
libcppa
Designing an Actor Semantic for C++11

Dominik Charousset∗ and Thomas C. Schmidt∗

dcharousset@acm.org, t.schmidt@ieee.org

∗iNET RG, Department of Computer Science
Hamburg University of Applied Sciences

May 2013

Agenda

1 Why focus on concurrency & distribution?
2 The problem with implicit sharing
3 The actor model & libcppa:

Concurrency without threads
Transparent inclusion of OpenCL
Pattern matching
Network transparency

4 Limitations Induced by C++11

Dominik Charousset iNET – HAW Hamburg 2

"The Free Lunch Is Over"1

1 9 7 0 1 9 7 5 1 9 8 0 1 9 8 5 1 9 9 0 1 9 9 5 2 0 0 0 2 0 0 5 2 0 1 0 2 0 1 5
0

1

2

3

4

5
GH

z

Y e a r
Dominik Charousset iNET – HAW Hamburg 3

"The Free Lunch Is Over"1

1 9 7 0 1 9 7 5 1 9 8 0 1 9 8 5 1 9 9 0 1 9 9 5 2 0 0 0 2 0 0 5 2 0 1 0 2 0 1 5
0

1

2

3

4

5

GH
z

Y e a r

Moore’s law still remains true (for now), but ...
More transistors 6= more clock speed
"Old", i.e., single-threaded, SW no longer benefits from new HW

1 Herb Sutter. Dr. Dobb’s Journal 30(3):202–210 (2005)

Dominik Charousset iNET – HAW Hamburg 3

Challenges of Modern Systems

Developers face not one, but multiple trends:
More cores on both desktop & mobile plattforms

GPGPU programming: GPUs can vastly outperform CPUs
Cloud computing, a.k.a. “infrastructure as a service”

⇒ Parallelization, specialization & distribution

Dominik Charousset iNET – HAW Hamburg 4

Challenges of Modern Systems

Developers face not one, but multiple trends:
More cores on both desktop & mobile plattforms
GPGPU programming: GPUs can vastly outperform CPUs

Cloud computing, a.k.a. “infrastructure as a service”
⇒ Parallelization, specialization & distribution

Dominik Charousset iNET – HAW Hamburg 4

Challenges of Modern Systems

Developers face not one, but multiple trends:
More cores on both desktop & mobile plattforms
GPGPU programming: GPUs can vastly outperform CPUs
Cloud computing, a.k.a. “infrastructure as a service”

⇒ Parallelization, specialization & distribution

Dominik Charousset iNET – HAW Hamburg 4

Challenges of Modern Systems

Developers face not one, but multiple trends:
More cores on both desktop & mobile plattforms
GPGPU programming: GPUs can vastly outperform CPUs
Cloud computing, a.k.a. “infrastructure as a service”

⇒ Parallelization, specialization & distribution

Dominik Charousset iNET – HAW Hamburg 4

Agenda

1 Why focus on concurrency & distribution?
2 The problem with implicit sharing
3 The actor model & libcppa:

Concurrency without threads
Transparent inclusion of OpenCL
Pattern matching
Network transparency

4 Limitations Induced by C++11

Dominik Charousset iNET – HAW Hamburg 5

The Problem With Implicit Sharing

When writing concurrent programs:
Stateful objects need to be synchronized (if shared)
Developer is responsible for thread-safety
Challenges are ...

Race conditions (“solved” by locks)
Deadlocks/Lifelocks (caused by locks)
Poor scalability due to queueing (Coarse-Grained Locking)
Very high complexity (Fine-Grained Locking)

Time-dependent errors make testing (almost) impossible

⇒ Expert knowledge & experience required

Dominik Charousset iNET – HAW Hamburg 6

The Problem With Implicit Sharing

When writing concurrent programs:
Stateful objects need to be synchronized (if shared)
Developer is responsible for thread-safety
Challenges are ...

