikipedia,
collaborative learning refers to methodologies and environments in which learners engage in
a common task in which each individual depends on and is accountable to each other. Col-
laborative learning is a learning method that uses social interaction as a means of knowledge
building [13].

Advantages which can be gained from collaborative [24] eLearning include:

Group Diversity

Collaboration in the context of group work means multiple perspectives, backgrounds,
learning styles, experiences, aspirations, etc. Content created in such cases can re-
sult from intensive discussions within the group, e.g. an application that lets group
members give feedback in real time to the annotations of other group members. The
content created will offer different perspectives on a subject and all group members
can benefit from this.

Learners are active

Learners are actively taking part in the learning process. From the technological point
of view, Web 2.0 techniques can be used to enhance the user experience making the
user more involved within the group. The constructivist approach adopted in eLearning
2.0, section 2.1, can also act as a motivation factor since the user is in charge of his
learning habits.

Learning is social

Due to the interaction with other learners, learners can acquire social skills and learn to
treat each other with respect. The mutual exploration, feedback, sharing, etc. creates
learners who seek to understand the group more and how to communicate better with
the group as a whole and with the single individuals involved.

Goal-oriented

The purpose of collaboration is always to accomplish a particular task making group
work goal-oriented.

CHAPTER 2. ELEARNING WITHIN INTERACTIVE GROUPS 16

Although collaborative learning is hardly a new idea, with the advent of Web 2.0 and
other innovative ideas such as social networking, Really Simple Syndication (RSS) chapter
3, etc., it has evolved enormously. For example, using OpenCourseWare chapter 9, major
learning institutions around the world place educational materials from their undergraduate-
and graduate-level courses online for free. These courses are available to anyone with an In-
ternet connection and can be access using RSS. Finding content on the Web is much easier
because Web 2.0 technologies can use the tags or descriptive pieces of information attached
to content by users to find related content. These technologies can also be used to build very
interactive User Interfaces. Faster communication within the group and content retrieval can
be achieved using web 2.0 techniques such as Ajax, section 3.3. Special tehniques can also
be applied to give an illusion of extra speed during content retrieval from the Web. All these
advantages can enhance the learning experience for the user.

To see how interactive group learning can affect the way we learn, two case studies of
existing projects will be done in the next section. They will demonstrate the span of possibility
which exist in this field as well as its usefulness.

To conclude this chapter, two examples of projects, which make use of collaborative
eLearning will be mentioned here. They are not discussed because they are not used in this
project. They are however, related to the work done here and references are supplied for
further reading.

One is the Open Annotation and Tagging System (OATS) [23], which provides a collabo-
rative tagging and an annotation interface by using a text highlighting metaphor. The second
is Annotea[11], which can be used for collaborative document enhancement.

Chapter 3

Web 2.0 and Ajax

3.1 Introduction and Definition

The term Web 2.0 was coined by Dale Doherty7 of O’Reilly Media in 2003 to describe the new
trend which was noticeable on the Web at the time. This trend was seen in the way people
and businesses were using the Web as a platform to create collaborative community-based
sites such as blogs, social networking sites, wikis etc.

There has, however, been some discrepancy as to what Web 2.0 exactly means. There
are those who argue that the concepts of Web 2.0 such as consuming and remixing data
from multiple sources, delivery software as a continually updated service, creating rich user
interfaces, etc. go beyond the page metaphor of Web 1.0 [17]. Others argue that Web 2.0
is nothing more than a late implementation of some of the core concepts proposed by Web
1.08.

In my opinion, Web 2.0 is a full implementation of Web 1.0 for the following reasons;

• Tim Berners-Lee’s9 book Weaving the Web[3] describes his original vision of the Web,
as a collaborative workspace where everything was linked to everything in a single,
global information space.

• ENQUIRE10 an early software project written in the second half of 1980 by Tim
Berners-Lee allowed pages to be linked together and edited.

• Web 2.0 technologies are based on Web 1.0 standards

Web 2.0 and Web 1.0 differ mainly in the ways they have been adopted and implemented.

7http://radar.oreilly.com/dale/
8Laningham (ed.), developerWorks Interviews, 22nd August, 2006. Transcript available at:

http://www.ibm.com/developerworks/podcast/dwi/cm-int082206.txt
9Tim Berners-Lee - inventor of the Web, http://www.w3.org/People/Berners-Lee/

10Brief introduction about Enquire, http://en.wikipedia.org/wiki/Enquire

CHAPTER 3. WEB 2.0 AND AJAX 18

3.2 Impact of Web 2.0

The impact of the Web 2.0 is felt extensively on the Web today. A number of Web-based
services and applications demonstrate the foundations of Web 2.0 concepts. Some of these
applications are built entirely on user-generated content or harnessing collective intelligence
[16] or the power of the crowd [2], while others rely on the way people interact and net-
work. This has led to the following Web 2.0 concepts whose impact and implementations are
thoroughly discussed here[5];

• User-Generated Content, e.g. wikis

• Collective Intelligence resulting from collaboration between users

• Social Networking

• Tagging

• Blogging

• Social Media

• Social Bookmarking

• Rich Internet Applications (RIA)

• Ajax

Ajax is the Web 2.0 technology that will be used to build the eLearning application in this
thesis. This section, therefore, discusses Ajax in detail.

3.3 Ajax

The term Ajax was coined in February 2005 by Jesse James Garrett of Adaptive Path, in
his online article entitled, “Ajax: A New Approach to Web Applications”11. In this article,
he defines Ajax as a Web interaction technique or approach which involves transmitting
only small amount of information to and from the server in order to give the user the most
responsive experience possible. Ajax does this by adding a layer between the client and the
server to manage communication between the two. He called this layer Ajax Engine.

The power of Ajax can be understood better if the Ajax programming model is compared
to the traditional Web model as shown in 3.1, which is taken from Garrett’s original article.

11Jesse James Garrett. Ajax: A new approach to web applications. Adaptive Path,
http://www.adaptivepath.com/ideas/essays/archives/000385.php

CHAPTER 3. WEB 2.0 AND AJAX 19

Figure 3.1: The traditional model for web applications (left) compared to the Ajax model
(right).

Figure 3.1 shows the Ajax engine which is introduced in the Ajax model to eliminates the
start-stop-start-stop nature of interaction on the Web. This Ajax engine is just a JavaScript
object or function that is called whenever information needs to be requested from the server.
With this model, the browser does not need to make a request directly to the server anymore.
The browser initially loads the Ajax engine, which from then on is responsible for communi-
cation with the server and rendering pages from the server. Each link on the Web page, that
would otherwise point directly to a resource on the server as is the case in the traditional Web
model, now makes a call to the Ajax engine, which schedules and executes the request. The
request is done asynchronously, meaning that code execution doesn’t wait for a response
before continuing. When the Ajax engine receives the server response, it parses the data
and makes several changes to the user interface based on the information that has been
provided by th server. Because this process involves transferring less information than the
traditional Web model, user interface updates are faster.

CHAPTER 3. WEB 2.0 AND AJAX 20

3.3.1 Ajax Techniques

Hidden Frame Technique
HTML frames allow authors to present documents in multiple views, which may be
independent windows or sub windows. Multiple views offer designers a way to keep
certain information visible, while other views are scrolled or replaced12.

When using hidden frames, the idea is to create a frameset that has a hidden frame
that is used for client-server communication. A frame can be hidden by setting its width
or height to zero pixels or by setting its visibility to hidden in the style sheet effectively
removing it from the display. Two types of frames used in HTML documents are a
normal frame and the inline frame (iframe).

1. Hidden Frame

The hidden frame always begins with a visible frame. This visible frame is an
HTML page called the frameset document. It differs from the normal HTML page
(without a frame) in that, instead of one head section and one body section, it
has a head and a frameset in place of the body section. The frameset section of
a document specifies the layout of views in the main user agent window. Then
there is also a hidden frame which the user will naturally be unaware of. At some
point, the user will perform an action that require data from the server of say fill
a form that requires posting to the server, thereby making a call to the hidden
frame. The hidden frame then makes a request to the server which depends on
the action performed by the user. When the server returns with the response,
a JavaScript function is then called which will transfer the contents of the return
page for instance to the visible frame. This function is often given as the argument
of the onload event of the hidden frame. Figure 3.2 is an adaptation from [15]
and illustrates this process;

2. Hidden iframe

Another form of behind-the-scenes client-server communication is communica-
tion using the iframe. The iframe stands for inline frame and is so called because
an iframe can be integrated into a page not originally created as a frameset,
making it much better suited to incremental addition of functionality. Apart from
this difference they are basically frames and behave the same as frames. One
of the main advantages of using iframes is that, they can be created on-the-fly
using JavaScript and once created they can also be placed anywhere within the
document thereby making them very suitable for adding Ajax functionality. An
example of using hidden frames is in doing mashups, wwhereby a page can use
iframes to combine data from several sources into a single integrated document.

12http://www.w3.org/TR/REC-html40/present/frames.html

CHAPTER 3. WEB 2.0 AND AJAX 21

Database

Web Server

Hidden frameVisible frame

JavaScript

call with a

request

JavaScript call after the

hidden frame loads

resonse

response

Browser

request

Figure 3.2: The hidden frame technique

Because iframes can be used and accessed in the same way as regular frames,
they are ideal for Ajax communication.

Today Ajax applications are typically single url applications. This often raises the ques-
tion of how to manage the browser history and bookmarking on the site since the page
url never changes. One of the advantages for using hidden frames is that the browser
history can be maintained and thus enable users to still use the Back and Forward
buttons in the browser. The hidden frame keeps record of all request made through
it. This may not be true for an Ajax application. These records can then be used to
navigate through the history of the site using the hidden frame. For iframes, this is not
necessarily true as browsers implement iframes differently. Whereas IE always stores
the history of iframes, Firefox does so only if the iframe was defined using HTML (that
is, not created dynamically using JavaScript). Safari never stores browser history for
iframes, regardless of how they are included in the page [15].

One disadvantage of using hidden frames is that, they cannot make requests outside
of the domain from which they are called. This is however a well known security

CHAPTER 3. WEB 2.0 AND AJAX 22

enforcement by browsers when it comes to JavaScript. Therefore JavaScript can only
interact with frames that are from the same domain as itself.

Another disadvantage of hidden frames is that, there is very little information about the
HTTP request being made by the hidden frame. If the frame fails to load the page,
for instance, there is no way of knowing. If it is important to keep track of the HTTP
request being made to the server, then another Ajax technique should be used. This
technique which is very widely used today makes use of the XMLHttp Requests (XHR)
which is the subject of the next section

XMLHttp Request

The XMLHttpRequest specification defines an API that provides scripted client func-
tionality for transferring data between a client and a server [26].

The concept behind the XMLHttpRequest object was originally created by the develop-
ers of Outlook Web Access for Microsoft Exchange Server 200013. An interface called
IXMLHTTPRequest was developed and implemented into the second version of the
MSXML library using this concept14. The second version of the MSXML library was
shipped with Internet Explorer 5.0. This library used an XMLHTTP object to access
the IXMLHTTPRequest interface. This access was done using ActiveX controls. Ac-
tiveX controls are reusable software components that perform a particular function or
a set of functions in most Microsoft Windows products in a way that is indepenent of
the programming language used to implement them.

The XMLHttp object was created to enable developers to initiate HTTP requests
from anywhere in an application. Following its wide adoption, Mozilla duplicated the
XMLHttp functionality for use in its browsers, such as Firefox. They created a na-
tive JavaScript object, XMLHttpRequest, which closely mimicked the behavior of Mi-
crosoft’s XMLHttp object. Shortly thereafter, both the Safari (as of version 1.2) and
Opera (version 7.6) browsers duplicated Mozilla’s implementation. Microsoft even went
back and created their own native XMLHttpRequest object for Internet Explorer 7. To-
day, all four browsers support a native XMLHttpRequest object, commonly referred to
as XHR [15].

The different processes, methods and properties which have led to the success of the
XMLHttp Request object will be briefly discussed in the following sections.

13"Article on the history of XMLHTTP by an original developer". http://www.alexhopmann.com/xmlhttp.htm.
14"Specification of the IXMLHTTPRequest interface from the Microsoft Developer Network".

Msdn.microsoft.com. http://msdn.microsoft.com/en-us/library/ms759148(VS.85).aspx.

CHAPTER 3. WEB 2.0 AND AJAX 23

3.3.2 Ajax Patterns

Most of the patterns presented here have been used long before the advent of Ajax to enable
intuitive client-server communication using JavaScript. When it comes to Ajax programming,
it is important to look for the best way to initiate and continue to make request to the server.
What the best pattern is will depend on the requirements of the system being developed.
Some system will require that the user data already be available upon demand. This will give
an illusion of increase in speed from the user’s perspective. Other system will be designed
such that user actions can be predicted and the needed data fetched before hand. In other
systems, it will be more useful to periodically retrieved small chunks of data. No matter
what system is being built, Ajax programming model offers fine granularity in controlling the
communication between the client and the server to attain the desired behaviour.

Predictive Fetch

Predictive fetch or predictive download simply means anticipating likely user actions
and pre-loading the required data. The start-stop nature of the traditional Web model
was caused partly because of the fact that the user always has to click a link and
then wait while the information is being fetched. From the user’s perspective and
following the nature of the Web today, this is no longer acceptable. Predictive fetch is
therefore used when possible to fetch data that the use will need in the near future.
When the user actually demands this data maybe by clicking a button, the data is
displayed immediately. The key, once again, is the “logical-to-assume” criterion [15].
By anticipating and pre-loading information related to the user’s most likely next steps,
the application can be implemented to feel lighter and be more responsive

Submission Throttling

While predictive fetch is used to retrieve data from the server, an Ajax pattern required
to submit data to the server is called submission throttling. Ideally a call could be made
to the server on every keystroke and mouse movement, for example, like a desktop ap-
plication, tooltips could come directly from the server as the user mouses around. But
that’s not practical due to bandwidth considerations, and possibly server constraints.
The main problem with submitting data to the server in this manner is that, the server
can quickly become overloaded. The intensity of this problem is increased by the fact
that each message to the server has overheads such as packet headers and requires
some processing at each stage of the browser-server round-trip. Submission throttling
can solve this problem, by retaining data in a browser-based buffer and periodically
uploading it to the server.

CHAPTER 3. WEB 2.0 AND AJAX 24

The main disadvantage of the submission throttling design pattern, is that it deliberately
downgrades synchronization. This can make the system being developed vulnerable
to integrity issues. Such a vulnerability is posed by spam bots which are malicious
software written to harvest user names and passwords or submit useless content on
forms. It is therefore important to consider these security issues when designing an
application, choose the appropriate design pattern and take preventive measures to
prevent security loopholes.

Periodic Refresh

Periodic Refresh design pattern describes the process whereby the browser period-
ically calls the server so as to refresh any volatile information. This approach, also
called polling, requires the browser to keep track of when another request to the server
should take place.

Another example is the XHTML Live Chat 15 at plasticshore.com. It uses periodic
refresh to implement a chat room using simple web technologies. The chat room text
is updated automatically every few seconds by checking the server for new information.
If there is a new message, the page is updated to reflect it, thus creating a traditional
chat room experience.

Although there are many different ways that period refresh can increase user experi-
ence, the basic purpose remains the same: to notify users of updated information

Multi-Stage Download

Multi-Stage Download is an Ajax pattern wherein only the most basic functionality is
loaded into a page initially. Upon completion, the page then begins to download other
components that should appear on the page. Basically content download is broken
down into multiple stages, so that faster and more important content will arrive first.
The extra functionality is loaded in the background and available when the user is
ready.

Although nice, Multi-Stage Download does have a downside: the page must work in
its simplest form for browsers that don’t support Ajax technologies. This means that
all the basic functionality must work without any additional downloads. The typical way
of dealing with this problem is to provide graceful degradation, meaning that those
browsers that support Ajax technologies will get the more extensive interface while
other browsers get a simple, bare-bones interface.

15http://chat.plasticshore.com/index.html

CHAPTER 3. WEB 2.0 AND AJAX 25

3.4 Ajax Technologies

3.4.1 Client-side Scripting

Ajax isn’t a technology. A group of different technologies, some of which have been used be-
fore Ajax, come together in different ways to give Ajax-based application their power. These
technologies are;

• XHTML and CSS: standards-based content presentation languages

• DOM: dynamic display of and interaction with loaded content

• XML, XSLT and JSON: data interchange and manipulation

• XMLHttp: asynchronous data retrieval and communication with server

• JavaScript: Scripting language used to program an Ajax engine

The above listed client-side technologies are extensively discussed here [5] and [15].
With the growth of Ajax, many JavaScript frameworks have been developed to better handle
client-server communication and minimise browser compatibility issues. The next section
gives a brief introduction to JavaScript frameworks

JavaScript Frameworks

A JavaScript framework or toolkit is a library or API which offers pre-written JavaScript
controls which allow for easier development of JavaScript-based applications, espe-
cially for AJAX and other web-centric technologies. There are several reasons to con-
sider user a JavaScript framework when developing applications for the Web. Some of
these are identified here16 as;

• time: time is always a scarce resource and using a framework will considerable
shorten development time

• pre-written controls: most of these frameworks provide functions to perform com-
mon task. Some of these functions have been written, tested and re-tested by
many users over the years. Do not waste time trying to re-invent the wheel

• less code: less code has advantages of smaller file size, better maintenance and
less development time

• more readable code: also aids in better maintenance and less development time

16Web Application Development Tips, Tricks and Techniques : Javascript frameworks overview,
http://www.undisciplinedbytes.com/2009/10/javascript-frameworks-overview/

CHAPTER 3. WEB 2.0 AND AJAX 26

• web application execute faster: these frameworks are really fast in performing
their tasks and most of them have been optimized for really fast execution.

• web application run in most modern browsers: in JavaScript development, dif-
ferent browsers have different ways of implementing the same things and hand-
crafted cross-browser development can be very time consuming and irritating.
These frameworks have already taken care most cross browser issues.

The most widely used, open source, general-purpose frameworks as of today
are: jQuery17, Prototype/Script.aculo.us18, Mootools19, Yahoo UI20, Ext21 and Dojo
Toolkit22 [27]. Each of these frameworks are used by many thousands of developers,
has an active community behind it, are well maintained and tested across different
browsers, and supports commonly used JavaScript functionality such as in Ajax Web
development, DOM traversal and manipulation (including CSS selectors), event han-
dling, animation and various utility functions [27].

Dojo has been chosen as the framework of choice for the application built in this thesis,
because of the following reasons;

• it has a powerful packaging system divided into three projects; Dojo, Dijit and
Dojox.

• it handles many cross-browser incompatibility issues and memory leaks. In ad-
dition it normalizes the event system among many popular browsers. This is
significant because Internet Explorer for instance does not implement the WC3
event model and it leaks memory [19]. As of now, the Dojo version (1.3) used in
this project officially supports Internet Explorer(6.0+), Firefox (1.5+), Safari (3+),
and Opera (9+) and Konqueror (3.5+). As for Opera and Konqueror only Dojo
core components are supported.

• it has a very large UI component base which involves many UI controls and a
graphics framework.

• it is organized into a hierarchy of functionality such that developers can focus on
a particular needed area and can expand this area as their needs change.

• it is open source.

Dojo is made up of collection of static, client-side JavaScript scripts that are responsi-
ble for the above mentioned advantages. It includes the following;

17jQuery, http://jquery.com/
18prototype/script.aculo.us, http://prototypejs.org/, http://script.aculo.us/
19Mootools, http://mootools.net/
20YUI, http://developer.yahoo.com/yui/
21Ext, http://www.extjs.com/
22Dojo, http://dojotoolkit.org/

CHAPTER 3. WEB 2.0 AND AJAX 27

• A design and implementation that normalizes the browser, allowing the same
source code to work in several browsers.

• Functions/libraries that abstract the sometimes inconvenient W3C DOM pro-
gramming model into a convenient, efficient interface.

• Functions/libraries that fix several cross browser errors such as memory leaks.