Race conditions (“solved” by locks)
Deadlocks/Lifelocks (caused by locks)
Poor scalability due to queueing (Coarse-Grained Locking)
Very high complexity (Fine-Grained Locking)

Time-dependent errors make testing (almost) impossible
⇒ Expert knowledge & experience required

Dominik Charousset iNET – HAW Hamburg 6

Compose Synchronized Classes

class Subject {
public:
void subscribe(function <void(int)> fun) {

unique_lock <mutex > guard{m_mtx};
m_subscribers.push_back(move(fun));

}
void broadcast(int value) {

unique_lock <mutex > guard{m_mtx};
for (auto& s : m_subscribers) s(value);

}
private:
mutex m_mtx;
vector <function <void(int)>> m_subscribers;

};

Dominik Charousset iNET – HAW Hamburg 7

Compose Synchronized Classes

class FooBar {
public:
void foo() {

unique_lock <mutex > guard{m_mtx};
m_subject ->subscribe ([=](int v) {

/*...*/ bar(v); /*...*/
});
// ...

}
void bar(int value) {

unique_lock <mutex > guard{m_mtx};
// ...

}
private:
Subject* m_subject;
mutex m_mtx;

};

Dominik Charousset iNET – HAW Hamburg 8

Compose Synchronized Classes

Thread1 Thread2

Subject
s

FooBar
fb

Dominik Charousset iNET – HAW Hamburg 9

Compose Synchronized Classes

Thread1 Thread2

Subject
s

FooBar
fb

Functor
f

subscribe(f)

[](int val) {

 fb.bar();

}

Dominik Charousset iNET – HAW Hamburg 9

Compose Synchronized Classes

Thread1 Thread2

FooBar
fb

Functor
f

broadcast(42)

foo()

 operator()(42)

Subject
s

Dominik Charousset iNET – HAW Hamburg 9

Compose Synchronized Classes

Thread1 Thread2

Functor
f

broadcast(42)

foo()

 operator()(42)

 bar()

su
bs

cr
ib

e(
..

.)
Subject

s

FooBar
fb

Dominik Charousset iNET – HAW Hamburg 9

Locks Are Not Composable

“Mutable, stateful objects are the new spaghetti code.”
– Rich Hickey

Libraries with threads & locks are no longer black boxes
Composition of two thread-safe classes not necessarily thread-safe
User has to know about implementation details:

Which code runs asynchronously/where?
Which functions are “thread-safe”?
Which function uses which lock?

⇒ Wrong level of abstraction

Dominik Charousset iNET – HAW Hamburg 10

Locks Are Not Composable

“Mutable, stateful objects are the new spaghetti code.”
– Rich Hickey

Libraries with threads & locks are no longer black boxes
Composition of two thread-safe classes not necessarily thread-safe
User has to know about implementation details:

Which code runs asynchronously/where?
Which functions are “thread-safe”?
Which function uses which lock?

⇒ Wrong level of abstraction

Dominik Charousset iNET – HAW Hamburg 10

Locks Are Not Composable

“Mutable, stateful objects are the new spaghetti code.”
– Rich Hickey

Libraries with threads & locks are no longer black boxes
Composition of two thread-safe classes not necessarily thread-safe
User has to know about implementation details:

Which code runs asynchronously/where?
Which functions are “thread-safe”?
Which function uses which lock?

⇒ Wrong level of abstraction

Dominik Charousset iNET – HAW Hamburg 10

The “Right” Level of Abstraction

A programming paradigm should enable us to ...
Easily split application logic into as many tasks as needed
Avoid race conditions by design (no locks!)
Keep interfaces between two software components stable:

Whether or not they run on the same host
Whether or not they run on specialized hardware

⇒ Flexible composition

Dominik Charousset iNET – HAW Hamburg 11

Agenda

1 Why focus on concurrency & distribution?
2 The problem with implicit sharing
3 The actor model & libcppa:

Concurrency without threads
Transparent inclusion of OpenCL
Pattern matching
Network transparency

4 Limitations Induced by C++11

Dominik Charousset iNET – HAW Hamburg 12

The Actor Model

Actors are concurrent entities, that ...
Communicate via message passing
Do not share state
Can create (“spawn”) new actors
Can monitor other actors

Dominik Charousset iNET – HAW Hamburg 13

Benefits of the Actor Model

High-level, explicit communication: no locks, no implicit sharing
A lightweight implementation allows millions of active actors
Applies to both concurrency and distribution

Divide workload by spawning actors
Network-transparent messaging

Dominik Charousset iNET – HAW Hamburg 14

libcppa – A C++11 Actor Library

libcppa provides an actor semantic for C++11

Raises the level of abstraction (ease of development)
Implements lightweight actors (ease of concurrency)
Offers transparent OpenCL layer (ease of composition)
Operates network transparent (ease of distribution)

Dominik Charousset iNET – HAW Hamburg 15

Concurrency with libcppa

In order to make use of increasingly parallel hardware, we need ...
to split application logic into many tasks, i.e., actors
minimal overhead for launching actors and collecting results
support to collect results from specialized HW in the same way

Dominik Charousset iNET – HAW Hamburg 16

Multiply Matrices

static constexpr size_t matrix_size = /*...*/;

// always rows == columns == matrix_size
class matrix {
public:
float& operator ()(size_t row , size_t column);
const vector <float >& data() const;
// ...

private:
vector <float > m_data; // glorified vector

};

Dominik Charousset iNET – HAW Hamburg 17

Multiply Matrices – Simple Loop

matrix simple_multiply(const matrix& lhs ,
const matrix& rhs) {

matrix result;
for (size_t r = 0; r < matrix_size; ++r) {

for (size_t c = 0; c < matrix_size; ++c) {
// each calculation can run independently
result(r, c) = dot_product(lhs , rhs , r, c);

}
}
return move(result);

}

Dominik Charousset iNET – HAW Hamburg 18

Multiply Matrices – std::async

matrix async_multiply(const matrix& lhs ,
const matrix& rhs) {

matrix result;
vector <future <void >> futures;
futures.reserve(matrix_size * matrix_size);
for (size_t r = 0; r < matrix_size; ++r) {

for (size_t c = 0; c < matrix_size; ++c) {
futures.push_back(async(launch ::async , [&,r,c] {

result(r, c) = dot_product(lhs , rhs , r, c);
}));

}
}
for (auto& f : futures) f.wait ();
return move(result);

}

Dominik Charousset iNET – HAW Hamburg 19

Multiply Matrices – libcppa Actors

matrix actor_multiply(const matrix& lhs ,
const matrix& rhs) {

matrix result;
for (size_t r = 0; r < matrix_size; ++r) {

for (size_t c = 0; c < matrix_size; ++c) {
spawn([&,r,c] {

result(r, c) = dot_product(lhs , rhs , r, c);
});

}
}
await_all_others_done ();
return move(result);

}

Dominik Charousset iNET – HAW Hamburg 20

Multiply Matrices – OpenCL Actors

static constexpr const char* source = R"__(
__kernel void multiply(__global float* lhs ,

__global float* rhs ,
__global float* result) {

size_t size = get_global_size (0);
size_t r = get_global_id (0);
size_t c = get_global_id (1);
float dot_product = 0;
for (size_t k = 0; k < size; ++k)

dot_product += lhs[k+c*size] * rhs[r+k*size];
result[r+c*size] = dot_product;

}
)__";

Dominik Charousset iNET – HAW Hamburg 21

Multiply Matrices – OpenCL Actors

matrix opencl_multiply(const matrix& lhs ,
const matrix& rhs) {

typedef vector <float > fvec;
typedef const fvec& fvec_cref;

// function signature
auto worker = spawn_cl <fvec(fvec_cref ,fvec_cref)>(

// code , kernel name & dimensions
source , "multiply",
{matrix_size , matrix_size });

// ordinary message passing
send(worker , lhs.data(), rhs.data ());
matrix result;
receive(on_arg_match >> [&](fvec& res_vec) {

result = move(res_vec);
});
return move(result);