• A library of a large set of HTML widgets

• A module system coupled with a build system that lets developers divide code
into small, manageable chunks during development and later package the re-
lease system for optimal download performance— without any modifications to
the source code. The build system even lets developers slice and dice Dojo itself
in a way that’s optimal for their project.

• Independent libraries (that is, you can load them on demand) that implement
several other advanced capabilities

Dojo is currently divided into three projects [19]. These are;

1. Dojo: The foundation upon which everything else is built. Altogether, it includes
about fifty JavaScript scripts and several other resources that handle browser
normalization, JavaScript modularization, extensions to the core JavaScript li-
brary, extensions to the W3C DOM API (including a parsing and querying the
DOM), remote scripting, Firebug Lite, drag and drop, a data store API localiza-
tion and internationalization, and a few other miscellaneous functions.

2. Dijit: The Dojo widget framework and built-in widgets (about forty HTML user
interface widgets).

3. Dojox: Dojo extensions. This includes everything from the grid widget to graph-
ics libraries. It contains some very sophisticated and stable libraries that are
currently deployed in real-world, for-profit systems as well as some completely
experimental systems. Each library includes a readme that describes the project.

Each of these three projects resides in its own source code tree.

Through out this thesis, especially in the implementations and testing section, some
advantages of Dojo and Dojo specific features that enable the application to function
the way it does, will be pointed out.

3.4.2 Server-side Scripting

The Ajax model of programming is mostly about giving the client scripting ability.This is
achieved by introducing the Ajax engine which is described in section 3.3. However to build

CHAPTER 3. WEB 2.0 AND AJAX 28

a complete system, server-side processing is mostly needed. The will mostly likely be no
Ajax without a stable, responsive server waiting to send content to the Ajax engine. For this
purpose, an application server is required. Most often, a database server is also required.

Common server side scripting languages that can be used in Ajax based applications
include PHP, JSP, Ruby on Rails(RoR) and ASP.NET. PHP has been chosen for this project
because it is fast, stable, secure, easy to use and open source. The other server side
scripting languages have been mentioned here only for purposes of completion. In the book,
Rich Internet Applications - Web Development for Programmers [5], these server side
technologies are well explained. Examples are also given to support the discussion points.

The above mentioned book also describes two types of application servers which are
suitable for Ajax backend development. These servers are Microsoft Internet Information
Services (IIS) and Apache HTTP Server. The Apache HTTP Server has been chosen for
this project.

Finally the database chosen for this project is MySQl database. This is a relational
database which means that, data is written to the database in a logical representation which
makes it access the data without any consideration of its physical structure.

Chapter 4

Requirement Analysis

The main aim of the project is to design an eLearning application that will give users the
possibility to gather content from the Internet and then interact with this content in given
ways to create new content. Given the vast amount of information on the Web today, such an
application will give users the opportunity to systematically gather information from the Web
that can be used in the future. It will have a very user-friendly and highly interactive interface
(UI). It will be built using Web 2.0 techniques and Ajax concepts. Users can work alone or
create groups and work together in these groups. Users will be given the possibility to share
their content or content created by their groups with other users.

In this chapter a simple requirement analysis is given for the overall system using UML
use case diagrams. UML activity diagrams are used to illustrate the detailed communication
processes which let the user achieve the tasks of content retrieval and interaction.

4.1 System Tools

4.1.1 General Use Case

The system should provide the user with a set of tools to be used for specific task. These
tasks include content manipulation, viewing and editing added content, group work and co-
ordination and finally communication with other users. The use case diagram of figure 4.1
shows an overview of these tools.

Figure 4.1 gives a basic overview of the tools which will be available to the user. The
user will be the main actor in this system. For now, no concept for user classification will be
considered, i.e. all users are initially the same. However, the system can easily be extended
to group users as administrators, guest, normal users, etc. The user interacts with this
system initially by selected one of the main tools available. These tools include;

• viewing tools: used for viewing content added to the system

CHAPTER 4. REQUIREMENT ANALYSIS 30

Figure 4.1: Use case showing system tools
.

• content tools: used for retrieving content

• group tools: used for creating and coordinating group work

• messaging tools: used for communicating with other users

The server is also an actor in the system because it interacts with the tools provided in
a number of ways, but mostly it serves requested content. The server also interacts with a
datastore to supply the information that is requested by the browser. This datastore will be
described by the database model presented in section 6.8. The use case also shows an
interaction between the viewing tools and the content manipulation tools.

Content manipulation tools can be used when the viewing tools have been used to show
which words or phrases have already been highlighted in a document. When content has
been added to a document, a highlighting abstraction is used to visualize this later. A user
will choose a menu option, for instance, "show links", and the words or phrases with links
attached to them is highlighted with a specific color. This holds for all form of added content
(see chapter 6 which describes the application specification in detail).

CHAPTER 4. REQUIREMENT ANALYSIS 31

When the user shows added content within a document, he should be able to use the
content manipulation tools to further manipulate the content. In this case, the action of
using the viewing tools to show the highlights in the document will be extended by using the
content manipulation tools to manipulated content. The same principle holds for the content
tools which will be used to retrieve content. Once the content is retrieved, the user can then
call up the content manipulation tools and extend the functionality of the content tools by
interacting with this content. Extended functionality in this case simply means that an action,
e.g. clicking a button offers the possibility of clicking more buttons that accomplish more
tasks.

The additional toolbar shown in figure 4.1, will always appear in the notification section
of the header of the application (see figure 5.3) when additional functionality is required or
when the user needs to show and hide content on some section of the UI. The options
required for accomplishing such task will be created and placed on the additional toolbar.
The relationship that exist between the viewing tools and the tools on the additional tool
bar is similar to the relationship described between the content manipulation tools and the
viewing tools. These tools of the additional tool bar are displayed dynamically based on the
interaction of the user with the application user interface. Depending on what viewing tool
has been selected, a section of the User Interface might change accordingly. The additional
tool bar should be provided so that the user can hide, show or entirely remove this new
section from the Document Object Model (DOM see section 3.4). This is discussed in detail
in the system specification sections 6. What is important to note here is that the viewing tools
extend the functionality supplied by the additional toolbar.

Although a similar relationship exist between the content manipulation tools and the ad-
ditional toolbar, it is different in the sense, that the content manipulation tools reside on or
use the additional toolbar. But they are not the only options offered by this additional toolbar.
The additional toolbar as described above, also offers UI manipulation tools as an extension
of the viewing tools. So the content manipulation tools also extend the additional toolbar to
provide more functionality to its users.

Messaging tools should support communication between the users. The group tools
should provide the users with a means to create, activate, join, leave or delete groups. The
functionality provided by these tools will be discussed in detail in the specifications chapter
6.

4.1.2 Use Case For The Overview Tool

Overview tool is the tool which opens up most of the functionality within the system. For this
reason, a detailed use case is provided in figure 4.2 to illustrate the possible functionality
which the viewing tools can provide and how they affect other parts of the application.

Figure 4.2 shows an extension of the general use case of figure 4.1. As can be seen,
the basic actors again are the users of the application and the server. It can be seen that

CHAPTER 4. REQUIREMENT ANALYSIS 32

server

viewing tools

user

Viewing tools overview

content

manipulation tools

additional tool bar

view note

view feedback

show/hide

annotation

workspace (UI)

miscellaneous (UI)

show/hide link

«extends»

«extends»

«uses»

«uses»

«uses»

«extends»

«extends»

«extends»

«extends»

«uses»

«uses»

server

«uses»

«uses»

<<serves>>

<<serves>>

<<serves>>

Figure 4.2: Use case showing viewing tools
.

the viewing tool is extended by four other tools which can be used to view added content.
Links, annotations, annotation feedback and notes can be added to content. These tools
should be used for viewing the added links, annotations, feedback to annotations and notes.
The viewing tool no longer has a direct relationship to the content management tools and the
additional toolbar. The relationship is now established through the new viewing options and
the UI. This also holds for the relationship between the viewing tools and the server depicted
in 4.1.

Whenever an added content is to be viewed, components of the UI are used to display
or provide a visualization of the added content. These sections are the workspace and the
miscellaneous section which will be discussed in detail in the UI design section 5.2.1. The
additional toolbar then extends the miscellaneous section, such that the user can interact
with this section and manipulate the DOM components here. Although this is not indicated

CHAPTER 4. REQUIREMENT ANALYSIS 33

in the use case diagram, this could also be viewed as a two-sided relationship, because the
additional toolbar can be either extended to provide DOM manipulation options depending
on the user’s interaction with the miscellaneous section.

The miscellaneous section also has a relation to the workspace (see section 5.2.1 for a
detailed description of the UI). As of now it suffices to know, that the workspace is the con-
tainer on the UI which will hold the content). The origin of this relationship will be eminent
when the show/hide link or annotation tools are used. These tools will use the workspace
as a platform on which to offer content interaction possibilities to the user. Depending on
the user interactions with the workspace, the miscellaneous section will be changed as de-
termined by the system. The activity diagrams of section 4.1.3 show the content interaction
processes that will lead to interactions between different UI sections such as the interaction
mentioned here.

4.1.3 Activity Diagram For User-content Interaction

The user-content interaction should have two starting point; when a user selects a word using
the mouse or when the user uses the viewing tools to highlight words within the document
that already have content added to them.

(a) Word Selection

User interaction with the content will follow the activity diagram of figure 4.3.

Selection of the word should load the additional toolbar with tools to enable the user
interact with the content. Depending on the selected tool, an editor should be opened
such that the user can give in the added content. If the added content is posted to the
server successfully, it is written to the datastore. If the added content could not be written
to the datastore, the user should be informed. Concretely, the application should be able
to catch exceptions and give the user meaningful messages on the status of the request
made to the back-end.

If the user is in the process of creating or editing content but suddenly changes his in-
tentions and doesn’t post to the server, then the system should just exit this functionality.
The user might have selected a word for reasons unrelated to user-content interaction.
The toolbar will be presented to the user anyway. This toolbar should be such that the
user can simply ignore it and keep working or he can remove it if it is irritating for any
reason.

(b) Viewing Tools

To understand this second method, it is important to know that users can add links or
annotations to documents. The show/hide links or annotations viewing options should

CHAPTER 4. REQUIREMENT ANALYSIS 34

highlight links

or annotations

retrieve

annotation

Error

message

Select a

word

display link

editor
select optionmenu bar without

annotation option

menu bar with

annotation

option

remove

menu bar

display links

inform user

of failure

highlight

link

Write link to

datastore

highlight

annotation

display

Annotation

editor

write word to

datastore

error

message

[word

Already

annotatd]

[link]

retrieve

links

Is the link or

annotation

option selected

Did annotation

Retrieval fail or

succeed

Content editing

can begin with a

user selecting a

word of if links or

annotations have

been displayed

using the viewing

tools

If a word is

already

annotated, a

menu bar without

annotation

options is shown

[annotation]

[posted]

[not posted]

[not posted]

[write failed]

[write

successful]

[write

successful]

inform user

of failure

[write failed]

[posted]

[links]

[annotation]

display

annotation

[cancel]

[retrieval

successful]

[retrieval

failed]

Figure 4.3: Activity diagram showing content manipulation by word selection
.

highlight the words or phrases in the document being viewed that have links or annota-
tions added to them. Figure 4.4 shows the activities resulting from clicking any one of
the highlighted words or phrases within the document. In this figure, notes as in "original
note" means added annotation.

When a link is clicked, the links attached to that word or phrase should be displayed and
this functionality exited.

When an annotation is clicked, the annotations should be displayed with options to inter-
act with the content. Interaction with the content include the following;

• the user should be able to edit the annotation if he is the one who created it

CHAPTER 4. REQUIREMENT ANALYSIS 35

annotation

clicked

display annotation

with options

error

message

add new option

“get original”

show a list of

links added

link clicked

write new note to

datastore + provide

“get current not” option

Display original

Annotation + new

“get current note”

option

replace annotation with

textarea and save and

cancel buttons

display

annotation

display all feebacks

for that words in

misc. section
write feedback

to datastore

display

feedback

editor

error

message

display all feedback for

that word in misc section

error

message

close annotation

display

[write

successful]

[write failed]

[close

selected] [feedback

selected]

[edit

selected]

Check if user

Is owner of

annotation

When a link or an

annotation is highlighted,

the annotations and links

are retrieved and displayed

when the user clicks on the

highlighted phrase or word.

For annotations the

following options are

added: edit, feedback, and

close. If the annotation had

been edited previously, a

“get original note” option is

added. This option when

clicked, retrieves and

displays the original note

and adds an option to show

the current note, which

does just that when clicked.

[link clicked]

[annoation

clicked]

[edited

vesion

exist]

[edited

vesion does

not exist]
[get original

note

selected]
[cancel

clicked]

[save

clicked]

[posted]

[not posted]
[write failed]

[write

successful]

[user is owner]

[user is not

owner]

Figure 4.4: Activity diagram showing content manipulation by highlighting words within cur-
rent document
.

• if the annotation has already been edited, the user should be able to read the
original annotation

• the user should be able to give his opinion to an annotation in form of a feedback

• the user should be able to close the annotation display

Whenever an annotation is added or edited, it is written to the datastore. Other users
can view this annotations if they are shared and give feedback. This feedback is also
written to the database.

CHAPTER 4. REQUIREMENT ANALYSIS 36

select open

content option

retrieve table

of content

retrieve slected

object or section

and display it

edit content

edit content

display notes

[keyword

provided]

[no keyword]

[word

selected]

[show links /

annotations]

[show notes]

[object

selected]

[no object

selected]

When ever the user requires content, he has three options to choose from;

HyLOs, Wikipedia or use the Google web search. The user has to supply a

key word for the search. If content is found that corresponds to this keyword,

the table of content for the Wikipedia document is retrieved and filled into the

Wikipedia content pane. The first 25 entries for a successful Google Web

search are retrieved and presented to the user. The table of contents for

HyLOs eLearning objects are also retrieved. If a user clicks on an item in the

“toc”, it is retrieved and displayed in the workspace. The user can then select

a word in the text or show links or annotations and beginning editing the

document

Figure 4.5: Activity diagram showing content retrieval
.

4.1.4 Activity diagram for content retrieval

All the above mentioned requirements can be met only if there is content to work with. Con-
tent retrieval is therefore very important. The system should give the user the ability to
retrieve content and display it to the user for processing. The activity diagram of figure 4.5
shows the basics of retrieving content.

Using the content tools of figure 4.1, the user should be able to retrieve content by giving
a keyword. The user should specify a content source when giving a keyword. The initial
content sources should be hyLOs, Wikipedia and Google. For hyLOs and Wikipedia, the
table of contents should be retrieved and entered into the appropriate UI container see figure

CHAPTER 4. REQUIREMENT ANALYSIS 37

5.4. A container is simply a place holder in s section of the UI, that will hold the content. The
first 25 results from the google search should also be entered into the appropriate container.

4.2 Group communication requirements

One of the purposes of this application is that it should allow users to come together in
groups, open documents and extend them by adding meaningful content to these documents.
Due to the different perspectives or contributions from different group members, the quality
of the content might improve. The group functionality will initially be basic and should meet
the following requirements;

• all tools available to single users should be available to groups

• group owns should be allowed to share with of hide their content from members not
belonging to the group

• users may create and join as many groups as they want

• a group should be inactive if it is not being used, i.e. if there are no members of the
group online who are using that group to create content.

• groups can only be activated by members of that group.

• no user should simultaneously be in two active groups .i.e no user should simulta-
neously take part in two discussion threads. An active group simply means that a
member of the group has activated it by starting a discussion thread within that group
when he is online.

These basic requirements can be extended in the future to give group owners more
control over the group.

4.3 User Interface requirements

The success of any application depends on its acceptance. The acceptance in turn depends
on its usability and usability is determined by the extend to which users can easily interact
with the application. A good user interface should focus on the user’s experience and inter-
action. The goal of user interface design is to make the interaction with content, transparent,
intuitive and efficient. Good user interface design facilitates completing the task at hand
without drawing unnecessary attention to itself.

The application built here will be a browser-based application. This is as opposed to the
browser application paradigm of traditional web pages, where an application starts off with

CHAPTER 4. REQUIREMENT ANALYSIS 38

an HTML page, and later on retrieves another page, which replaces the currently viewed
page. Ajax can be used to make the pages more interactive, but the basic paradigm in use
remains unchanged: get a page, perform some action, get another page.

Browser based applications on the other hand, use the browser as the UI Platform and
takes the form of a single-page application. The user navigates to a URL that presents a
complete application. The important thing to note here is that the browser is not just retriev-
ing and displaying pages, but is acting as the UI platform which displays a complete GUI
program. Using this approach, the UI should be designed to fulfill the following requirements;

• It should be user-centered. How can the interface help the user achieve a specific task
effectively and easily?

• It should offer the possibility to always keep users informed about what is going on,
through appropriate feedback within reasonable time. This is very important for inter-
action within a group.

• It should be consistent and should follow design conventions which are familiar from
others systems. An example of such a convention are icons used for buttons

• It should make application navigation intuitive. The user should be able to go back and
forth, or jump to specific sections of the application with ease.

• Information that is most likely to be used, should be accessible to the users at all times.
Such information may include currently active users, content, group names etc.

• System tools most likely to be used, should also be available to users at all times.
Such tools might include content retrieval tools, tools for viewing added content etc.

Chapter 5

Application Design

The discussions in this chapter will focus on how the application can be designed to fulfill the
requirements discussed in the previous chapter. It starts by discussing the general system
architecture which shows how the different components of the system work together and
how they interact with each other. Since the system is designed to be user interactive, the
interaction of the user with the application is very important. Therefore, this section will also
discuss the design of the user interface in detail. In each step, possible design constraints
will be examined and solutions discussed. This chapter will conclude with a discussion on
the strengths and limitations of the application based on the concepts discussed.

5.1 System Architecture

The system as a whole will be made up of four main parts. These parts are as depicted in
figure 5.1 and include;

• the browser

• the server

• the datastore

• the Internet

5.2 Application Front-end

The front-end of the system consist of the user and the browser. The system is designed
such that the users can work alone or group themselves and work together in groups.

CHAPTER 5. APPLICATION DESIGN 40

Datastore

BROWSER SCRIPTING
User Interface

Ajax Engine

SERVER SCRIPTING

HyLOs
Others

Wikipedia

Google

INTERNET

GROUP
User

User

The server has proxy scripts

which do cross-domain retrieval

of documents that the server can

the forward to the Ajax Engine for

further processing

The Ajax Engine accepts

commands from the users, builds

request out of them and

communicate with the server,

which then respond. The

responses are interpreted

appropriately and the user is

notified accordinglyUsers came form

groups and work

together in groups or

they can work singly

User data and content created

by the user e.g. annotations, is

written to the database

Figure 5.1: System Architecture of the eLearning application
.

The browser itself consists of two separate parts. In true nature of Web 2.0, the appli-
cation is designed such that it can be used to edit Web documents. The browser plays an
important role by providing the platform on which this Web editor runs. The users interact
with this web editor via the User Interface (UI)

5.2.1 User-Interface design

In order to meet the UI requirements discussed in section 4.3, the UI is divided into five main
sections as shown in figure 5.2;

• header

• navigation

• miscellaneous

• status bar

CHAPTER 5. APPLICATION DESIGN 41

• workspace

header

navigation miscellaneousworkspace

status bar

Figure 5.2: Basic User Interface layout template
.

1. Header

Figure 5.3: basic header layout
.

The header performs the following main task;

• provide the main menu bar for actions which the user can apply to the system

• provide a notifications section, which is used to notify the user on changes within
the system. This notification section also provides an additional menu bar with
additional functionality depending on the user’s interaction with the application

• provide a way for the user to log out of the system.