}

Dominik Charousset iNET – HAW Hamburg 22

Multiply Matrices – Runtimes

Setup: 12 cores, Linux, GCC 4.7, 1000x1000 matrices

time ./simple_multiply
0m9.029s

time ./actor_multiply
0m2.428s

time ./opencl_multiply
0m0.288s

time ./async_multiply
terminate called after throwing an instance of ’std::system_error’

what(): Resource temporarily unavailable

... apparently, one cannot start 1,000,000 threads

Dominik Charousset iNET – HAW Hamburg 23

Multiply Matrices – Runtimes

Setup: 12 cores, Linux, GCC 4.7, 1000x1000 matrices

time ./simple_multiply
0m9.029s

time ./actor_multiply
0m2.428s

time ./opencl_multiply
0m0.288s

time ./async_multiply
terminate called after throwing an instance of ’std::system_error’

what(): Resource temporarily unavailable

... apparently, one cannot start 1,000,000 threads

Dominik Charousset iNET – HAW Hamburg 23

Multiply Matrices – Runtimes

Setup: 12 cores, Linux, GCC 4.7, 1000x1000 matrices

time ./simple_multiply
0m9.029s

time ./actor_multiply
0m2.428s

time ./opencl_multiply
0m0.288s

time ./async_multiply
terminate called after throwing an instance of ’std::system_error’

what(): Resource temporarily unavailable

... apparently, one cannot start 1,000,000 threads

Dominik Charousset iNET – HAW Hamburg 23

Multiply Matrices – Runtimes

Setup: 12 cores, Linux, GCC 4.7, 1000x1000 matrices

time ./simple_multiply
0m9.029s

time ./actor_multiply
0m2.428s

time ./opencl_multiply
0m0.288s

time ./async_multiply
terminate called after throwing an instance of ’std::system_error’

what(): Resource temporarily unavailable

... apparently, one cannot start 1,000,000 threads

Dominik Charousset iNET – HAW Hamburg 23

Multiply Matrices – Runtimes

Setup: 12 cores, Linux, GCC 4.7, 1000x1000 matrices

time ./simple_multiply
0m9.029s

time ./actor_multiply
0m2.428s

time ./opencl_multiply
0m0.288s

time ./async_multiply
terminate called after throwing an instance of ’std::system_error’

what(): Resource temporarily unavailable

... apparently, one cannot start 1,000,000 threads

Dominik Charousset iNET – HAW Hamburg 23

Multiply Matrices – Summary

Performance of actor_multiply is suboptimal:
We spawn considerably more actors than cores are available
When spawning 1,000 actors instead, runtime drops to 0.8 s

However:
Spawning actors is fast (a million actors in ≤ 2.4 s)
Threads do not scale up to large numbers, actors do

Dominik Charousset iNET – HAW Hamburg 24

Message Processing

case 1

input: M pattern 1 matched M

case 2pattern 2 matched M

else

receive
next

message

case Npattern N matched M

else

else

Typical actor loop

Dominik Charousset iNET – HAW Hamburg 25

Message Processing

case 1

input: M pattern 1 matched M

case 2pattern 2 matched M

else

receive
next

message

case Npattern N matched M

else

else

Messages are copy-on-write tuples of any size
Messages are buffered at the actor in a FIFO-ordered mailbox
Actors set a partial function f as (replaceable) message handler
Runtime skips each message M if f (M) is undefined
Unmatched (skipped) messages remain in the actor’s mailbox
Each receive operation begins with the oldest element

Dominik Charousset iNET – HAW Hamburg 25

Partial Functions in libcppa

partial_function f {
 on("hello") >> [] {
 cout << "hello!" << endl;
 },
 on(atom("hello")) >> [] {
 cout << "atom(hello)!" << endl;
 },
 on_arg_match >> [](int a, int b) {
 cout << a << ", " << b << endl;
 },
 on("hello", arg_match) >> [](const string& name) {
 cout << "hello " << name << "!" << endl;
 }
};

assert(not f(make_any_tuple(42)));
assert(f(make_any_tuple("hello")));

Dominik Charousset iNET – HAW Hamburg 26

Partial Functions in libcppa

partial_function f {
 on("hello") >> [] {
 cout << "hello!" << endl;
 },
 on(atom("hello")) >> [] {
 cout << "atom(hello)!" << endl;
 },
 on_arg_match >> [](int a, int b) {
 cout << a << ", " << b << endl;
 },
 on("hello", arg_match) >> [](const string& name) {
 cout << "hello " << name << "!" << endl;
 }
};

assert(not f(make_any_tuple(42)));
assert(f(make_any_tuple("hello")));

callback that should be
invoked on a match; could
take a string as argument

matches tuples with
one (string) element of

value "hello"