To perform these tasks, the header is divided into four different sections as shown in
figure 5.3. The section to the left holds the application logo. The middle section is
further divided into two. The top section holds the main menu bar. The main menu bar
will provide the user with tools for;

CHAPTER 5. APPLICATION DESIGN 42

• retrieving and displaying content

• viewing content added to the system

• creating and managing group interaction

• sending messages to other users

The second half of the header makes up the notifications section. This section changes
frequently depending on the users interaction with the system. At one point, it just
shows a simple message informing the user of a change performed on some section
of the GUI and at other times, it presents the user with a menu bar which provides the
user with more functionality. This additional menu bar also adds or removes contents
in response to actions being performed by the user.

The last section of the header holds an option which gives the user the possibility to
log out of the systems.

2. Navigation

Figure 5.4: Basic navigation section layout
.

The navigation section holds the content sources. It is called the navigation section
because the user is able to jump to any object he wishes by clicking on the navigational
menus in this section. Figure 5.4 shows the navigation section.

The application initially offers content from three different sources: hyLOs CMS,
Wikipedia and Google. This section is, therefore, divided into three different panes;
hyLOs, Wikipedia and Google respectively. To open a document from Wikipedia, the
user gives in a key word. If the document exists, the application retrieves the table of
contents for that document and places it in the Wikipedia pane. The table of contents
for the hyLOs elearning units are also retrieved and place in the hyLOs pane. For a

CHAPTER 5. APPLICATION DESIGN 43

Google search, the description of the first 25 results are retrieved and placed in the
Google pane. These are inserted here as links. The content in these three panes is
available to the user at all times.

3. Miscellaneous

The basic layout of the miscellaneous section will be as shown in figure 5.5.

Figure 5.5: Basic layout of the miscellaneous section
.

Miscellaneous UI container represents one of the core abstractions used by this ap-
plication and is made up of a couple of containers or container widgets which hold
different types of data. Initially this section is divided into two main parts; the up-
per part is the user section which holds information pertaining to users and the lower
section is the group section and holds group-related information. The user section is
further divided into two main tabular containers. These containers hold list of active
users and new messages from other users. These lists should be accessible at all
times. The group section holds a list of available groups such that the user can choose
from them. This list should be available at all times too.

This section holds containers for diverse content. Figure 5.6 shows how these sections
will be changed to show different content depending on the users interaction with the
application. These changes can be described as follows:

(a) the tab containers of the upper section are replaced by different tab containers;
links and annotations. These containers hold a list of words within the the docu-
ment currently viewed, that have links and annotations added to them. These two

CHAPTER 5. APPLICATION DESIGN 44

Figure 5.6: (a) tab containers which hold a list of linked and annotated phrases, (b) content
pane which holds a lists of links attached to a particular phrase, (c) content pane which
displays the annotations added to a particular word or phrase.
.

containers will be created using the viewing tools menu option of the main menu
bar

(b) the upper section is replaced by a list of links attached to a single word or phrase
within the document that is currently displayed. This section will be created when
the user right clicks on a linked word within the document being displayed.

(c) the whole miscellaneous section is replaced by a list of feedbacks attached to a
particular annotated word within the document currently being viewed. The trans-
formation of this section as described will be triggered in two ways; by using the
viewing tools from the top main menu and by giving feedback to an annotation.

4. status bar

Figure 5.7: Basic layout of the miscellaneous section
.

The next section which is displayed at the bottom of the page is the status bar. The
idea is to use this bar to display general session information such as the user and the

CHAPTER 5. APPLICATION DESIGN 45

group in which he is currently active in. But the most important reason however is to
display the URL of the document which is being viewed. This is important because
the page is a single-page URL and the URL displayed in the URL field of the browser
is not be the true URL of the object currently being displayed. Figure 5.7 shows how
these status bar is divided as described.

5. Workspace

The rest of the space which is not occupied by any of the other UI sections is occupied
by a widget container which is called the workspace. This container widget holds the
elearning object currently being accessed in the case of hyLOs content or a document
section in the case of Wikipedia or an HTML page in the case of a Google search. 5.2
shows how this section of the page will look like.

UI Design Constraints

The list of active users and groups must be available at all times. As discussed above,
the miscellaneous section keeps changing depending on how the user is currently
interacting with the program. This means that, in order to utilize the UI containers
efficiently, layers of content are placed on top of each other.

Extra options to hide the newly created sections or to entirely remove them from the
DOM are added. When these sections are hidden, the list of users and groups are
re-displayed. If these sections are barely hidden, the additional toolbar is displayed
with additional options to show the newly added sections if needed. In this way, all
sections of the UI including the newly and dynamically created sections are available
to the user at all times.

5.2.2 Ajax Engine

The component on the browser which makes all the Ajax functionality possible is the Ajax
Engine. The Ajax Engine gives the browser scripting ability. The Ajax Engine is made up by
a couple of scripts written in JavaScript. These scripts receive commands from the UI, build
request and then communicate these requests to the server. When the server responds, the
Ajax Engine then decodes the response, and interacts with the UI in a way that is determined
by the requests and responses going to and coming from the server respectively.

Apart from communicating with the server, the Ajax engine also handles validation task
which do not require any data from the server. An example of such a validation task that is
handled by the Ajax Engine is password confirmation during sign up.

CHAPTER 5. APPLICATION DESIGN 46

5.3 Application Back-end

The application back-end consists of the server and the datastore. Although the Internet is
part of the system, it is not part of the application as it is external to the application.

The server has a couple of scripts which it uses to service its request. Some of these are
proxy scripts that can grab XHTML documents from the Web. Depending on the command
made by the user, the Ajax Engine builds the request and calls a particular script on the
server to service this request. If content from the Internet is required, the script then grabs
the document and delivers it to the Ajax Engine, which then renders it correctly on the UI.
If the content requested had been created previously by the user, then it belongs to the
system and resides in the datastore. The Ajax Engine then calls the appropriate script which
retrieves the content. Whenever the user creates content by adding notes, annotations, etc,
the Ajax Engine calls the appropriate script on the server, which then writes this content to
the datastore.

As mentioned in the requirements section 4, the system offers the user the ability to
interact with content in the following ways;

• add links

• add and edit annotations

• give feedback to annotations

• add, edit and delete notes

Flowchart diagrams will be used in this section to explain how the back-end is designed
to handle the tasks mentioned above.

5.3.1 Handling Links

The flowchart of figure 5.8 shows the processes involved in handling links at the back-end.
Whenever a link related request is received, the server examines the request and then de-
cides what to do. The server expects one of the following requests;

• write request: write a new link to the datastore

• getlinks: retrieve linked words for a specific document which is uniquely identified by
its URL

• linkentries: retrieve links for a particular linked word within a specific document which
is uniquely identified by its URL

CHAPTER 5. APPLICATION DESIGN 47

• morelinks: write a new link to the database for a word that has already been linked i.e
already has one or more links added to it.

For all the above four request types, the system begins by checking if the link has been
added within a group. If the group name has not been specified within the request, it is set
to nothing (empty). This is done for two reasons;

• content is tied to a group, if that content was added during group work, otherwise it is
tied to the user who added it.

• if the content was added within the group, the system has to inform all users currently
online and working within that group, that new content has been added.

write request
When a write request is received, the URL of the document to which the link is added
is examined to determine if the document is a Wikipedia document. If it is, the system
checks to see if it has already made an entry for this document within the system.
If it hasn’t, it writes the document to the local database. See section at the end of
this chapter for an explanation why writing the document to the database is deemed
necessary.

Section 4.1.3 explained that the user can add a link by selecting a word or a phrase.
This word or phrase which as of now will be referred to as the linked word is sent along
with the request. The system checks to determine if this word is already a linked word
that is, if one or more links already exist for this word. If the selected word is already
a linked word, the system writes the link to the morelinks table in the database. See
section 6.8 for a description of the database model. If not, the link is written to the links
table. In this way, the system can easily fetch linked words for a particular document
without duplicates.

The system then checks if the group name is empty or not. If it is not empty, the
system writes the appropriate message into the group notify table. This table holds
all messages which are meant for the users currently active within this group. It is
always created when a group is activated and dropped when it is deactivated (see
section 6.8). The message taht is written into the group notify table is predefined and
describes the action that is currently being taken by group members, for example,
adding a link, adding an annotation, writing feedback, etc. Finally the system then
builds the JSON response to send to the client, which is basically a success or failure
message.

getlinks request

CHAPTER 5. APPLICATION DESIGN 48

When the getlinks request is received, the system retrieves linked words for a specific
document, which is uniquely identified by the URL and sends them back to the client.
During this process the system differentiates between linked words added by the user
or group to which the user belongs and linked words added by other members. As
mentioned in chapter 4, users can decide to share or hide their content from other
users. The system first retrieves the links added by the user and then the shared links.

The system then builds a JSON response to send to the client, which indicates for
each linked object, if it is shared or not.

linkentries request

The linkentries request is made up of a linked word whose entries are being requested
and a URL to which this linked word belongs. The system then reads out the links from
the database, builds a JSON response and returns the response to the user.

morelinks request

When the morelinks request is received, the system, does not need to determine in
which table to write the request. This is because the morelinks request is sent if and
only if a link is added to a linked word. The system then writes the link to the morelinks
table. If the link is added within the context of a group, the appropriate message is
written to the group notify table. The system finally builds the JSON response and
returns it to the client.

For all the above request, a status message false is always sent as a JSON response ,
if the request cannot be serviced properly.

5.3.2 Handling Annotations

The processes involved with handling annotations are shown in figure 5.9. The back-end
expects the following request, when handling annotations;

• write request: writes a new annotation to the datastore

• get annotations: retrieves annotated words for a specific document which is uniquely
identified by its URL

• edit annotations: writes an edited annotation to the database

• get original annotation: retrieves the original annotation from the server.

CHAPTER 5. APPLICATION DESIGN 49

write request

The write request determines if the annotation has been added within the context of
the group. Just as with link handling, it checks to see if the URL points to a Wikipedia
document. If it does, it determines if the document has already been written to the
system and writes it if it hasn’t. Next the annotation is then written to the annotations
table of the database. If the annotation was added within the context of the group, an
appropriate message is written to the group notify table. The message is predefined
and says that an annotation has been added by a particular user to a particular phrase
or word. Finally, the system builds the JSON response and returns it to the server.

get annotations request

When the get annotations request is received, the system checks to see if the user
requesting the annotation entries is currently within an active group or not. The system
then reads out the annotations and then the shared annotations. For each annotation
read from the database, the system checks to determine if, the annotation has been
edited or if it has feedback added to it. If it has been edited, then it has an original
annotation attached to it. All this information is required by the client, when building
and showing the annotation display. Finally, the JSON response is built and sent to the
client. For each object within the response, the client will be able to determine whether
or not an object has been edited and whether feedback exist for this object.

edit annotations request

The edit annotations request writes the edited annotation to the database. Since the
system always shows the current annotation on the User Interface, the system sepa-
rates the current annotations from the edited annotations on the back-end. The edited
annotations are added to a different table. This is analogous to the links and more links
table mentioned above. The system goes a step further and differentiates between the
current annotation, the original annotation and edited annotations on the back-end.
This is because although the user is always shown the current annotation, he is given
the chance to get the original annotation or the edited annotations.

get original annotations request

The back-end receives the get original request if and only if an annotation has been
edited. The original annotation is then retrieved and sent in the response. For every
annotation, there will always be a single original annotation if it has been edited.

CHAPTER 5. APPLICATION DESIGN 50

get edited annotations request

There can be many edited versions of an annotation. When the get edited request is
received the system retrieves all these versions, builds a JSON response and sends it
to the client.

The reason for storing original and edited versions of an annotation, is that they might
have feedback added to them. If the original or an annotated version of an annotation
is deleted, the feedback might lose its meaning.

5.3.3 Handling Notes

The processes involved with handling notes are shown in figure 5.9. The back-end expects
the following request, when handling notes;

• write request: write a new note to the datastore

• edit note: update the database with the edited version of the note

• delete note: delete database entry for a note

• get all notes: retrieve the original annotation from the server.

write request

When the system receives the write request, it determines if the request has been
added within the context of a group and, then writes the note to the database. If the
note is added within the context of the group, it also adds an entry in the group notify
table with an appropriate message. This message describes the action taken and the
user taking the action. In this case, the action is simply "adding a note".

edit note request

The edit note request is received when a user edits a note. The field in the note
table of the database identified by the key in the request is simply updated with the
new note. The system does not keep track of old notes. If this editing is done during
group activity, an appropriate message describing this editing process is written into
the group notify table for the group.

delete note request

CHAPTER 5. APPLICATION DESIGN 51

When a delete note request is sent, the system searches the note table of the database
for the entry identified by the key or id in the request. This entry is then deleted from
the note table. If this deletion process occurs during group activity, an appropriate
message is written into the group notify table for the group.

all notes request

The all note request is made for a particular URL. The system then retrieves notes
added by the user or his group for that URL. Just like with link and annotation, users
may decide to share or hide their notes. The shared notes are also retrieved. The
JSON response is constructed and sent to the client and indicates which notes belong
to the user or his group and which notes are shared.

5.3.4 Handling Feedback

The processes involved with handling feedbacks are shown in figure 5.9. The back-end
expects the following two requests, when handling notes;

• write request: write a feedback to the database

• get feedback: retrieve all feedback entries for a particular annotation

write request

The write request like all other write request, determines if the user is currently active
in a group or not. The feedback is then written to the feedback table of the database.
If the user who made the request is currently in an active group, a message is written
into the group notify table, which says that the user in question has added a feedback.
The system then reads all feedback added for that annotation and builds the JSON
response to contain these feedback. The reason behind this, is to show the user not
only his feedback, but all feedback for an annotated word. The user can compare his
opinion to those of others.

get feedback request

The get feedback request is made when a user requests feedback for a particular word
or when he adds feedback to the system. Feedback entries are read for a particular
annotation which is uniquely identified by an annotation id encoded in the request. A
JSON file is built with these feedback entries and sent as the response.

A response status of false is always returned if the response could not be serviced or if
no feedback for the annotation in question exists.

CHAPTER 5. APPLICATION DESIGN 52

5.3.5 Group Communication

The back-end design above mentions the group notify table for all the functionality the
system is to offer. This table is created when a group is activated and holds messages
destined for a particular group. The table name is built using the group name. Any script
in the system that needs to write or read from this table, just needs to know the name of
the group and then also build the name of the table. Figure 5.12 describes how the system
handles writing and reading messages to and from this table.

The request received by the back-end depends on the activity each group member is
currently undertaking. For example, if a user has selected a word and is adding a link to it,
the response will indicate this. The system interprets this result and then, builds the table
name and then writes a message to the table. The request indicates the user who is adding
the link and the action (adding link) he is currently taking. The message written to the group
notify table will contain this information. The same thing is done when a user is in the group
and writing an annotation, feedback or note. The user request will also indicate the user and
what he is doing.

The design for handling, links, annotations, notes and feedback all involve writing to the
group annotation table when a write request is received. In this case, the message written to
this table is always to indicate the completion of the task which the user was doing. So this
group notify table keeps track of the user actions.

If the request received contains a read instead of an action, the latest entry in the group
notify table specified by the id in the read request is fetched. The request always has an id
for the required message. This means the system keeps track of the ids for each member
in the group, so that they get all messages. When reading the message the system makes
sure that, it does not read the messages written to the group notify table on his behalf. For
example, if a message is written to the group notify table saying that user A is writing an
annotation, the message is written on behalf of user A. When message A sends a read
request whose id corresponds to the id of the message written on his behalf, the back-end
will simply ignore this request. It doesn’t make sense to send a message to user A saying
that user A is adding an annotation. But all other users in the group will be able to read this
message.

Another important function of the back-end worth mentioning here is the messaging han-
dling. Whenever the back-end receives a private message request, it determines if the re-
quest specifies a receiver, a sender, a subject and a message. A subject is optional. The sys-
tem then determines if the receiver is currently online. If the receiver is online, the message
is written to the pmessageson table (see section 6.8) else it is written to the pmessagesoff
table. The receiver then reads his message from the pmessageson table if he is online.

If the user is offline, he is notified when he logs in. The messages from pmessagesoff
are then retrieved and forwarded to the user identified as the receiver.

Each time a message is read from the pmessageson or pmessagesoff table, it is deleted

CHAPTER 5. APPLICATION DESIGN 53

from the system. This is not a full- blown messaging system, just a simple way to let users
send messages to each other. This can be very useful during group work. Users can also
contact users who share the same interest as themselves.

5.4 General System Design Constraint

A general system design constraint is that the documents grabbed from the Internet should
not be stored in the system datastore. This is due mainly to copyright infringement issues
that might prohibit the use of content from its site in this manner. Secondly, there is no way
to determine if content on a particular website really belongs to the owner of that web site.
If my application grabs stolen content from the Web and presents it to my users, then I (as
the developer) am an accessory to content theft, which is punishable by the law. Finally, if
the content is available on the Web and is free for use and redistribution, storing it on my
database will simply be a waste of storage space since I can get the content any time I want.
Knowing the URL of the content is enough. A disadvantage is that if the URL of this content
changes or if the content is taken off the Web, then my users cannot access it any more. This
does not, however, mean that, the added content such as annotations, links, etc, becomes
meaningless. Theoretically, the tags attached to these notes could make them useful when
viewing other documents as well.

A solution to this problem is to store added content locally together with the URL of the
document to which the content has been added. If the user grabs a document from the
Web in the future and demands to view added content, the application then retrieves the
added content identified by the URL of the document being viewed and sends this to the
Ajax Engine which then displays it in ways defined by the application. This solution is viable
only for content that is free for use and redistribution.

This solution brings with it a new and more complex problem. What if the original docu-
ment to which content was added changes over time?. This means that at least some of the
added content will become irrelevant if a few words are edited or changed. If the whole doc-
ument is changed or its URL changed, then all the added content for the document becomes
totally irrelevant.

There is no concrete solution for this problem but the application attempts to reduce this
problem from occurring by providing limited editing power depending on the source of the
content. Data from Google Web search will contain to a high degree only websites. The
information on these sites is highly volatile. The application is therefore designed in such a
way that the user cannot edit results from the google search. This functionality is suppossed
to help the user gather information for future use. This solution can however be fine-tuned,
such that the application can distinguish between HTML documents and documents of other
formats such as pdf. The application could then allow editing of documents of formats other

CHAPTER 5. APPLICATION DESIGN 54

than HTML on the assumption that, these will likely not change over time. This solution has
not been included in this design.

Data from HyLOs is considered quite stable and as of now no solution has been included
in this design for the case that the content changes.

Data from Wikipedia is semi-volatile as Wikipedia documents can be edited at any time.
See chapter 9, on future work for a proposed solution on how to handle this issue for
Wikipedia documents.

CHAPTER 5. APPLICATION DESIGN 55

handle links

request

group name?

group

name?

group name?

notify table

exist for

group?

notify table

exist for

group?

group name

== “”?

link exist?

group name

== “”?

group name?
group

name = “”

Write to store

links table

Write to store

more links

table

write

message for

group in

notify table

return

response

read links

read out

shared links

return

response

return

response

group

name = “”

group

name = “”

Write to store

more links

table

more links

exist?

read links

from

morelinks

table

read links

from links

table

return

response

linkentries?getlinks?write?
more

links?

write

message for

group in

notify table

build

JSON

response

build

JSON

response

build

JSON

response

build

JSON

response

group

name = “”

NO

NO

NO

NONO

NO

NO

NONO NONOYES
return

YES

YESYES

YES

YES

YES

YES

YES YES

YES

YES

NO

NO

YES

YES

Wikipedia

doc already

in system?

Wikipedia

url?

write

wikipedia doc

to datastore

YES

YES

YES

NO

NO

NO

Figure 5.8: Handling links on the back-end
.

CHAPTER 5. APPLICATION DESIGN 56

handle

annotations

request

group name?

group

name?

notify table

exist for

group?

group name

== “”?

group

name = “”

write

annotations

to db

write

message for

group in

notify table

return

response

read

annotations

from db

read shared

annotations

from db

return

response

group

name = “”

write edited

annotation to

db

return

response

edit

annotations?

get

annotations?
write?

get orginal

annotations

build

JSON

response

build

JSON

response

build

JSON

response

NO

NO

NO

NO

NONO

NO

NOYES

YES
YES

YES

YES

YES

YES

YES

YES

NO

get edited

annotations

Wikipedia

doc already

in system?

Wikipedia

url?

write

wikipedia doc

to datastore

NO

original

annotation

exist?

Feedback

exist?

edited

annotations

exist?

read original

annotations

from db

return

response

build

JSON

response

read edited

annotations

from db

build

JSON

response

return

response

return

NO

YES

NO

NO

NO

YES

YES

YES

Figure 5.9: Handling annotations on the back-end
.

CHAPTER 5. APPLICATION DESIGN 57

handle notes

request

group name?

group name?

group name?

notify table

exist for

group?

group name

== “”?

group name?
group

name = “”

write note to

db

write

message for

group in

notify table

return

response

write edited

note to db

return

response

group

name = “”

group

name = “”

delete note

from db

read all notes

from db

read all

shared notes

from db

return

response

get all notes?edit notes?write? delete note?

build

JSON

response

build

JSON

response

build

JSON

response

group

name = “”

NO

NONO

NO

NONO NONOYES
return

YES

YESYES

YES

YES YES

NO

NO

YES

YES

YES

NO

notify table

exist for

group?

group name

== “”?

write

message for

group in

notify table
NO

YES

YES

NO

notify table

exist for

group?

group name

== “”?

write

message for

group in

notify table
NO

YES

YES

NO

return

response

build

JSON

response

Figure 5.10: Handling notes on the back-end
.

CHAPTER 5. APPLICATION DESIGN 58

handle

feedback

request

group name?

group name?

notify table

exist for

group?

group name

== “”?

group

name = “”

write

feedback to

db

write

message for

group in

notify table

group

name = “”

get

feedback?write?

NO

NO

NO

NOYES

YES

YES

YES

YES

NO

return

response

build

JSON

response

read

feedback

from db

NO

YES

return

Figure 5.11: Handling notes on the back-end
.

CHAPTER 5. APPLICATION DESIGN 59

group

communication

request

read?

determine the

action taken

by user

return

response

build table

name

return

response

feedback?annotation?link? note?

build

JSON

response

build

JSON

response

NONONO

YES

YES YESYES

build table

name

return

response

build

JSON

response

build

JSON

response

return

response

return

write

message for

group in

notify table

write

message for

group in

notify table

build table

name

return

response

build

JSON

response

write

message for

group in

notify table

build table

name

read message

for group

from notify

table
write

message for

group in

notify table

build table

name

NO

YES

Figure 5.12: Handling group messages
.

Chapter 6

System Specification

This chapter gives a detailed specification of the functionality offered by this application. This
specification will involve a discussion on the technological concepts applied and a database
model for the data store. The system specification is done using a top-down approach which
will begin with the UI. The events and actions set into place when the user interacts with the
UI are discussed starting at the UI through to the Ajax Engine to the server and back. At
each stage the extent of the implications of each action taken by the user is examined in
detail.

The different ways in which a user can interact with the application will be classified under
the following services;

• authentication service

• content retrieval service

• linking service

• annotation service

• note service

• message service

• group service

When the user initially enters the application, he immediately gets an overview of the
system, who is using the system currently, what groups exist, where to find content and
the tools to use for viewing and manipulating content, for coordinating group work and for
sending messages to other users. Figure 6.1 shows how the UI initially looks like.

This UI is shown here again since it is the starting point of all functionality within the
system and for reference purposes. But the authentication service will be briefly examined

CHAPTER 6. SYSTEM SPECIFICATION 61

HEADER

LOGO

NAVIGATION WORKSPACE

STATUS BAR URL: Group: User:

MISCELLANEOUS 1

MISCELLANEOUS 2

Content Sources

HyLOs

Wikipedia

Google

message toolsgroup toolscontent toolsviewing tools

logout

Groups

Users Messages

notesannotations links destroy feedbackdestroy annotation

destroy linkshow feedback

Tools presented to the

user when he selects a

word. The “note” tool is

added only if the user is

viewing a random page

from the web

These tools are presented

to the user depending on

what he is currently

viewing on the

miscellaneous section.

Main Menu Bar

Additional Menu Bar

Figure 6.1: Overview of the UI
.

since it is a vital part of the system as a whole and it is implemented fully using Ajax live
form concepts. These concepts allow the Ajax Engine to carry out validation tasks that do
not require any information from the database.

6.1 Authentication Service

The authentication service is important because the system is designed to keep track of the
activities of users. These activities include, what they are currently doing, what group they
are in, if they are currently taking part in any active group work and the type of content they
are adding to the system. During registration, a user can also give his field of interest as

CHAPTER 6. SYSTEM SPECIFICATION 62

well as set the status of his content to public or private. Public means he wishes to share his
content with other users and private means hide from others.

The users will be required to sign up before they can use the application. During sign
up, the users choose a username, a password as well as a field of interest. They are also
required to give in their email address. The email address and password should respect a
certain pattern and the username should not already be taken. The validation of the email
address format and the password format is done by the Ajax Engine. These are processes
which will otherwise be carried out on the server.

For the validation of the username, the Ajax Engine makes a request to the server to
determine if a given username is allowed, i.e., not already being used by a different user.
This validation also uses the Ajax patterns (submission throttling) discussed in sub section
3.3.2. When the user gives in the username and leaves the username field, the call to the
server is made and the user is immediately informed if the username given is allowed of not.
The same principle is also used during log in. When the user gives in the username, a call
is made to the server which checks if this username is registered in the system. The user is
immediately informed if the username is already taken.

The user is also required to confirm his password during sign up. The Ajax Engine does
the comparison of the two passwords. The comparison is done incrementally and as the
user types.

The users will identify each other via the username. The user also gives his Interest
during sign up. This is done in the form of a list of the group names registered in the system
which are presented to the user at sign up in form of a drop down menu. The user can either
select from this list or enter something else in the field provided. This field of interest will
be seen by other users when they move their mouse over the username of the user. They
will then have the opportunity to invite the users to join their group if they share the same
interest.

To summarize, the authentication service helps users identify each other and gives them
the opportunity to know each other’s interest without making contact. It also helps the system
keep track of users activities and of the status of the content they created, i.e. if it is shared
or hidden.

6.2 Content Retrieval Service

The application offers the possibility to begin with content from two main sources; hyLOs and
Wikipedia. The system also offers the possibility to search the internet for documents using
Google Web Search. The content tools of the UI are used to retrieve content. These tools
are shown in figure 6.2

A user supplies a keyword and specifies the content source and the application then
uses the keyword to retrieve the content from the specified source. The keyword is relevant

CHAPTER 6. SYSTEM SPECIFICATION 63

add notes

open content

clear content
keyword

Google

Wikipedia

HyLOs
Google

Wikipedia

HyLOsset

clear

Figure 6.2: Content retrieval tools
.

only for Wikipedia and Google searches. If hyLOs is selected as a content source, the HAW
course overview Page is retrieved and displayed to the user.

HyLOs Content

HyLOs as discussed in section 2.3 is an Learning Content Management System
(LCMS) with the content standardized according to the IEEE LOM standard. This
means that the data is packaged into eLearning objects. Each of these objects can
be uniquely identified by their URL. This makes the content from hyLOs suitable for
use in this application since the extra content added to the eLearning objects can be
managed easily. This means that the added content, can be identified, written to a
database, retrieved and displayed with ease by simply using its URL. Moreover, since
the whole content is divided into smaller chunks, it makes the pagination easy. Work-
ing with smaller chunks of data is also easy and more comfortable from the users point
of view. When the user requests content from hyLOs, the content overview page will
be retrieved and displayed. The user can then start a learning unit and begin using the
tools provided by the application to interact with the content.

The system retrieves and displays the XHTML page with all the formatting applied.
This has the advantage that, the user will see the page as if he had opened it directly

CHAPTER 6. SYSTEM SPECIFICATION 64

on the hyLOs website. This is of importance for users who are familiar with hyLOs
as they can start to work on the content immediately and will not need to spend time
getting used to the presentation of the content, which will be the case if the formatting
was changed. On the hyLOs website, the location of the table of contents is not imme-
diately obvious to the user. When the hyLOs overview page its requested, the table of
contents will be retrieved and displayed in the hyLOs pane in the navigation section.
This will enable the user to jump between eLearning objects or between eLearning
units. This table of contents will be accessible at all times.

Whenever the user is working on content from hyLOs, he will have the possibility to
view content added by other members of his group if he is in a group or content added
by himself if he is working alone. The added content that is uniquely identified by the
URL of the eLearning object will then be retrieved and presented to the user for viewing
or further processing.

Wikipedia Content

The style in which information is presented in Wikipedia also makes it suitable for
use in this application. The information in Wikipedia is broken down into different
sections that can be uniquely identified by their URL. This means that the content
could be presented to the user in the same way as the hyLOs content. Initially when
the user makes a request for a document from Wikipedia, the application checks if the
document exists or not. If it doesn’t exist, the user will be informed. If it does, the table
of contents is retrieved along with the introduction of the article and presented to the
user. The table of contents will be placed in Wikipedia pane in the navigation section.

Clicking on an item in the table of contents should make a request only for this specific
item. The item will then be retrieved and displayed to the user with the formatting
applied to it on Wikipedia. Given the fact that Wikipedia is being used by many people
today, makes the advantage of presentation familiarity more important here. The user
will not only be familiar with the style of presentation, but will be able to work on the
data in smaller chunks.

Dividing the data from Wikipedia into smaller chunks is also related to the fact that the
system should not store original content from content sources. Since documents are
constantly being edited on Wikipedia, it cannot be guaranteed that the edited section
of a Wikipedia document will still be the same if the user wants to view added content
in the future. This is a general problem with Web content which has been discussed in
the design constraints section 5.4. A partial solution to this problem, which is based on
the division of the content into smaller sections will also be discussed in this section.
See chapter 9, which explores this problematic a little bit further.

CHAPTER 6. SYSTEM SPECIFICATION 65

Google Web Search

The application offers users the ability to search the Internet for documents using the
Google Web search. But as opposed to the hyLOs and Wikipedia content sources, this
is different in the sense that, users will not be given the opportunity to add annotations
to these sites. This feature is being included in this application to help users gather
information from the web for use within the group or for future use. Users may, however,
add notes to these Web pages. They may summarize the content of the Web page in
this note such that when the user accesses the page in the future, he will determine
its value just by looking at the notes

6.3 Linking Service

The users are allowed to add links to documents. When ever a user selects a word, the
additional menu bar is shown in the notification section of the header. One of the options
offered by this menu bar is link . Clicking on this option opens the link editor shown in figure
6.3(a). The additional menu bar is also shown on the top section.

The user can give in the link URL, the description and a tag. The description is what the
users will see when they view the link. The tag is added here, so that if search algorithms
are written to sift through the data in the system, they can provide semantic meaning to the
links. This functionality is, however, not implemented as of now. The users are allowed to
add more than a one link to a single word or phrase. Figure 8.10 will be used to display
the links within the document when a user clicks on the link. The option to add more links
will be shown only if the user owns the link or belongs to a group that does. When the user
right-clicks on the linked word or phrase, the link entries will be opened on the miscellaneous
UI container. If the user navigates away from the current document, these link entries will
still be available, such that the user can use them in another document. The user might
want to see only the linked words within the document. Using the show added content
option of the viewing tools opens a list on the miscellaneous section of the UI which shows
all the linked words within the current document (see figure 5.6). If the user opens a different
document in the workspace, this section remains open until the user explicitly closes it. The
user can, however, hide or show this section using the additional options placed on the
additional menu bar and on the miscellaneous UI section. If the user right-clicks on a linked
word from the list, the linked URL is displayed. The idea is to let the user copy this URL
and attach it to different documents if he wants. In this way, documents can be linked to
each other. This can play a big role, when writing an algorithm to find content within the
system. These links can then provide semantic relationships between different eLearning
objects. The tags provided when adding links can offer the semantic property required to
build these relationships. For a start, a simple relationship such as, document A is related

CHAPTER 6. SYSTEM SPECIFICATION 66

link cancelannotation

Link:

Description:

Tag:

Please enter the link propertie below

additional

menu bar

link editor

http://

(a) Link Editor

Link entries for: <linked wordor phrase>

add more lniks

Link entries will be listed in this window

(b) Link Display

Figure 6.3: Link editor and display

CHAPTER 6. SYSTEM SPECIFICATION 67

to document B can be constructed if these two links have the same tags. If the tags are
accurate and meaningful, many such relationships can be constructed between the links
leading to a semantic link network. This functionality is not implemented in this application.
See sub section 9 for a future implementation suggestion that makes use of this idea.

6.4 Annotation Service

The annotation service offers the following functionality;

• adding annotations

• annotation feedback

• editing annotations

Adding Annotations

Please enter the annotation properties below for: <selected word>

Tag:

Annotation:
text editor

post

Figure 6.4: Annotation editor used to add links to the content
.

The annotation service also allows users to add content to the current document by
selecting a word or phrase within the document. The annotation editor which is used
for this purpose is shown in figure 6.4.

Just like with the link service, the show added content option of the viewing tools
opens a list on the miscellaneous section of the UI which shows all annotated words
within the current document. What differs here is the motivation. For a given document

CHAPTER 6. SYSTEM SPECIFICATION 68

or eLearning object, a word can be annotated only once for a given group. This means
that for a given group, two different annotations are not supposed to exist for the same
word within a document. The user might use the show added content option to check
which words have already been annotated before using the annotation service. If the
user, however, does not make use of this option and selects a word that already has
an annotation, the application informs the user of this and offers him the opportunity to
add a link or a feedback to that word. This also applies to users working alone.

Feedback Annotations

edit feedback show feedback

close

Annotation:

Tag:

By:

Figure 6.5: Displaying annotations within document
.

If a word has already been annotated by another group member, the user uses the
show/hide annotation option from the viewing tools to show all annotated words
within the document. The annotated words are highlighted. When a user clicks on
an annotated word figure 6.5 pops up.

Selecting the show feedback option, retrieves all feedback for this particular word and
displays them on the miscellaneous section (see figure 5.6). The Ajax Engine sends
the request to the server which then retrieves the URL, using the keyword, document
URL and group name or username in case the user is working alone to retrieve the
feedback. When the Ajax Engine receives the response, it then creates a container to
hold the feedback, hides the current content of the miscellaneous section and displays
the feedback container with the most recent feedback at the top. This container shows
when the feedback was added, who added it and the feedback itself. Feedback from
the different users is placed one after another. This can be viewed as some sort of

CHAPTER 6. SYSTEM SPECIFICATION 69

"document chatting" where different opinions from different people working in the
group are being collected as with regard to a particular issue. This enhances the
document quantitatively and depending on the users within the group also qualitatively.

When the user clicks on the feedback option, the annotation window of figure 6.4 opens
and the user enters his feedback. The Ajax Engine sends this feedback to the server
which writes it to the database. If no errors occur, the server responds with a list of all
feedbacks that have been added for that word or phrase. The Ajax Engine, then hides
the current contents of the miscellaneous section of the UI, creates a container and
stashes the feedback entries one after the other beginning with what has just been
added by the user, and finally places this container in the miscellaneous section. In
this way, the user is able to follow what is being written by other users.

When the container holding the feedback entries is displayed, it stays on the UI for as
long as the user needs it. The user however is given the possibility to hide, show or
remove this container at anytime. The container which holds the list of added container
can be still be on the UI. These containers all stay there as long as they are needed
by the user.

Editing annotations

The user who creates an annotation has the right to edit it. Figure 6.6 shows how the
annotation display changes when the user is editing the annotation.

edit feedback show feedback

close

original note

Annotation:

Tag:

By:

current note

cancelsave

edit your annotation below

Textarea

Added only after the save

button is clicked or if the note

had been edited previously

Added only after the original

note button is clicked. Used to

retrieves and displays the

current note

Figure 6.6: Editing an annotation
.

Editing an annotation uses an Ajax pattern of edit-in-place. The annotation being
edited is replaced with a text area containing the annotation entry and two buttons for

CHAPTER 6. SYSTEM SPECIFICATION 70

saving the edited text or for canceling the editing process. If the user clicks the save
button after editing the annotation, the annotation is written to the annotations table
on the datastore. The original annotation is not lost though. It is moved to a different
table. The current annotation is then displayed and a new option "original note" is
added to the display of the annotation. If the user clicks this button, the Ajax Engine
retrieves and displays the original annotation. A new option "current note " is added
to the annotation display. This option retrieves the current annotation and displays it.

If the annotation is edited a second time, the system will save this annotation under
edited annotations. The system differentiates between the original annotation, the
current annotation and edited versions of the annotation. Since users give feedback to
annotations, it is important that the original annotation and any edited versions of that
annotation should not be lost when the annotation is edited or the feedbacks added as
response to this annotation may lose meaning.

When the annotations are initially displayed, the "original note" will be displayed if the
annotation had been previously edited. The server lets the Ajax Engine know if the
annotation had been edited before.

Annotations and feedbacks are persisted within the system. They can be viewed and
edited in the future. This means that the process of adding an annotation to content and
giving feedback to this content, lets the users create a layer of new content on the already
existing content.

6.5 Note Service

The users can add notes to elearning objects or documents. The idea of adding notes is just
to help users summarize the contents of the document being viewed for instance. When this
document is viewed in the future, the user will be able to judge its importance just by reading
the notes attached to the document. This is just an example. Users are not restricted as to
what they are allowed to write as notes.

There are two main ways of writing notes. One is by using the "add note" menu option
(see figure 6.2). This opens up an editor similar to the annotation editor (see figure 6.4) and
the user can then write his note. This method is available for use at all times. The second
method which is available only when a web page from the Wikipedia search is opened within
the application, makes use of the annotation editor itself.

Whenever a note is added to the Web page or elearning object, the note is sent to the
server along with the document or Web page URL, user name and group name if the user is
currently active in a group for writing to the datastore. The note is also displayed on the top
right hand corner of the Page. An option is also added for deleting or editing the note.

CHAPTER 6. SYSTEM SPECIFICATION 71

The viewing tools also has an option for viewing notes added to the document. The
notes are then retrieved and displayed in the misc UI container in a similar way as annotation
feedback. Notes that have been shared are also shown. If the user owns the notes, extra
options are added for deleting and editing the notes.

6.6 Message Service

Subject:

Message:

receiver

post cancel

User + Interest

A drop down

menu with users

and their interest.

Figure 6.7: Message Editor
.

The messaging service lets users communicate with each other as shown in figure 6.7. If
users are online, they are notified immediately about a new mesage. They can then click on
the message tab of the miscellaneous section (see figure 6.1 at the beginning of this chapter)
to read the message. If they are offline, the message is written to the datastore and they are
informed when they next login

Such a simple messaging system has two main advantages with respect to this applica-
tion. Moving the mouse over a username displayed in the active users list shows the user’s
interest. A user might invite another user to join a group based on their shared interest or use
the messaging system to communicate with other users with similar interest. This advantage
is even more important if one of the users is offline. The drop down list with the names of
registered users also shows the interest of the users. If a user is online, he can send a mes-
sage to offline users who share similar interest as him. Such a message might be to arrange
a meeting time to meet online and discuss or work on a document.

CHAPTER 6. SYSTEM SPECIFICATION 72

6.7 Group Service

The group tools of the main menu bar offer three options to the users:

• new group

• join group

• group options

The new group option just lets a user create a new group. As of now, anyone can create
a group.

The join group option lets the user choose a group name and join the group. The user
can also join a group by user the group tools on the main toolbar.

When a user logs in, a list of all groups within the system is presented on the lower half of
the miscellaneous UI section (see figure 6.1 at the beginning of this chapter). When a user
moves his mouse over each entry in the list, the name of the owner of the group is displayed.
If a user right-clicks on an entry, a menu opens up. This menu is as shown in figure 8.12

Figure 6.8: Group Menu
.