Dominik Charousset iNET – HAW Hamburg 26

Partial Functions in libcppa

partial_function f {
 on("hello") >> [] {
 cout << "hello!" << endl;
 },
 on(atom("hello")) >> [] {
 cout << "atom(hello)!" << endl;
 },
 on_arg_match >> [](int a, int b) {
 cout << a << ", " << b << endl;
 },
 on("hello", arg_match) >> [](const string& name) {
 cout << "hello " << name << "!" << endl;
 }
};

assert(not f(make_any_tuple(42)));
assert(f(make_any_tuple("hello")));

atoms are constants, calculated
at compile time from short

strings (max 10 characters)

Dominik Charousset iNET – HAW Hamburg 26

Partial Functions in libcppa

partial_function f {
 on("hello") >> [] {
 cout << "hello!" << endl;
 },
 on(atom("hello")) >> [] {
 cout << "atom(hello)!" << endl;
 },
 on_arg_match >> [](int a, int b) {
 cout << a << ", " << b << endl;
 },
 on("hello", arg_match) >> [](const string& name) {
 cout << "hello " << name << "!" << endl;
 }
};

assert(not f(make_any_tuple(42)));
assert(f(make_any_tuple("hello")));

deduce types from callback
signature ➔ match tuples with

two integers

Dominik Charousset iNET – HAW Hamburg 26

Partial Functions in libcppa

partial_function f {
 on("hello") >> [] {
 cout << "hello!" << endl;
 },
 on(atom("hello")) >> [] {
 cout << "atom(hello)!" << endl;
 },
 on_arg_match >> [](int a, int b) {
 cout << a << ", " << b << endl;
 },
 on("hello", arg_match) >> [](const string& name) {
 cout << "hello " << name << "!" << endl;
 }
};

assert(not f(make_any_tuple(42)));
assert(f(make_any_tuple("hello")));

deduce second half of types from
callback signature ➔ match tuples with

two strings if first element is "hello"

Dominik Charousset iNET – HAW Hamburg 26

Partial Functions in libcppa

partial_function f {
 on("hello") >> [] {
 cout << "hello!" << endl;
 },
 on(atom("hello")) >> [] {
 cout << "atom(hello)!" << endl;
 },
 on_arg_match >> [](int a, int b) {
 cout << a << ", " << b << endl;
 },
 on("hello", arg_match) >> [](const string& name) {
 cout << "hello " << name << "!" << endl;
 }
};

assert(not f(make_any_tuple(42)));
assert(f(make_any_tuple("hello")));

libcppa's pattern matching is defined
only for any_tuple, because it requires

runtime type information

Dominik Charousset iNET – HAW Hamburg 26

Minimal Actor Example

void math_server() {
 become (
 on(atom("plus"), arg_match) >> [](int a, int b) {
 reply(atom("result"), a + b);
 }
);
}
void math_client(actor_ptr ms) {
 sync_send(ms, atom("plus"), 40, 2).then(
 on(atom("result"), arg_match) >> [=](int result){
 cout << "40 + 2 = " << result << endl;
 }
);
}
int main() {
 spawn(math_client, spawn(math_server));
 // ...
}

Dominik Charousset iNET – HAW Hamburg 27

Minimal Actor Example

void math_server() {
 become (
 on(atom("plus"), arg_match) >> [](int a, int b) {
 reply(atom("result"), a + b);
 }
);
}
void math_client(actor_ptr ms) {
 sync_send(ms, atom("plus"), 40, 2).then(
 on(atom("result"), arg_match) >> [=](int result){
 cout << "40 + 2 = " << result << endl;
 }
);
}
int main() {
 spawn(math_client, spawn(math_server));
 // ...
}

set partial function as message
handler; handler is used until

replaced or actor is done

Dominik Charousset iNET – HAW Hamburg 27

Minimal Actor Example

void math_server() {
 become (
 on(atom("plus"), arg_match) >> [](int a, int b) {
 reply(atom("result"), a + b);
 }
);
}
void math_client(actor_ptr ms) {
 sync_send(ms, atom("plus"), 40, 2).then(
 on(atom("result"), arg_match) >> [=](int result){
 cout << "40 + 2 = " << result << endl;
 }
);
}
int main() {
 spawn(math_client, spawn(math_server));
 // ...
}

send a message and then
wait for response

 (using a "one-shot handler")