The activate option as the name says is used to activate the group. A group is active if any
group members currently online are actively working in the group. When the list of available
groups is initially displayed or updated, groups which are currently active are highlighted.
When a group is activated, users can then click the enter option to take part in the group
discussion. Only users who are members of a group can activate or enter a group. The
user can leave the group any time by using the leave option. Using the back button of the
browser when working within the group has the same effect as leaving the group. But in this

CHAPTER 6. SYSTEM SPECIFICATION 73

case, an alert warns the user that he will be thrown out of the group should he proceed. The
join option lets the user become a member of a group. The user can delete the group if it
belongs to him, i.e. if he created the group. In this case, all the content related to this group
is released. This means this data will be open for all to use since it is no longer tied to any
group. It becomes system data. This means that content generated over time will not be lost
even if the group does no longer exist.

6.8 Database Model

The database is an important part of the system because content created by the users needs
to be stored somewhere. It is also required for authentication by the server.

Figure 6.9 shows the database model used by this system. This section briefly describes
the database tables in relationship to the type of data they hold.

users and activeusers table

The users table holds the user’s personal information. The most important fields in the
users table are the userId, the fieldOfInterest, the username, password and the open-
status. The userId and the username uniquely identify the user. Within the system,
the user will be known to other users via their username. The fieldOfInterest lets the
users specify what their area of interest are. The user can, however, change this in the
future by using the user options in the users tool. The openstatus field lets the users
determine the status of their content. This field can be set to public or private. If it is
set to public, then the user wishes to share his content with other users. If it is set to
private, then the user wishes to hide his content from other users. This feature can
also be changed from within the application using the user options.

links and morelinks tables

The links and morelinks tables are used to store all link related information. The linkid
in the links table and the morelinkid in the morelinks table uniquely identify the links
added. The links table is used to store all links added to a document. Each time the
system attempts to add a link for a word that has already been linked, the link is added
to the more links table. The link display window in the user interface also gives users
the feature to add more links to a linked word or phrase. This links are added directly
to the morelinks table.

Below is a brief explanation of the other fields or columns in both tabels;

• docurl: uniquely identifies the document to which the link has been added.

CHAPTER 6. SYSTEM SPECIFICATION 74

• seltext: holds the selected word or phrase.

• linkurl: holds the added link.

• description: holds the description of the added link. This is what will be shown to
the users in the link viewing window.

• urltag: holds a tag which points to the added link.

• grpname: holds the name of the group to which the link belongs. This may be
left empty in case the user is in the normal mode of the program, that is, working
alone.

• owner: holds the username of the user who added the link.

• sessionId: holds a session id which is dynamically generated when a user logs
in

• timestamp: used to monitor user activity

• userlevel: holds the user level. This level determines what rights the user has in
the system.

• date: holds the date the link entry was made

• openstatus: determines the hide or share status of the added link. This is in turn
determined by the hide and share status of the group if the link is added in the
context of a group or by the openstatus of the user if the link is added in the
normal mode of the application, that is, by a user working alone.

The activeusers table shows which users are currently online and if they are
actively participating in a group. The timestamp can be used to track user activity
such that the user is thrown out of the system if he is not active for some time.

The linkid field in the morelinks table points to the linkid field in the links table, that
is, it is a foreign key in the links table. In database language SQL (Structured Query
Language), a foreign key within a table is always a primary key in another table.

Annotation, feedback, editednotes and originalnotes tables

The annotation table is used to hold annotations added by users. The table has the
following columns;

• docurl: uniquely identifies the document to which the annotation has been added.

• seltext: holds the selected word or phrase.

• atag: holds a tag which points to the added annotation.

• anote: holds the annotation.

CHAPTER 6. SYSTEM SPECIFICATION 75

• grpname: holds the name of the group to which the annotation belongs. This
may be left empty in case the user is in the normal mode of the program, that is,
working alone.

• user: holds the username of the user who added the link.

• date: holds the date the link entry was made

• openstatus: determines the hide or share status of the added annotation just as
in the link table.

The noteid, which is the primary key is used as the foreign key in three other tables.
These tables are the originalnotes, editednotes and feedback tables. This means that
all these three tables need to point back to the annotation table.

The feedback table is used to store annotation feedbacks. The noteid entry then iden-
tifies the annotation to which the feedback has been added. The fbword corresponds
to the seltext column of the annotation table. The fbtag holds the tag word or phrase
added by the user and points to this feedback. The column fbnote holds the feedback.
During retrieval of the feedback all that is needed is the noteid of the annotation or the
fbid of the feedback itself which uniquely identifies the feedback.

The originalnotes table is used to store the original annotation if the user edits his
annotation. This table is used because the system gives the user the feature to view
the original annotation that was added to the system, no matter how many times the
annotation has been edited and also because the system always displays the current
annotation. This table has an onoteid which uniquely identifies its entries. Knowing
the noteid of the annotation is also enough in order to fetch its original annotation.

An annotation can be edited as many times as the user wants provided he is the owner
of the annotation. All these edited versions of the annotation are stored in the edited-
notes table. A feature to view the edited versions of the annotations is also presented
to the user. Apart from the current annotation, which is stored in the annotation table,
or the original annotation, which is stored in the originalnotes table, all other versions
of the same annotation are stored in the editednotes table and are uniquely identified
by the noteid of the annotation they point to in the annotation table, or by the editid of
the editednotes table.

notes table

The notes table holds the notes added by the users. Apart from the docurl, grpname,
user, date and openstatus columns already explained above, it has the following three
fields;

• note1id: holds unique id which can be used to reference this note.

CHAPTER 6. SYSTEM SPECIFICATION 76

• notetag: holds a tag which points to the added note.

• notetext: holds the added note.

availablegrps and activegrps tables

whenever a user creates a group, an entry is made in the availablegrps table for that
group. The group is identified by a unique id grpId. The availablegrps has the following
important columns;

• grpName: group name.

• members: members of the group.

• owner: owner of the group.

• date: when the group was created

• open: determines the content hide or share status for the group.

Whenever a group member activates the group, an entry is made in the activegrps ta-
ble. This table holds the name of the person who activated the group. This information
is supplied to each user when they join the group. This table also keeps track of the
document the group is currently working on in the currenturl column. In this way, the
correct URL is loaded when a new user joins the group discussion. This table also
keeps track of the users currently taking part in the group discussion in the curren-
tuser fields. The group is automatically deactivated if no users are currently using the
application, that is, number of users in the currentuser field is zero.

pmessageson and pmessagesoff tables

These two tables hold private messages that users send to each other. The pmes-
sageson table holds the messages for the users who are currently online. The client
will constantly pool this table for new messages. The pmessagesoff table holds mes-
sages for users who are currently offline. The messages in this table will be read once
at each time the user logs in.

Both tables specify the sender and receiver of the message, when the message was
sent and the message itself. Whenever a message is read and sent to the user, it is
removed from the table.

wikipedia table

The designed constraints described at the end of chapter 5, describes the data from
Wikipedia as being partially volatile. A proposed solution is to store a section of the

CHAPTER 6. SYSTEM SPECIFICATION 77

Wikipedia document if content is added to it. If the user views this section of the
Wikipedia document in the future, the current section and the store section are dis-
played side by side for comparison. The Wikipedia table lays the foundation for this
solution by storing a section of the Wikipedia document if content is added to it. This is
stored in the wikidoc column. The docurl points directly to the section of the Wikipedia
document that has been edited. The noteid and the linkid points to the annotations
and the links on the annotation and link table respectively that have been added to the
Wikipedia document written to this table.

CHAPTER 6. SYSTEM SPECIFICATION 78

users

PK userId

grpId

firstname

lastname

email

fieldOfInterest

username

password

sessionId

timestamp

userlevel

date

links

PK linkid

U1 owner

docurl

seltext

linkurl

description

urltag

grpname

date

annotation

PK noteid

docurl

seltext

atag

anote

U1 user

grpname

date

wikipedia

PK wikiId

PK,U1 noteid

PK,U1 linkid

wikiurl

owner

grpname

wikidoc

feedback

PK fbid

PK,U1 noteid

docurl

fbword

fbtag

fbnote

owner

grpname

date

morelinks

PK morelinkid

PK,U1 linkid

docurl

seltext

linkurl

description

urltag

grpname

owner

date

originalnotes

PK onoteid

PK,U1 noteid

anote

date

activeusers

PK,U1 username

timestamp

currentgrp

availablegrps

PK grpId

grpName

U1 owner

members

timestamp

activated

date

acitvegrps

PK agrpId

U1 grpName

activator

currenturl

currentuser

notes

PK note1id

docurl

notetag

notetext

U1 user

grpname

date

pmessageson

PK pmId

receiver

U1 sender

pm

date

pmessagesoff

PK pmIdoff

receiver

U1 sender

pm

date

editednotes

PK editid

U1 noteid

editednote

date

Figure 6.9: Database Model
.

Chapter 7

Application Implementation

The application implementation described in this chapter is based on the Ajax techniques
and principles discussed in chapter 3 of this thesis. This chapter starts off with a brief intro-
duction of the development environment and the tools used during the implementation of the
concepts discussed in chapter 5. This is followed by a general discussion of the software ar-
chitecture used for all functionality within the system. The implementation of the functionality
is then discussed. This discussion is grouped into three different sections;

• content retrieval and display

• application tools : this includes tools for adding annotations, feedback annotations,
links, notes and sending messages to other users.

• group tools: these include techniques implored to help coordinate consistent commu-
nication and content interaction within the group

Implementing the concepts drawn up for this project, involves writing a lot of code in
JavaScript, PHP, CSS and SQL. Only a few snippets of written code will be shown in this
section. A CD containing all the source code will be attached. This section will make refer-
ences to modules on this CD.

7.1 Development Environment

The complete development environment is made up of PHP Eclipse IDE, the Zend Debug-
ger and MySQL Workbench at the back-end. The front-end comprises of the Firebug Web
development tool and its Dojo variant. Each of these tools and their uses during the imple-
mentation of this application are briefly discussed below.

CHAPTER 7. APPLICATION IMPLEMENTATION 80

This application was implemented using an PHP Eclipse Integrated Development Envi-
ronment (IDE) called PHP PDT. The PDT project provides a PHP Development Tools frame-
work for the Eclipse platform. This project encompasses all development components neces-
sary to develop PHP and facilitate extensibility. It leverages the existing Web Tools Platform
(WTP) and Dynamic Languages Toolkit (DLTK) in providing developers with PHP capabilities
23 .

PHP PDT Project was choosen for the implementation of this thesis for the following
reasons;

• it is a free open source development tool

• it provides basic syntax coloring and code assist for Javascript, HTML, CSS and PHP

• it supports DOJO

• it provides HTML real-time error detection

• it supports PHP 4 and 5

• it has a built-in debugging client that operates the Zend debugging engine used for
debugging the PHP code.

Visit this Website to view a list of all advantages offered by the PHP PDT Project 24.
The Zend Debugger is used to debug the back-end code written in PHP. The Zend De-

bugger is a full-featured php debugger engine. It is an interactive tool that allows is used to
debug PHP scripts locally or remotely, from an IDE or from the console. As mentioned above,
PDT has a built-in debugging client that operates the Zend debugging engine used for de-
bugging the PHP code. This client was configured to communicate with the Zend debugging
engine. The PHP binary included with the Zend Debugger client was also configured to use
an external copy of the php_mysql.dll or php_mysqli.dll file to enable the debugger to work
with MySQL statements. For more information on the Zend debugger visit this Website. 25.
For more information on debugging PHP in PHP PDT read the article on this site26.

The debugging of the JavaScript code was done using the Firebug. Firebug is a Web
development tool that allows the editing, debugging and monitoring of the CSS, HTML and
JavaScript live on any Web page. The features and versions of Firebug can be found at this
Web site 27. The external addon for Firefox used in this project can be found here 28.

23PHP Development Tools Project http://www.eclipse.org/pdt/
24Advantages of PHP PDT Project http://www.zend.com/en/products/studio/comparison
25Using PDT : Installing the Zend Debugger http://www.thierryb.net/pdtwiki/index.php?title=Using_PDT_:_Installation_:_Installing_the_Zend_Debugger
26Debugging PHP using Eclipse and PDT http://www.eclipse.org/pdt/articles/debugger/os-php-eclipse-pdt-

debug-pdf.pdf
27Firebug sitehttp://getfirebug.com/
28Firebug addon for Firefox browser https://addons.mozilla.org/en-US/firefox/addon/1843

CHAPTER 7. APPLICATION IMPLEMENTATION 81

Dojo comes packaged with Firebug Lite, which includes the more useful features of Fire-
bug. Adding the line in Listing 7.1 to the head of the main HTML page, adds the Dojo debug
window to the browser being used.

1
2 <script type=" t e x t / j a v a s c r i p t ">
3 /∗
4 Adding the Dojo debug console to the browser . The value o f v a r i a b l e s ←↩

can then be observed on t h i s console by
5 using console . log (varab le name) ;
6 ∗ /
7 var djConfig = " " ;
8 djConfig = {
9 isDebug : true

10 } ;
11
12 </script>

Listing 7.1: Activating the Firebug lite debugger window incorporated in Dojo

The database design and modeling was done using MySQL Workbench. MySQL Work-
bench is an integrated tools environment that enables a DBA, developer, or data architect
to visually design, generate, and manage all types of databases including Web, OLTP (On-
line Transaction Proccessing), and data warehouse databases. It includes everything a data
modeler needs for creating complex ER (Entity-Relationship) models, and also delivers key
features for performing difficult change management and documentation tasks that normally
require much time and effort. Visit this site for more information 29. To learn how to use
MySQL Workbench, see the article on this site 30

7.2 Software Architecture.

The application can be viewed as having three independent layers as shown in figure 7.1.
These layers show the basic principle used when implementing this project.

The presentation layer is responsible for the user interface. The presentation layer is the
single HTML page loaded during user registration or log in. It loads the UI components for
the user to register or log in. Upon successful registration or log in, it loads the Dojo UI
components to build the main user interface of the application.

The logical and communication layer acts as an interface between the UI and the data
layer. The Ajax Engine written in JavaScript forms the core of this layer. It initially assist in

29MySQL Workbench http://www.mysql.com/products/workbench/
30MySQL Workbench Turtorial http://downloads.mysql.com/docs/workbench-en.pdf

CHAPTER 7. APPLICATION IMPLEMENTATION 82

Apache Server

Browser

UI is created and placed

here Users can browse

and interact with content

on this UI using provided

tools

MySQL

Database
The Web

JSON Data

Objects
Content XHTML

Ajax Engine

DOJO UI

ComponentsPresentation Layer

Logical + Communication

Layer

Data Layer

Figure 7.1: Use case showing system tools
.

user validation during authentication. When the user logs in and starts using the application,
this layer determines how to respond to user input and modify the UI accordingly. This
decision depend on who is currently logged in, what mode the application is running in and
how the user is interacting with the application. Apart from these logical tasks, this layer
also opens and coordinates communication with the data layer. This communication involves
sending user data or created content to the server, sending requested data to the client
or simply pooling the data store to see if a specific value has changed. How this layer is
implemented to carry out these functions will be looked at in detail in this chapter.

The last layer is in charge of saving user data or user created content to the database
as well as retrieving data external to the application or saved in the database. When reading
data from the database, the raw data is converted to the JSON format. This has the advan-
tage that the JSON objects which follow the format of JavaScript script objects can easily be

CHAPTER 7. APPLICATION IMPLEMENTATION 83

consumed and used by the application logic, which is also written in Javascript. The second
component of the data layer is made up of the XHTML content, which is retrieved on demand.

All the functionality implemented in this application will follow the software architecture of
figure 7.1.

7.3 Application Functionality

7.3.1 Getting Started: Dojo Toolkit and Application Module Paths

In order to the able to use the advantages offered by Dojo, the Dojo toolkit is initially loaded
into the HTML head tag as shown in listing31. This is loaded along with the style sheets
required by the Dojo UI components. Dojo defines three css themes; tundra, Soria and
nihilo. In Dijit terminology (see chapter 3, section 3.4 for the meaning of Dijit), a theme is
a set of fonts, colors, and sizing settings for components so they look good together. The
tundra theme was choosen for this application. That is why the class of the body of the
application is set as tundra.

Apart from the styles, the module paths are set in the main section of the HTML page.
Initially Dojo calculates the application module path as the dojo-module-path i.e. the path
where the dojo.js file is loaded from. If no other module paths are set, top modules will be
loaded as siblings of the dojo.js. These module paths are set in the head section of the main
XHTML page.

Tightly couple with this Dojo modularity pattern is the word dojo.require. Whenever a
module is created, dojo.provide creates its module object. Another script which makes use
of the created module can load it once by using the dojo.require function. The dojo.require
is used in this way to load the modules that will be referenced within the page.

Dojo.require is used to load a module called dojo.parser. This module is required for
all pages using declarative Dijit. Dijit widgets are created declaratively or programmatically.
Declarative widgets are those that use nonstandard HTML attributes such as dojoType=.
Setting the parseOnLoad attribute of the djConfig object to true in the head section of the
main XHTML page, tells the dojo.parser module to parse all declaratively created widgets and
create JavaScript objects out of them. Widget class methods can then be applied on these
Javascript widget objects created by dojo.parser, in much the same way as style attributes
are applied on pure DOM nodes.

After loading the Dojo toolkit with the required dojo modules and setting the desired
theme and module paths, development of the main application begins.

31CD -> Source Code -> JavaScript -> client -> eui -> main-xhtml

CHAPTER 7. APPLICATION IMPLEMENTATION 84

7.3.2 User Interface

The main HTML page is initially divided into four main containers called divs. There main
container div holds two other divs. These are the signupForm div and the loginForm div. The
other remaining two divs are the statusReport div and the footer div. The login div is always
displayed when the application is loaded and the others blocked or hidden. The user can
however click on the signUp button to get the registration form. In this case the other divs
are hidden32.

The div which initially holds the authentication widgets such as text boxes and buttons is
destroyed upon successfully log in or sign up. The skeleton of the UI is created by calling
JavaScript objects that divides the page into four main parts33.

A JavaScript widget object applCon, which is the top-level container of the UI has five
children containers which are themselves JavaScript widget objects. These children widget
containers are defined in Dojo to occupy the top, left, right, center and bottom regions of
the parent container. These children containers will in turn hold children widget objects. The
children widget objects of the header are also defined to occupy the top (main menu bar), the
left (logo), the center (notification bar) and the right (logout button). The navigator container
holds a Dojo accordion container as its only immediate child. This accordion container in
turn defines three ContentPane container widgets. In Dojo a ContentPane container widget
is the lowest form of placeholder available, comparable to the div in XHTML. These three
containers will hold the table of contents for the hyLOs eLearning units, Wikipedia document
and the search results from the Google Web search. The workspace or the center container
defines a single ContentPane widget which will hold the main content. The left container
(misc) defines two Dojo TabContainer widgets. These are defined so that each occupies half
of the container. The upper TabContainer holds two ContentPane containers, which hold the
list of active users and new messages. The lower TabContainer has a single ContentPane
widget as its child. This holds the list of groups available in the system.

7.3.3 Loading Content from the Web

When the application is initially loaded, the content overview Page for the content from hyLOs
is loaded. After successful sign up, the application Ajax engine, sends two request to the
back-end PHP proxy script. One has a request to load the hyLOs table of content34. while
the other has the request to load the overview page which shows the different eLearning
units 35.

The Dojo XHR GET object is used to make the Ajax request to the server. Although it is

32CD -> Source Code -> JavaScript -> client -> eui -> init.js
33"CD -> Source Code -> JavaScript -> client -> eui -> mainpage.js
34CD -> Source Code -> JavaScript -> client -> contentHandlin -> hylosdata.js -> loadHylosToc()
35CD -> Source Code -> JavaScript -> client -> contentHandlin -> hylosdata.js -> hylosOverviewPage()

CHAPTER 7. APPLICATION IMPLEMENTATION 85

similar to the XHTML GET request and functions in much the same way, it has been extended
via attributes to perform functionality specific to Ajax programming. Such functionality include
processing common types of response text (for example, JSON), ability to time out a request
by setting the timeout within the request itself, ability to cancel a request, and robust and
easy-to-use error recovery.

The request above calls a PHP script and hands it a query. This query contains the
address of the script to load. The request also specifies that the response should be handled
as text. When the response successfully returns, a callback function36 is called and the
response as well as input-output arguments (ioArgs) are passed to it. If the XHR fails, then
the message given by the Error instance created as a result of the failure is sent to the debug
console and the user given a meaningful error message.

Toaster Widget

The handleHylosLoadError() function called to display the error message to the user
is showed in listing 7.2

1
2 /∗Using the widget dojox . widget . Toaster to show e r r o r messages to ←↩

the user ∗ /
3 function handleHylosLoadError(error) {
4 dojo .publish(" e r r o r s " , [{
5 message : error ,
6 type : " e r r o r "
7 }]) ;

Listing 7.2: Publishing to a Topic in Dojo

Listing 7.2 shows a Dojo lightweight and non-intrusive alternative to alert(). It is called
a dojox.widget.Toaster. This is going to be explained here in detail because it is going
to be used extensively in this application to inform user of request ad error status and
for group messaging during group work.

A Toaster widget is a box that pops up in the corner of the browser and then waits
for a mouse click or simply fades out after a predefined time has expired. This widget
makes use of Topics. Topics are based on Dojo’s publish-subscribe event system. In
this system, several functions register their interest in a “topic.” Later, some process
can publish a set of arguments about the topic. The action of “publishing” is accom-
plished by calling each subscriber with the given arguments. In the above example,
the handleHylosLoadError() function publishes an error message it receives.This error

36CD -> Source Code -> JavaScript -> client -> contentHandlin -> hylosdata.js -> controlhyli()

CHAPTER 7. APPLICATION IMPLEMENTATION 86

message concerns the topic errors . This topic had been created and subscribed to
by the toaster widget when the XHTML page was loaded as shown in listing 7.3. The
publishing then calls this toaster widget and the error is diplayed.

1
2 <div dojoType=" dojox . widget . Toaster " id=" w i k i "
3 positionDirection=" t r− l e f t " duration=" 10000 "
4 messageTopic=" e r r o r s " ></div>

Listing 7.3: Creating and subscribing toaster widgets to topics

How long the toaster stays on the screen can be set using its duration attribute or the
user can dismiss it manually by clicking on it.

Browser History and Dojo.back

Another important aspect worth discussing at this point is how the browser history is
handled. This application being a single page application does not allow for the normal
functionality of the browser back and forward buttons. So the application is designed
to mimic the browsing functionality using the dojo.back function.

When using dojo.back, the idea is to manually change the DOM property win-
dow.location when content changes by setting the window.location.hash property. Edit-
ing this property has the effect of changing the URL in the address bar and adding an
item to the browser history but does not reload the page since only the fragment iden-
tifier (i.e. the part of the path URL after the # character) is changed. With the browser
history filled with distinct URLs, the back and forward buttons will cause navigation
to these URLs by changing window.location. Dojo.back watches window.location and
fires an event when it changes.

To get dojo.back to work properly, the Ajax Engine built a state object class 37, initial-
ized the dojo.back() function, and passed the state objects to it at each content navi-
gation. The module dojo.back is loaded with the XHTML page and the dojo.back.init()
is called immediately after entering the body of the page to initialize dojo.back().
Dojo.back.setInitialState is called to set the overview page for hyLOs as the initial state
object. This therefore represents the first page and first entry in the dojo.back history
stack.

Each time a new document is loaded onto the workspace, the state object is called
and the url passed to it is added onto the history stack of dojo.back. This is shown for
the three content sources in listing 7.4; dojo.back.addToHistory(new hylosState(url));

37CD -> Source Code -> JavaScript -> client -> contentHandlin -> hylosdata.js -> hylosState

CHAPTER 7. APPLICATION IMPLEMENTATION 87

1 /∗ dojo . back . addToHistory takes a s ta te ob jec t t h a t represents the ←↩

s ta te o f
2 t h a t p a r t i c u l a r h i s t o r y i tem . This causes dojo . back to e d i t
3 the window . l o c a t i o n as we l l as push the new s ta te ob jec t on ←↩

i t s
4 h i s t o r y stack ∗ /
5 dojo .back .addToHistory(new hylosState(url)) ;

Listing 7.4: Calling the state object to add an item to the dojo.back history stack

The state object must include the property changeUrl, which holds the fragment iden-
tifier associated with a particular state as shown in listing 7.5.

1
2 /∗ i f the u r l i s from Wikipedia , the chnageUrl i s manipulated so ←↩

the URL fragment shown on the browser d i sp lays
3 the f u l l URL of the loaded Wikipedia document . The u r l t r a c k i s ←↩

the URL passed onto the Back and Forward but ton
4 f u nc t i o ns . So here the fragment an at tempt i s made to seperate ←↩

the fragment URL from the URL loaded as a r e s u l t o f
5 forward / backward nav iga t i on by the user
6 ∗ /
7
8 var wikibaseurl = " h t t p : / / en . w ik iped ia . org / w i k i " ;
9

10 hylosState = function(url) {
11 url = String(url) ;
12 var bush ;
13 bush = url .indexOf(" eu i / w ik iped ia ") ;
14 i f (bush != −1) {
15 var parts = url .split(" eu i / w ik iped ia / ") ;
16 th is .changeUrl = wikibaseurl + " / " + parts [parts .length−1];
17 bush = " " ;
18 } else {
19 th is .changeUrl = decodeURIComponent(url) ;
20 }
21 th is .urltrack = url ;
22 } ;

Listing 7.5: Defining the changeURL fragment to be shown a long with the base URL on the
browser window

The state object includes the functions back and/or forward. Dojo.back fires these
when back-button or forward-button navigation occurs.

CHAPTER 7. APPLICATION IMPLEMENTATION 88

To conclude the discussion on loading content, the back-end functions called during con-
tent loading will be discussed. The functions called to load the hyLOs content and the
Wikipedia content are similar. The back-end functions needed to load the Wikipedia doc-
ument will be discussed.

The PHP function38 receives a query of the format "keyword#urlFragment" if the browser
is Internet Explorer or "keyword/urlFragment#urlFragment" if the browser is Firefox. The key-
word always identifies the Wikipedia document in question and section after the #, indicates
what section of the wikipedia document to load. It then creates an instance of the class
wikipedia39 and call its’ get_page function to retrieve the required page.

Whenever an object is loaded from hylos or Wikipedia, the dojo.query is used to return
the Nodelist of all href tags found in the page as an array. The application then attaches an
onclick event listener to this array as shown in listing 7.6.

1
2 dojo .query(" a ") .forEach(function(node) {
3 dojo .connect(node, " c l i c k " , function(e) {
4 dojo .stopEvent(e) ;
5 var url = node .href ;
6 i f (url .indexOf(" hy los . cpt . haw−hamburg ") < 0) {
7 return
8 } else {
9 loadNewPage(url) ; / / loads a new hyLOs document

10 }
11 }) ;
12 }) ;

Listing 7.6: Using dojo.query to get an array of all anchor tags within the loaded document

Whenever an element is clicked, an Ajax Engine function is called. It examines the URL
of the clicked object using the indexOf JavaScript function and then decides if to make an
Ajax call for the requested object or not. If it makes the call, it sets a callback function to load
the response onto the workspace.

When the document is displayed, a div is created and placed onto the workspace. This
div gets the URL of the document being viewed, currentUrl, set as its id. This is because the
object URLs are unique. The id will be reference each time the contents of the workspace are
to be manipulated in any way. This feature lays down the framework for content manipulation
discussed in the next section. A reference to the current document is also stored in an object
called currentDoc. What this is useful for, will be discussed in the next section.

38CD -> Source Code -> PHP -> server -> wikipedia -> getWikipediaPage.php
39CD -> Source Code -> PHP -> server -> wikipedia -> wikipedia.php

CHAPTER 7. APPLICATION IMPLEMENTATION 89

7.3.4 System tools and Content Manipulation.

When the application is successfully loaded a timer is created to listen to user selections.
When a word is selected, it is picked up by the timer the next time is runs, i.e. if the word
is still selected40. An object, controlMessage is used to set the selected word as a global
variable because it is used by functions in other modules. The selection is processed only if
it is not empty, i.e. a user selects and black section of the display.

The difficulty here is to find a balance between giving the user enough time to do his
selection, and showing the additional tool bar. If the value of the timer is too small, it might
catch only a portion of the selected word when it expires because the user will be in the
process of selecting. If it is too large, the user might have to wait a long time before the
additional toolbar is shown.

When the selection is detected, the Ajax Engine grabs the selected word or phrase and
makes a quick call to the back-end to determine if the word has already been annotated41.
This is because a user can annotate a word only once if working in the normal mode (alone),
but he can edit the annotation. Also, there can exist only a single annotation for a group.
Everything else is added as feedback to the annotation. When the server responds, the user
is shown a toolbar with options to add the link if an annotation already exist42 or a link and an
annotation 43 if it doesn’t. Whenever and annotation already exist, the Ajax Engine makes a
list of annotated words for that document ans displays them to the user 44.

Whenever the user adds a link or an annotation, the add link and annotation options are
removed from the additional menu bar. The next time the user selects a word, they will be
created and displayed again when the timer picks up the selection. A cancel button is also
provided. This button hides the additional menu bar when clicked.

Dojo UI widgets are used to build the link and annotation editors. The functions used
to handle links and annotations are quite similar. This section will explain client-side based
examples on how links are handled and server-side based examples on how annotations
are handled. Feedback and annotations will be handled in a similar way. For complete code
references, please see attached CD.

adding links

The link editor consist of three Dijit textbox widgets used to collect the link properties

40CD -> Source Code -> JavaScript -> client -> grp -> grpactions.js -> getSelectedText()
41CD -> Source Code -> JavaScript -> client -> grp -> grpactions.js -> isThisWordAlreadyAnno-

tated(selectedText)
42CD -> Source Code -> JavaScript -> client -> grp -> grpactions.js -> showJustLinkOptions()
43CD -> Source Code -> JavaScript -> client -> grp -> grpactions.js -> showToolbar()
44CD -> Source Code -> JavaScript -> client -> grp -> grpactions.js -> toggleannotation()

CHAPTER 7. APPLICATION IMPLEMENTATION 90

(url, description and tag) and a button widget. When the widget button is clicked, it
calls a function which builds the query to send to the server side as 45.

An Ajax Engine function46,47, are then called to make the request to the server and set
the callback function to handle the response. A control object addlink is defined as
global and used to determine which function makes the request. If this object is set, it
means the word is already a linked word and the appropriate function is called.

The application also checks to see if the document to which the link is being added is a
Wikipedia document using a global variable waikiki. This is because the scripts called
on the server side depend on the type and source of document being worked on. The
widgets of the link editor are always destroyed after the link properties are collected in
the way shown in listing 7.7. This is to avoid a JavaScript id exception if the link editor
is opened again.

1
2 var diaglink = dijit .byId(" l i n k _ d i a g ") ;
3 diaglink .destroy () ;

Listing 7.7: Destroying the link editor

To get a reference to the widget, dijit.byId(id) is used. To get a reference to the DOM
object for this widget, dojo.byId(id) is used. The function destroy() is called to com-
pletely remove the widget from the DOM. All the other children of this widget i.e. the
textbox and buttons widgets must be destroyed in a similar way.

When a link is successfully added, the phrase that was selected by the user is high-
lighted48 by setting its background color to yellow. This highlighting begins by replacing
the document in the workspace with the document stored in the currentDoc object.
Remember that this variable always holds a clean (not manipulated in anyway) version
of the document in the workspace. This is done to avoid conflicts of any sort. Such
a conflict could occur if the linked word also has an annotation attached to it which is
also currently highlighted. This clean document is added onto the workspace by the
function toggleBack() shown in listing 7.8

Highlighting the link adds a class linkEntry to the linked word. Dojo.query is again
used to get a reference to this linked word. In this case, it does not make much sense
to use dojo.query since it returns an array. But this same function will be used to display

45CD -> Source Code -> JavaScript -> client -> grp -> grpactions.js -> getLinkProps()
46CD -> Source Code -> JavaScript -> client -> grp -> grpactions.js -> postLinkProps(query) - adding link for

the first time
47CD -> Source Code -> JavaScript -> client -> grp -> grpactions.js -> postMoreLinks(query) - adding more

links to a linked word
48CD -> Source Code -> JavaScript -> client -> grp -> grpactions.js -> linkHandler(response, ioArgs)

CHAPTER 7. APPLICATION IMPLEMENTATION 91

all links added to a document. Dojo.query will then return an array of all linked words
or phrases within the document. A click and an oncontentmenu event listeners are
attached in a similar manner as in listing 7.6. When a word in this array is clicked or
right clicked, a query is constructed and a function49 is called to make an Ajax request
for the links attached to that array entry or linked word. This function sets different
callback functions depending on the type of click made by the user.

1 function toggleBack () {
2 var showndocdiv = dojo .byId(currentUrl) ; / / get a re ference to ←↩

the d i v on the workspace which holds the ob jec t
3 showndocdiv .innerHTML = currentDoc ; / / rep lace the innerHTML of ←↩

the above referenced d iv
4 }
5 </script>

Listing 7.8: Loading a clean version of the document being displayed in the workspace

When the user clicks on the word, the application builds a link display window within
the document that shows the added links. This is done using the Dijit toolTipDialog
window50. If the original link was added by the user or a group to which he belongs,
the display window provides an option for the user to add more links. This is done by
checking if the shared property of a JSON object received from the server is set to
no. If it is set to yes, it means that the added link is shared and does not belong to
the user or a group to which he belongs. Therefore, the user cannot add more links to
this linked word. In the case where the user just added the link, it will always be set to
no. In this way, the JSON objects are constructed to provide the Ajax Engine with the
information required to make such real-time decisions as which options to present to
the user.

If the user right clicks on the linked word, the retrieved links are opened on the upper
section of the miscellaneous UI container. How this section is manipulated to display
different types of information will be explained later in this chapter. The reason for
doing this, is to have the links available in case they are needed even after a different
object is loaded onto the workspace.

Adding Annotations

The annotation editor is similar in functionality to the link editor. It differs in appearance
in that it uses the Dojo rich text editor widget51 to collect the annotation information.

49CD -> Source Code -> JavaScript -> client -> grp -> grpactions.js -> getLinkEntries(query)
50CD -> Source Code -> JavaScript -> client -> grp -> grpactions.js -> getEntryLinksHandler(response,

ioArgs)
51CD -> Source Code -> JavaScript -> client -> grp -> grpactions.js -> showAnnotationEditor()

CHAPTER 7. APPLICATION IMPLEMENTATION 92

This widget offers HTML-backed editing with a handy toolbar and keyboard shortcuts.
This toolbar is placed in a div where the user will type in his annotation. If the user
formats the text after typing it, this widget formats the body of the text before it is sent
to the server side.

This annotation editor is defined once and used for annotations, annotation feedback
and notes. Javascript variables are used in much the same way as the waikiki variable
for a Wikipedia document to determine which task the user wishes to accomplish. This
application uses a partial color scheme to let the user know from the background color
of the editor what task he is performing. This color scheme does not only apply to
the annotation editor. For instance every visible feature of the UI that has to do with
handling addition and display of links is set to yellow, for annotations the color aqua is
used and so on and so forth. However, this color scheme is as of now, only partially
implemented.

After the annotation properties have been filled in, a function is called which gets the
values of these properties from the widget containers. This function then constructs
queries and calls the Ajax Engine script to make the Ajax request to the server and
set the callback functions to handle the response. On the server side, the appropriate
script writes the annotation to the data store52. The script then checks if the document
url belongs to a Wikipedia document. If it does, the system checks if a database entry
already exist for this section of the Wikipedia document. The document is written to
the database if an entry is not found. Finally, the script checks if the user is currently
active in a group. If he is, the table name is then constructed from the group name
and an entry made in the groups notify table. This entry simply says that the user in
question added an annotation.

When the response returns, the callback function is called and it highlights the anno-
tated word by setting its background color to aqua. It attaches the class annotatio-
nEntry to the annotated word. Dojo.query is also used here to build an array of all
annotated words within a document. In this case, the array has just a single entry. An
onclick event listener is attached to the array. When the user clicks on an annotated
word, the annotation display opens up. This is built in a similar way as the link anno-
tation. The only difference is that it always offers the user two options. The option to
add a feedback and the option to edit the annotation

Annotations Options

The application lets the user view all annotations or links added to a document. These
annotations and links are visualized as described above. For the links a single option is

52CD -> Source Code -> PHP -> server -> grpFxn -> handleAnnotations.php

CHAPTER 7. APPLICATION IMPLEMENTATION 93

added depending on whether the link is owned by the user or his group or shared. For
annotations, the options added when a user clicks an annotated word are determined
by the following considerations;

• has the annotation been edited?

• has the annotation been edited more than once?

• does the annotation has any feedback yet?

• is the annotation owned by the user or a group to which he belongs

The PHP side script helps the Ajax Engine answer these questions when building the
annotation display window. For each JSON object sent to the client, three attributes,
namely: originalnote, feedbacknote and editednote are created. These attributes
are assigned the id of the annotation if the annotation has an original annotation, a
feedback, or an edited annotation. Having an original annotation means that the an-
notation has been edited. Having a feedback means the annotation has a feedback
attached to it. Having editednote means that the annotation has been edited more
than once. Of interest here is also the attribute shared which determines if the user
owns the annotation object or not. Note that the server-side code for adding a link,
feedback and note follow a similar pattern.

When the callback function receives the response, all it has to do is to check the values
of the shared, originalnote, feedbacknote, and editednote for each JSON object and
compare them to the id of the object in question. Wherever there is a match, a corre-
sponding option is added to the annotation display window for that object. For instance,
if the value of the originalnote object is equal to the id of a particular annotation ob-
ject, an option to retrieve and display the original annotation is added to the annotation
display. This is because the application always displays the current annotation.

Dynamically Manipulating the Additional Toolbar And The Misc UI Container

The user can click on the view added content option of the viewing tools. The follow
processes are set into play

• hide the containers occupying the upper section of the misc UI container.

• create two TabContainer widgets and a toolbar and place them in the misc UI
container.

• create an option to hide the newly created section and place it on the newly
created toolbar of the misc Container

• show the additional toolbar if it is already created or create it it and place it below
the main bar

CHAPTER 7. APPLICATION IMPLEMENTATION 94

• create and option to destroy (remove from DOM) the newly created containers
on the misc container.

• call the Ajax Engine to create and make a request for all the annotated and linked
words with the current document.

When the response is received, the callback function then loads lthe inked words into
one of the newly created TabContainer widgets on the misc container53. The other
TabContainer widget container is filled with annotated words54.

This same pattern is followed when displaying feedback annotations for a particular
annotation, link entries for a particular linked word and notes attached to the current
document. The only difference being that for feedback and notes, the whole misc
container is hidden and replaced by the new container to show the feedback or notes.

One thing common to all these interactions with the UI, is the fact that, the user can
click the hide option to hide the newly created region and show the region that was
previously there. The show option is then dynamically created and placed on the
additional toolbar and the destroy option hidden. When the show option is clicked
again, it is hidden and the destroy and hide options are shown along with the newly
created container.

When dynamically manipulating the misc UI container and the additional toolbar55, a
reference to the upper section of the misc UI container is stored in an object called
tadArea. This is then hidden. The new container is created and put in its place.
The destroy option is created and place on the additional toolbar. The hide option
is created. On click, it hides the newly created container and the destroy option and
shows the misc container. It then checks if the show option exist. If it does it shows
it, otherwise it creates it and places it on the additional toolbar. The separator widgets
inserted into the additional toolbar are also hidden. When the show option is clicked,
the whole process is reversed, i.e. the misc container and the show options are hidden,
and the destroy option and newly created container are shown again.

Displaying Notes

When notes are immediately created, they are displayed differently as mentioned
above. Instead of using the misc UI section, a div is created and placed on top of

53CD -> Source Code -> JavaScript -> client -> contentHandlin -> hylosdata.js -> showAddedLinks(response,
ioArgs)

54CD -> Source Code -> JavaScript -> client -> contentHandlin -> hylosdata.js -> showAddedAnnota-
tions(response, ioArgs)

55CD -> Source Code -> JavaScript -> client -> contentHandlin -> hylosdata.js -> toggleMoreLinks() builds
the morelinks container on the misc UI container and dynamically hides and shows the misc container and the
new container

CHAPTER 7. APPLICATION IMPLEMENTATION 95

the top-level container widget on the top right corner of browser window. This is pos-
sible by setting the z index of the new div to be greater than that of the underlying
top-lvel container. The z-index property specifies the stack order of an element such
that an element with greater stack order is always in front of an element with a lower
stack order. This index is set in css as shown in listing 7.9.

1 /∗ css f o r s e t t i n g the z−index o f the d iv which holds the note ∗ /
2 .notes {
3 width:260px ;
4 height:150px ;
5 border : 1px solid red ;
6 padding : 10px ;
7 background−color : orange ;
8 z−index : 2 ;
9 position : absolute ;

10 text−align : left ;
11 overflow : auto ;
12 top : 0px ;
13 right : 0px ;

Listing 7.9: CSS for setting the z-index of the div which holds the note

Options for deleting and editing the note are also added to the note div. When these
buttons are clicked, they call an Ajax engine function and give it the id of the note to be
manipulated. The Ajax Engine makes the request to the server and sets the callback.
When the response is received, the callback uses a toaster widget to inform the user
of the status of his request, i.e. successful or not successful.

Edit-in-place

The edit-in-place feature is used when editing annotations and notes. During edit.in-
place, the innerHTML of the container displaying the content is grabbed and placed in
an object. The container is then emptied. A textarea and two buttons for saving and
canceling the editing process are created and placed in the container56. The previously
contents of the container are then placed in the text area for the user to edit.

If the cancel button is clicked, the whole process is reversed. First the container is
emptied again by setting its innerHTML to an empty string and the original contents
are placed in the container. If the save button is clicked, an Ajax call is made to save
the edited version of the content. The innerHTML is emptied to discard the textarea
and buttons and replaced with the edited version of the content. For the annotation, the

56CD -> Source Code -> JavaScript -> client -> grp -> grpactions.js -> postNoteHandler(response, ioArgs)

CHAPTER 7. APPLICATION IMPLEMENTATION 96

original option (to get the original annotation) is created and placed in the annotation
display. If the annotation had been edited before, the original button will already be
available. So the application should not create it twice. This is not necessary for the
notes since the note functionality does not keep track of old notes.

7.3.5 Group Interaction

In order to be able to work in a group, users have to create or join groups. Groups are created
by using the group tools of the main menu. When creating the group, the user gives a name
for the group and sets his content sharing status to public or private. The group content
sharing options under group tools can be used to change this settings at anytime. The group
name and settings are then communicated to the back-end by the Ajax Engine and the new
group is stored in the system.

When the user requires to join a group, the application checks if the user is already a
member of the group and then lets him join. After a user joins a group he can activate that
group whenever he wants to start a discussion thread within the group.

Right clicking on the list of available groups on the lower section of the misc UI, pops up
a menu with the following group options; join, activate, enter, leave and delete. This menu
is implemented using Dijit widgets menu and menu Item. The menu widget stacks its menu
items vertically. An onSelect object is used to get the name of the group when the user right
clicks on the name of the group. The bindDomNode() function is called to add the menu to
each item of the list of group names57.

The program works in two modes. The normal mode is when the user works alone and
is always signified by setting the NORMAL_MODE object to true. When the user is in the
group GROUP_MODE is set and a variable activeGrpname set to hold the name of the
activated group. All the functions implemented so far are also available during group work.
Three things unique to group work are;

• users in an active group work on the same document

• users are always aware of what other users are doing.

• users can turn off synchronization to which deactivates the two features mentioned
above, but still gives the user access to content available to his group.

All users in a group can work on the same document because whenever a group is
activated, the Ajax Engine calls the server-side to make an entry in the currentUrl column
of the table which holds the active groups. Whenever a new member enters the group, the
Ajax Engine makes a request for the URL of the document the group is currently working on.

57CD -> Source Code -> JavaScript -> client -> eui -> init.js -> showGrpList(response, ioArgs)

CHAPTER 7. APPLICATION IMPLEMENTATION 97

The callback then examines the returned URL using the JavaScript indexOf() function and
then decides whether to load a hyLOs document or a document from Wikipedia or a random
XHTML page (which resulted from using the google search function). The callback sets a
timeout. When the time out expires the current URL of the group is requested again, the old
timeout cleared and a new one set. If the requested URL is equal to the URL retrieved after
the previous time out no new page is loaded. The user who loads the new page, also sets a
variable iSentUrlupdate, so that the new document will not be loaded again when the timeout
expires58. .

Another important function called whenever a group is created is the checkForNotifica-
tions() functions. Remember that for group activity, whenever a user is performing an action,
the Ajax Engine calls the server side and informs it of the action the group member is cur-
rently undertaking. This action is then written to the MySQL table which is dynamically
created whenever the group is activated. This table is created by using the word notify and
concatenating it with the name of the group. For example, if the group Internet Technology
is activated, the table name will be notifyinternettechnology. In this way all functions that will
write or read from this group can dynamically build the group name when they need to. The
checkForNotifications() function, periodically pools this table to read out the actions being
performed by other members. These actions are pre-coded as PHP constants in such a
way that, they can be decoded when read to give the name of the user and the action he is
performing and if possible, the action to carry out. Listing constant shows a small section of
how these message constants are coded

1 . . .
2 define("ANNOTATION2" , " : and i s adding an annota t ion to t h i s phrase . ") ;
3 define("ANNOTATION3" , " : has NOTE_completed the annota t ion f o r : ") ;
4 define("ACTIVATE" , " : a c t i va t e d the group . This user i s t h e r e fo r e ←↩

respons ib le f o r t h i s group . ") ;
5 define("FB" , " : i s working on an annota t ion feedback f o r the phrase : ") ;
6 . . .

Listing 7.10: Messages pre-coded as PHP constanst

An example of how these pre-defined messages is written to the server is given in listing
7.11

1 function writeNotification($note, $seltext, $user, $grpname, ←↩

$tablename) {
2 i f ($note == " l i n k ") {
3 $sQuery = " INSERT INTO " .$tablename . "
4 VALUES (’ 0 ’ , ’ $ s e l t e x t ’ , ’ $user ’ , ’ $grpname ’ , ’ $user " .LINK1 . " ←↩

$se l t ex t , " .LINK2 . " ’) " ;

58CD -> Source Code -> JavaScript -> client -> grp -> grp.js -> getUrlChangeHandle(response,ioArgs)

CHAPTER 7. APPLICATION IMPLEMENTATION 98

5 } else i f ($note == " annota t ion ") {
6 $sQuery = " INSERT INTO " .$tablename . "
7 VALUES (’ 0 ’ , ’ $ s e l t e x t ’ , ’ $user ’ , ’ $grpname ’ , ’ $user " . ←↩

ANNOTATION1 . " $se l t ex t , " .ANNOTATION2 . " ’) " ;
8 } else i f ($note == " a c t i v a t e ") {
9 $sQuery = " INSERT INTO " .$tablename . "

10 VALUES (’ 0 ’ , ’ $ s e l t e x t ’ , ’ $user ’ , ’ $grpname ’ , ’ $user " .ACTIVATE . " ←↩

’) " ;
11 . . .

Listing 7.11: Writing to the notify group table using the precoded messages

Before returning a response to the checkForNotifications() function, the PHP server script
interprets the read messages and builds the corresponding JSON objects that are returned
as the response. This is shown in list 7.12.

1 . . .
2 $actionid = $newnoti [0] ;
3 $actionheld = $newnoti [1] ;
4 $action = $newnoti [2] ;
5 . . .
6 } else i f (stristr($action, " NOTE_completed ")) {
7 $pieces = explode(" : " , $action) ;
8 $owner = $pieces [0] ;
9 $seltext = $pieces [sizeof($pieces)− 1] ;

10 i f ($owner!= $user) {
11 $getnote = $database−>getLastNote($seltext,$owner,$grpname) ;
12 i f ($getnote) {
13 $json4 = ’ { " notes " : { ’ ;
14 $json4 .= ’ " note " : [’ ;
15 $json4 .= ’ { ’ ;
16 $json4 .= ’ " s ta tus " : " l a s t n o t e " , ’ ;
17 . . .

Listing 7.12: Interpreting the message read from the notify group table

The Ajax Engine constantly checks for new group notifications59. When the response is
received, the status attribute of the received object is examined and the appropriate callback
function called60. For example, if the status attribute has the value lastnote, function will
get the selected word out of the response it receives, search for it in the document on the
workspace and highlight it to denote that an annotation was added to that word. All other
messages which do not cause the DOM to be changed in any way, are displayed using the

59CD -> Source Code -> JavaScript -> client -> grp -> grp.js -> checkForNotifications()
60CD -> Source Code -> JavaScript -> client -> grp -> grp.js -> checkForNotificationsHandlerNote(response)

CHAPTER 7. APPLICATION IMPLEMENTATION 99

toaster widget (section 7.3.3). The first time the messages are read, the first message is
always displayed. This message says which user activated the group. The id of the message
to request next is set to the id of the current message in the notify group table.

When working in a group, some users might find the toaster messages which keep pop-
ping up irritating. An attempt to reduce this nuisance has been made by setting a duration
time for these toaster widgets so that they disappear after a reasonable time. The fact that
an object is loaded onto the workspace for all active group members when an active group
member loads a different document, synchronizes group activity, but can cause problems for
users who are still working on the current document. Finally, the UI of all members in the
group can be manipulated when an active user adds a feedback. This can also be irritating
to some users.

This application therefore offers a simple solution to this problem. The user can set his
group synchronization status to on or off. Off will stop him from receiving toaster widget mes-
sages and URL change updates. This is done by simply clearing the timers which constantly
pull the server for URL updates and group notification messages 61. When the synchroniza-
tion is turned on, checkForNotifications() and getUrlChange(activeGrpname) functions are
called to start receiving group messages and URL updates.

7.3.6 Messaging tools

The messaging tool is included as a simple way of letting users communicate with each other.
Two tables are created to hold user messages depending on whether a user is online or
offline. When the user is online, he is immediately notified when he receives a new message.
A timeout is set which pools the online table after the time out expires. It then sets a new
timeout and this process keep repeating itself.

Whenever a user logs in, the offline messages table is read and the user notified if he
has any messages. The messages are then retrieved and displayed to the user. The user is
notified using the yellow-fade technique where a background color of a section of the UI is
suddenly set as yellow to attract the attention of the user. As the yellow gradually fades, a
message then appears to inform the user of the new messages62.

61CD -> Source Code -> JavaScript -> client -> grp -> grp.js -> toggleGrpSync()
62CD -> Source Code -> JavaScript -> client -> contentHandlin -> hylosdata.js -> notificationMes-

sages(Message)

Chapter 8

Test and Evaluation

Most of the functionality described in the design and specifications chapters 5 and 6 respec-
tively, have been fully implemented. This chapter demonstrates some test scenarios of the
whole system. Due to time constraints only user test have been carried out. No system pro-
filing test were done. This section uses screen shots to show and explain what the browser
displays to the user.

To carry out the test, the Apache HTTP Server was installed and configured in the mobi2
Server in room 580. A similar application as the one in this Thesis is being developed for
the iPhone and also uses this server for testing. In order to configure separate domains to
run under mobi2, DNS entries for this domains had to be made in the DNS server which was
not possible due to time constraints. The server URL http://mobi2.cpt.haw-hamburg.de was
used by the iPhone project. A virtual host was created on the apache server and a subdo-
main entry made with a private hosting service offered by InterNetWORX 63 to point to this
virtual host on the mobi2 server. The sub domain address created to test this application is
http://igelearning.mailquota.de/www_root/client/eui/main.html.. The MySQL database
used for storing user information and content was also installed and configured to run on the
mobi2 server. The test were carried out on the windows PCs and the Mac PC in room 580.
The application was tested for the following browsers;

• Internet Explorer

• Mozilla Firefox

• Safari

CHAPTER 8. TEST AND EVALUATION 101

Figure 8.1: Registration form showing the field of interest and the content setting status
.

8.1 Setting User Interest and Content Sharing Status

During registration, users can choose their field of interest and set the status of the content
they create to public(shared) or private(hidden). Figure 8.1 shows how the registration form
looks like. Clicking on the login button on the registration form hides the registration form and
shows the login form figure 8.2. Clicking on the Signup button of the login form will hide the
login form and show the registration form.

The application offers user tools with an option user settings. User settings can be used
to change the field of interest of the user and the content sharing status at anytime figure 8.3
and figure 8.4 respectively

Notice that when the mouse is moved over the users name, his field of interest is shown.
Users can contact each other based on this interest.

63InterNetWORX Web Hosting http://www.internetworx.org/

CHAPTER 8. TEST AND EVALUATION 102

Figure 8.2: login section showing user authentication in progress
.

8.2 Adding, Displaying and Editing Content

8.2.1 Content Editors

A single content editor is used for adding annotations, feedback and notes as shown in figure
8.5. Only the title of the editor is changed. The partial colour scheme used in this project
is also evident. Editors and displays used for links get the background colour yellow figure
8.5(d). For notes, orange is used (figure 8.5(c)) and olive green for Feedback figure 8.5(b).
For annotations aqua is used. This is not evident from the background of the annotation
editor 8.5(a). As said, the colour scheme is not fully developed yet.

Editing-in-place is done when editing annotations and notes. Figure 8.6 shows the an-
notation editing test carried out. On Internet Explorer, the textarea for the editing is inserted,
but the text to be edited is missing. The save and cancel buttons are not also inserted in the
div figure 8.6(a). Editing in place works well for Safari and Firefox, figures 8.6(b) and 8.6(c)
respectively. However the textarea and button widgets are better placed within the div in the
Safari browser. The button widgets are hidden in Firefox and the user has to use the vertical
scrollbar to see them. Figure 8.6(d) shows how a note can be edited on Firefox immediately
after creating it. Also notice the aqua color for the annotation editor background and the
orange for the note editor background.

8.2.2 Annotation Display

Figure 8.7 shows how annotations are displayed within the document. Initially when a user
adds an annotation, only the two options for editing and feedback are added to the annotation
display figure 8.7(a). If the feedback already has an annotation attached to it, the displays is
as in figure 8.7(b) with an extra option to get the feedback. If an annotation has been edited,
it means an original annotation exist for the annotated word. If it has been edited more than

CHAPTER 8. TEST AND EVALUATION 103

Figure 8.3: Changing the field of interest
.

once, then edited versions of the annotation exist. Figure 8.7(c) shows options added that
can be used to retrieve original notes and edited notes. Clicking on the original notes button,
gives the display showed in figure 8.7(d) which now adds an extra option to retrieve and
display the current annotation. If the edited notes button is clicked the notes added to this
annotation are retrieved and display on the right side of the page using the toaster widgets
figure 8.7(f). These edited versions stay where they are until he user clicks on them, in which
case they will gradually fade away. Figure 8.7(e) shows a special case of the display. In this
case there are no options because this annotation has been shared by another user. This
annotation is read-only for the user currently viewing it. If this annotation had feedback added
to it or if it had been edited more than once, the current user will get the options to read the
feedback, original annotation and edited versions of this annotation respectively. What the
current user will not get are options to edit the annotation or add a feedback.

8.2.3 Link Display

The link display simply retrieves all links added to a particular word and list them one after the
other. This happens when a user clicks on a link. Figure 8.8(b) shows how the link display
window looks like. Notice the yellow background. It also has an option to add more links to
the linked word. This option is available to the user if only he owns the link or belongs to
a group that does. Compare this display to that on figure 8.8(a). Here the add more links

CHAPTER 8. TEST AND EVALUATION 104

Figure 8.4: Setting the content sharing status for a particular user
.

option is missing. Also notice that for both figures a list of all linked words in that document
can be displayed on the UI window to the right. If the user moves his mouse over this word,
he can already see who added the link and the description of the link. Figure 8.9(b) is added
here for comparison. It shows a list of all annotated words in the current document.

A user can have access to links from a specific document, say document A while working
on a different document, say document B. This can be done by right clicking on the linked
word in document A whose links wish to be remembered. This opens up all the links the
the misc UI section (right). The user can the load document B onto the workspace. This is
depicted in figure 8.9(a). All the test for links documented in this section were carried out on
the Safari browser.

8.2.4 Displaying notes and feedback

User have two possibilities to view feedback for a particular word. They can use the view
feedback option in the viewing tools or show the annotation display window and click show
feedback option. In any case the misc container is changed to display the feedbacks for that
annotated keyword.

The notes are displayed in much the same way. To view notes, the user clicks on the
view note option on the viewing tools. The notes are then shown on the misc container. If

CHAPTER 8. TEST AND EVALUATION 105

(a) Annotation Editor

(b) Feedback Editor (c) Note Editor

(d) Link Editor

Figure 8.5: Application content editors

CHAPTER 8. TEST AND EVALUATION 106

(a) editing annotation on IE

(b) editing annotation on Safari (c) editing annotation on Firefox

(d) Note Editor

Figure 8.6: Editing-in-place

CHAPTER 8. TEST AND EVALUATION 107

(a) initial annotation display (b) annotation display when feedback has
been added

(c) annotation display when annotation has
been edited

(d) annotation display showing original an-
notation

(e) annotation display for a shared annota-
tion

(f) edited annotation display

Figure 8.7: Displaying annotations

CHAPTER 8. TEST AND EVALUATION 108

(a) link display for shared link

(b) link display for owned link

Figure 8.8: Displaying Links and showing linked words

CHAPTER 8. TEST AND EVALUATION 109

(a) remembering links on the misc UI container

(b) showing annotated words on the misc UI container

Figure 8.9: Showing Links and annotated words on the misc container

CHAPTER 8. TEST AND EVALUATION 110

(a) retrieving and displaying annotation feedback

(b) retrieving and displaying notes

(c) displaying a note immediately after it is added

Figure 8.10: Displaying annotation feedback and notes

CHAPTER 8. TEST AND EVALUATION 111

a note is owned by the user or a group to which he belongs, options to edit and delete the
notes are added to the note when displaying it.

8.3 Group Work

This application has been designed to view group work as follows;

• the UI of a user can be manipulated indirectly by the actions of other group members

• the user knows what other group members are doing at all time.

• the user can decline to use the two features mentioned above but still be able to con-
sume and create content for his group.

Any user can create a group by using the group creation editor shown in figure 8.11

Figure 8.11: Creating a group
.

Once a group is creating, members can join, activate, enter, leave and delete groups by
using the group menu shown in frgure 8.12.

For group messages the toaster widget (section 7.3.3) is used. When a user group is
activated, figure 8.13(a) and a member enters the group, he gets the name of the user who
activated the group, figure 8.13(b). The object the group is working on is loaded onto his

CHAPTER 8. TEST AND EVALUATION 112

Figure 8.12: Group menu
.

workspace. The other users in the group are informed that a member has entered the active
group figure 8.13(c). When a member leaves the group, the other members are notified as
well, 8.13(d).

Figure 8.14 shows the processes which occur when a user is adding an another within the
group context. When he selects the words and the annotation editor, the message of figure
8.14(a) is shown to him. All other active group members receive the message shown in figure
8.14(b). When the annotation is successfully written into the datastore, it is highlighted on the
workspace of all active uses as shown in figure 8.14(c). If any of these users decide to add
an annotation feedback for this annotation, all other users are informed with the message
shown in figure 8.14(d). When the feedback is added, the misc UI container of all the users
in the group is change to show the added feedback as described earlier in figure 8.10(a).

Whenever a new user loads a different object onto the workspace, other users are in-
formed shortly before the new object is automatically loaded onto their own workspace as
shown in figure 8.15

Users who wish to create content for or use content from the group without actively
interacting with other users can set their synchronization status to off using the user options
tool shown in figure 8.16.

The users can send messages to each other using the messaging tools as shown in
figure 8.17. If a user is online, he is immediately notified using the yellow fad technique
shown in figure 8.18. As the yellow gradually fades a message appears to inform the user
of the new message. The user then clicks on the new messages tab on the upper section of
the misc container to read his messages, fig 8.19.

CHAPTER 8. TEST AND EVALUATION 113

(a) a group member activates the group (b) user enters an active group

(c) other active members are informed of the
arrival of the new user

(d) showing annotated words on the misc UI
container

Figure 8.13: Activating, entering and leaving a group

CHAPTER 8. TEST AND EVALUATION 114

(a) an active group user is adding an anno-
tation

(b) message sent to other users if an anno-
tation is being added

(c) word automaticaly highlighted when an-
notation is added

(d) users informed that a certian user is
adding a feedback

Figure 8.14: Activating, entering and leaving a group

(a) Wikipedia object has been loaded by an
active group member

(b) An object from the Google search has
been loaded by an active group member

Figure 8.15: Displaying Links and showing linked words

CHAPTER 8. TEST AND EVALUATION 115

Figure 8.16: Setting group synchronization status
.

The usability test carried out and provided in this chapter, showed that the program
worked as expected for Firefox and Safari. The look and feel of the program was much
better for the Safari Web Browser.

Internet explorer worked only partially. The content retrieval and display worked well.
Annotations and links could be added and viewed without any problems. The annotations
and links display could also be displayed. Notes could also be added and viewed without
problems. However, when a request involving the retrieval of data from the database is
initiated such as retrieving all the feedback for an annotated word, IE throws a TypeError
exception. These type of errors occur in IE if any of the values returned are null or undefined.
This problem could be caused by errors in JSON file since JSON encoders were not used in
this project and the encoding was done by hand. This problem could be solved by making
sure that the value of objects is valid before attempting to use them. Due to time constraints,
this errors have not been investigated further.

Dojo, the Javascript framework used in this project offers limited support for the opera
browser as of now. So the application was not tested on Opera Web browser. No Unix-
based browsers were tested.

Another issue which was noticed during the testing is CSS related. The CSS formating
for hyLOs is not applied correctly when courses from hyLOs are loaded. The main CSS for
hyLOs is also defined to affect the body of the document. This means that other sections of
the UI, which are not suppossed to be affected by the hyLOs CSS are affected. To solve this

CHAPTER 8. TEST AND EVALUATION 116

Figure 8.17: Sending a message
.

Figure 8.18: new message notification
.

problem, a CSS file for hyLOs was created for this application. The contents of the original
hyLOs CSS file were copied into the newly created file. The formatting was modified to apply
only to the workspace which will hold the hylos content. A JavaScript function was written to
dynamically load this CSS file when hyLOs is loaded. Due to the fact the the dimensions of
the workspace are smaller than the dimensions defined for the original hyLOs content, the
CSS was not properly applied to the page.

The CSS from Wikipedia is also applied to the body of the XHTML document. A similar
solution as above could not be implemented due to time constraints. When other XHTML
Pages from the Google search are loaded their CSS if defined to format the body will also
affect the body of the application. See chapter ??, future work, for a proposed solution.

CHAPTER 8. TEST AND EVALUATION 117

Figure 8.19: displaying messages
.

Chapter 9

Summary and future work

An elearning platform that enables users gather content from the Web and interact with it in
given ways was built in this project. The three main content sources as of now are hyLOs (see
section 2.3), Wikipedia and Google web search. The users can create their own content by
adding annotations, notes and links to the content retrieved from the Web. Users can form
groups and create this content together. This can be done by adding more links to linked
words or giving feedback to annotations. In this way the content created has perspectives
from different group members. This might improve the quality of the original document. This
application was tested on three Web browsers: Mozilla Firefox, Safari and Internet Explorer.
It worked well on Firefox and Safari. Internet Explorer threw Typeerror exceptions when data
was retrieved from the data store. Due to time constraints, no attempt was made to resolve
this problem.

The grouping functionality was tested for three users. This system has been designed
such that the number of users who can actively take part in group work is limited only by
the the hardware capabilities on the server on, which it runs. Theoretically, the Apache
HTTP server used in this project can handle as many group users as there is available main
memory. As more members keep joining the group and more request are made to the server,
Apache will simply spawn more daemons or threads to handle these request, that is, until it
runs out of main memory.

The design (5) of this eLearning platform allows enormous room for expansion. Like any
other application in its infantry, this application also has its flaws, some of which became
evident during the testing phase. A few suggestions and ideas are made here on how some
of this problems can be solved and on how the application can be extended in the future and
made more robust.

The system can be extended to offer more content sources to the user. A good exam-
ple here is OpenCourseWare (OCW). OCW is an initiative which was pioneered in 2007
by Massachusetts Institute of Technology (MIT), whereby educational materials from its
undergraduate- and graduate-level courses were placed online for free and made openly

CHAPTER 9. SUMMARY AND FUTURE WORK 119

available to anyone, anywhere. Ever since, most top universities around the world (Harvard
Extension School 64, University of Notre Dame 65, United Nations University 66, etc.) have
followed this trend. This has led to enormous amount of free educational material online.
An OCW finder could be developed and integrate into the application developed here. This
OCW finder could be based on a key word form the user. These courses can then be re-
trieved as Really Simple Syndication (RSS) feeds, which is a family of web feed formats used
to publish frequently updated content such asblog entries, news headlines, audio, video, etc.
The system could also create and manage a linking directory for OCW that have been found
using the system. Another very important source of content could be the user himself. Users
could be given the possibility to load content from their local file system onto the application.
They can then work with group members on this content. They can decide to share this
content with others of simply stored the modified version back onto the local file system. No
concept has been developed for the "more content" suggestions made here. These are just
ideas on how the application could let users profit from the vast amount of free educational
material online, plus loaded content from the local file system can make the application more
flexible.

As mentioned in section 5.4, one of the problems faced, when retrieving content from
the Web is that the content is either volatile of semi-volatile. Wikipedia documents can be
edited. The restrictions placed by the Wikipedia team on this editing feature makes them
only semi-volatile. A two way solution to this problem is suggested here. Instead of grabbing
the whole document from Wikipedia, only sections of the document will be grabbed. If any of
these sections is edited, a copy of the edited section along with the added content is stored
locally. If the user request this document in the future, the edited section that is store locally
will be presented to the user together with the current section from Wikipedia for comparison.
Tools should also be presented to the user to let him decide what to do if the document has
been edited. Due to time constraints, only the first part of this solution has been considered
here. Content keeps evolving and changing, which is a problem that cannot be solved within
the scope of this thesis. Another future direction to consider would be to take the semantics
of the added content into consideration when decided whether or not it has lost its value.
The tags which users attach to added content or the description of links will play a big role if
such a solution is considered. In this way, all added content which can no longer be linked
to any document is considered stranded and can be reassigned to other content based on
the meaning of the tags or link descriptions, i.e. its semantics. The assumption is that the
tags and link descriptions are meaningful. This solution is not implemented here due to time
constraints.

The content loaded into this application are mostly XHTML files. These files are formatted

64http://www.extension.harvard.edu/DistanceEd/
65http://ocw.nd.edu/courselist
66http://onlinelearning.unu.edu/en/

CHAPTER 9. SUMMARY AND FUTURE WORK 120

using CSS. For some of this content, e.g. from Wikipedia and hyLOs, the CSS is defined for
the body of the document. This means the body of the application will be affected by the
CSS styles of these sites when the content is loaded. The CSS styles of the content sources
will affect each other depending on which file is loaded first, e.g. it was observed that the
CSS from Wikipedia always affected the formatting of the hyLOs pages. A partial solution
is to dynamically load and remove the CSS files depending on which content is loaded. For
example, if a document from Wikipedia is loaded after a document from hyLOs has just been
loaded, the system should automatically remove the CSS styles for hyLOs and load those
for Wikipedia. If the user switches to the hyLOs content, the CSS styles for Wikipedia should
be removed and those for hyLOs loaded. Each time a random page from the Google web
search is loaded, the CSS style of both Wikipedia and hyLOs are removed. They should be
dynamically reloaded when the page is closed. A script to dynamically load the CSS pages
was written and used in this script. The hyLOs CSS styles were dynamically loaded after
successful user registration or login to avoid the hyLOs CSS styles from affecting the CSS
styles defined for the registration and login forms. Due to time constraints, the rest of the
solution as described above could not be implemented. This will be a good starting point if
the system was to be further developed.

The application design lets users tag all content they add to the system. The created
content will be of no use if it cannot be used by other users, that is, if it is shared. With the
help of tags, the application can be further developed to retrieve annotations and feedback
for that annotation based on the tags added by the users who created that information. More
useful here will be the links added to the system. The tags for links can be used to some
sort of a semantic link network within the application. This means that, the application can
automatically build relationships between documents based on the tags added. For exam-
ple, if a link A is tagged IP addresses, link B IPv6 and link C MIPv6, then the relationships
B-isSubsetOf->A, C-isSubset->B, C-SubsetOf->A can be built. If a user references the doc-
ument pointed to by link C, documents pointed to by link A and B are suggested as parent
documents. Such a semantic link network can be extended to build and interpret all sorts
of complex relationships between links leading to automatic discovery of relevant content
present within the system. Such a semantic link network will be based on the accuracy and
richness of the tag supplied by the user. The application could also be extended to imple-
ment a linking directory based on the tags and the description of the added links. When a
user requires information on a particular resource, the application based on its linking direc-
tory could make suggestions to the user about similar external resources. This can make the
site more useful to users on the condition that the tags added are meaningful. The directory
listing can be implemented to periodically remove dead links from the system.

The application that is developed constantly pools the server to determine if a new doc-
ument has been loaded for the group and if a new group notification is available. For a
small number of users, there are no noticeable latency issues. But as the number of users
increase, latency will increase as well and the server might be eventually overloaded. Re-

CHAPTER 9. SUMMARY AND FUTURE WORK 121

verse Ajax is a server push low-latency method which can be used to minimize the amount
of request made to the server. The technical term for this server push technique as used in
web development is Comet 67 68. Comet allows the server to start answering the browser’s
request for information, and to continue answering on a schedule dictated by the server. This
application could be implemented to use Comet on the server side. This will be advantages
as the number of users increase because with Comet, there is no need to wait for the next
time the browser connects. Information is simply sent to the client when it is available.

67Alex Russell’s original post coining the term Comet http://alex.dojotoolkit.org/2006/03/comet-low-latency-
data-for-the-browser/

68What Wikipedia says on Comet http://en.wikipedia.org/wiki/Comet_(programming)

Bibliography

[1] Terry Smith Alex Koohang, Liz Riley and Jeanne Schreurs. E-learning and construc-
tivism: From theory to application. Interdisciplinary Journal of E-Learning and Learning
Objects, 5:19, 20 October 2009.

[2] Paul Anderson. What is web 2.0? ideas, technologies and implications for education.
JISC Technology and Standards Watch,, 6 December 2009, 2007.

[3] Tim Berners-Lee. Weaving the Web. tim, 2000.

[4] Cristian Darie. Ajax and PHP - Building Responsive Web Applications. Packt Publishing
Ltd, 32 Lincoln Road, Olton, Birmingham, B27 6PA, UK, 2006. ISBN 1 - 904811 - 82 -
5.

[5] Paul J. Deitel and Harvey M. Deitel. AJAX, Rich Internet Applications, and Web Devel-
opment for Programmers. Prentice Hall, January 2008.

[6] Wroclaw University of Economics Wroclaw Poland Eli B. Cohen, Informing Science In-
stitute Santa Rosa CA USA Malgorzata Nycz. Learning objects and e-learning: an
informing science perspective. http://ijello.org/Volume2/v2p023-034Cohen32.pdf, 8 Oc-
tober 2009:12, 2006.

[7] Michael Engelhardt, Arne Hildebrand, Alexander Lang, Thomas C. Schmidt, and Math-
ias Werlitz. A constructivist content exploration based on a hypermedia elearning object
system. In Michael E. Auer and Ursula Auer, editors, Proceedings of the International
Conference Interactive Computer aided Learning ICL 2004. The Future of Learning, 09
October 2009.

[8] Michael Engelhardt, Arne Hildebrand, Dagmar Lange, and Thomas C. Schmidt. Rea-
soning about elearning multimedia objects. In Jacco Van Ossenbruggen, Giorgos Sta-
mou, Raphaël Troncy, and Vassilis Tzouvaras, editors, Proc. of WWW 2006, Intern.
Workshop on Semantic Web Annotations for Multimedia (SWAMM), May 09 October
2009.

BIBLIOGRAPHY 123

[9] Michael Engelhardt, Arne Hildebrand, Thomas C. Schmidt, and Mathias Werlitz. The
hypermedia elearning object system: Exploiting learning objects in a semantic edu-
cational web. In Proceedings of the 19th Codata Conference, Berlin, November 09
October 2009.

[10] IEEE. Draft standard for learning object metadata - ieee 1484.12.1.
http://ltsc.ieee.org/wg12/files/LOM_1484_12_1_v1_Final_Draft.pd, July 10 October
2009.

[11] Marja-Riitta Koivunen. Annotea and Semantic Web Supported Collaboration. PhD
thesis, Annotea project, 12 October 2009.

[12] link lab. Kursübersicht haw hamburg. http://hylos.cpt.haw-hamburg.de/index.xhtml, 20
September 2009.

[13] J. M. McInnerney and Tim S Roberts. Online collaborative learning: Have we overcome
the obstacles? In Proceedings of the International Conference on Computers in Edu-
cation (IEEE), page 2, Central Queensland University Bundaberg, Queensland 4670,
Australia 09 October 2009.

[14] Tom Negrino and Dori Smith. Javascript & Ajax. Peachpit Press, 1249 Eight Street,
Berkeley, CA 94710, 2009. ISBN-13: 978 - 0 - 321 - 56408 - 5 - X.

[15] Joe Fawcett Nicholas C. Zakas, Jeremy McPeak. Professional Ajax. Wiley Publishing
Inc., 10475 Crosspoint Boulevard, Indianapolis, IN 46256, 2006. ISBN: 0 - 471 - 77778
- 1.

[16] Tim O’Reilly. What is web 2.0 design patterns and business models for the next gener-
ation of software. O’Reilly website, 16 December 2009.

[17] O’Reilly Radar. Web 2.0: Compact definition?. Available online at:
http://radar.oreilly.com/archives/2005/10/web_20_compact_definition.html, 6 Decem-
ber 2009.

[18] Peter Brusilovsky Rosta Farzan. Annotated. a social navigation and annotation service
for web-based educational resources. In Proceedings of E-Learning 2006 (Honolulu,
HI, October 2006), AACE, 2753-2757, 12 October 2009.

[19] Rawld Gill Craig Riecke Alex Russell. Mastering DOJO JavaScript and Ajax Tools for
Great Web Experiences. The Pragmatic Bookshelf, 2008.

[20] Thomas Schmidt. General introduction to hylos. http://inet.cpt.haw-
hamburg.de/projects/hylos/, 10 November 2009.

BIBLIOGRAPHY 124

[21] Thomas C. Schmidt and Michael Engelhardt. Educational content management. In
F. Garcia, J. Garcia, M. Lopez, R. Lopez, and E. Verdu, editors, Educational Virtual
Spaces in Practice, pages 105–118. Ariel, Barcelona, 09 October 2009.

[22] Gordon McCalla Scott Bateman, Christopher Brooks and Peter Brusilovsky. Applying
collaborative tagging to e-learning. Technical report, 10 December 2009.

[23] Rosta Farzan Scott Bateman Rosta, Scott Bateman, Peter Brusilovsky, and Gord Mc-
calla. Oats: The open annotation and tagging system. In Proceedings of 12LOR 2006
(Montreal, Canada, November 2006), 12 October 2009.

[24] Barbara Leigh Smith and Jean T. MacGregor. What is collaborative learning? National
Center on Postsecondary Teaching, Learning, and Assessment at Pennsylvania State
University., 9 October 2009.

[25] Jason Cranford Teague. CSS, DHTML and AJAX. Peachpit Press, 1249 Eight Street,
Berkeley, CA 94710, 2007. ISBN 0 - 321 - 44325 - X.

[26] Anne van Kesteren. Xmlhttprequest. http://www.w3.org/TR/XMLHttpRequest/, 22 Jan-
uary 2010.

[27] Front-end software architect from Cogniance Vlad Agafonkin. Web 2.0 startups.
choice of javascript framework. http://cogniance.com/uploads/white-papers/Web-2-0-
Choice_Of_Javascript_Framework.pdf, 26 Janaury 2010.

[28] W3C. W3c xml pointer, xml base and xml linking. http://www.w3.org/XML/Linking, 11
November 2009.

Appendix A

CD-Contend

The following contents can be found on the included CD69

1. Master thesis in PDF-format and the LATEXfiles

2. Source Code - JavaScript - client

• clientValidation

• contentHandlin

• css

• eui

• grp

• misc

3. Source Code - PHP - Server

• authentication

• grpFxn

• hylos

• misc

• validation

• wikipedia

• google

69The CD can be viewed at the supervising examiner’s office.

I declare within the meaning of section 25(4) of the Examination and Study Regulations of
the International Degree Course Information Engineering that this Master Thesis has been
completed by myself independently without outside help and only the defined sources and
study aids were used. Sections that reflect the thoughts or works of others are made known
through the definition of sources.

Hamburg, March 1, 2010 Viban Terence Yuven

	List of Figures
	List of Source Code Snippets
	List of Abbreviations
	1 Introduction
	1.1 Project Overview
	1.2 Thesis Outline

	2 eLearning Within Interactive Groups
	2.1 eLearning and eLearning 2.0: Background
	2.2 ELearning Standards and IEEE Learning Object Metadata - LOM
	2.3 Hypermedia eLearning Object Systems - HyLOs
	2.4 Interactive Group eLearning

	3 Web 2.0 and Ajax
	3.1 Introduction and Definition
	3.2 Impact of Web 2.0
	3.3 Ajax
	3.3.1 Ajax Techniques
	3.3.2 Ajax Patterns

	3.4 Ajax Technologies
	3.4.1 Client-side Scripting
	3.4.2 Server-side Scripting

	4 Requirement Analysis
	4.1 System Tools
	4.1.1 General Use Case
	4.1.2 Use Case For The Overview Tool
	4.1.3 Activity Diagram For User-content Interaction
	4.1.4 Activity diagram for content retrieval

	4.2 Group communication requirements
	4.3 User Interface requirements

	5 Application Design
	5.1 System Architecture
	5.2 Application Front-end
	5.2.1 User-Interface design
	5.2.2 Ajax Engine

	5.3 Application Back-end
	5.3.1 Handling Links
	5.3.2 Handling Annotations
	5.3.3 Handling Notes
	5.3.4 Handling Feedback
	5.3.5 Group Communication

	5.4 General System Design Constraint

	6 System Specification
	6.1 Authentication Service
	6.2 Content Retrieval Service
	6.3 Linking Service
	6.4 Annotation Service
	6.5 Note Service
	6.6 Message Service
	6.7 Group Service
	6.8 Database Model

	7 Application Implementation
	7.1 Development Environment
	7.2 Software Architecture.
	7.3 Application Functionality
	7.3.1 Getting Started: Dojo Toolkit and Application Module Paths
	7.3.2 User Interface
	7.3.3 Loading Content from the Web
	7.3.4 System tools and Content Manipulation.
	7.3.5 Group Interaction
	7.3.6 Messaging tools

	8 Test and Evaluation
	8.1 Setting User Interest and Content Sharing Status
	8.2 Adding, Displaying and Editing Content
	8.2.1 Content Editors
	8.2.2 Annotation Display
	8.2.3 Link Display
	8.2.4 Displaying notes and feedback

	8.3 Group Work

	9 Summary and future work
	Bibliography
	A CD-Contend