Dominik Charousset iNET – HAW Hamburg 27

Minimal Actor Example

void math_server() {
 become (
 on(atom("plus"), arg_match) >> [](int a, int b) {
 reply(atom("result"), a + b);
 }
);
}
void math_client(actor_ptr ms) {
 sync_send(ms, atom("plus"), 40, 2).then(
 on(atom("result"), arg_match) >> [=](int result){
 cout << "40 + 2 = " << result << endl;
 }
);
}
int main() {
 spawn(math_client, spawn(math_server));
 // ...
}

this actor "loops" forever
(or until it is forced to quit)

Dominik Charousset iNET – HAW Hamburg 27

Minimal Actor Example

void math_server() {
 become (
 on(atom("plus"), arg_match) >> [](int a, int b) {
 reply(atom("result"), a + b);
 }
);
}
void math_client(actor_ptr ms) {
 sync_send(ms, atom("plus"), 40, 2).then(
 on(atom("result"), arg_match) >> [=](int result){
 cout << "40 + 2 = " << result << endl;
 }
);
}
int main() {
 spawn(math_client, spawn(math_server));
 // ...
}

this actor sends one
message and receives one

messages

Dominik Charousset iNET – HAW Hamburg 27

Minimal Actor Example

void math_server() {
 become (
 on(atom("plus"), arg_match) >> [](int a, int b) {
 reply(atom("result"), a + b);
 }
);
}
void math_client(actor_ptr ms) {
 sync_send(ms, atom("plus"), 40, 2).then(
 on(atom("result"), arg_match) >> [=](int result){
 cout << "40 + 2 = " << result << endl;
 }
);
}
int main() {
 spawn(math_client, spawn(math_server));
 // ...
}

usage example

Dominik Charousset iNET – HAW Hamburg 27

Network Transparency

Network

Node A Node B
Actor 1 Actor 2

MM2

Send a message to a remote (“published”) actor

Dominik Charousset iNET – HAW Hamburg 28

Network Transparency

Network

Node A Node B
Actor 1 Actor 2

MM2

was made accessible via
network by calling

publish(actor2, port)

middleman (MM)
transparently handles
network connections &

serialization

Send a message to a remote (“published”) actor

Dominik Charousset iNET – HAW Hamburg 28

Network Transparency

Network

Node A Node B
Actor 1 Actor 2

MM2System

re
m

ot
eA

ct
or

(h
os

t,p
or

t)

Send a message to a remote (“published”) actor

Dominik Charousset iNET – HAW Hamburg 28

Network Transparency

Network

Node A Node B
Actor 1 Actor 2

MM2MM1

Actor 2
Proxy

Send a message to a remote (“published”) actor

Dominik Charousset iNET – HAW Hamburg 28

Network Transparency

Network

Node A Node B
Actor 1 Actor 2

MM2MM1

Actor 2
Proxy

serialize deserialize

Send a message to a remote (“published”) actor

Dominik Charousset iNET – HAW Hamburg 28

Network Transparency

Network

Node A Node B
Actor 1 Actor 2

MM2MM1

Actor 2
Proxy

serialize deserialize

Actor 1
Proxy

Send a message to a remote (“published”) actor

Dominik Charousset iNET – HAW Hamburg 28

Network Transparency

Network

Node A Node B
Actor 1 Actor 2

MM2MM1

Actor 2
Proxy

serialize deserialize

Actor 1
Proxy

Send a message to a remote (“published”) actor

Dominik Charousset iNET – HAW Hamburg 28

Fault Tolerance – Linking Actors

alice

exit message
(non-normal exit reason)

link

bob

quit()

Dominik Charousset iNET – HAW Hamburg 29

Fault Tolerance – Linking Actors

alice

exit message
(non-normal exit reason)

link

bob

quit()

Actors can link their lifetime
Errors are propagated through exit messages
When receiving an exit message:

Actors fail for the same reason per default
Actors can trap exit messages to handle failure manually

Build systems where all actors are alive or have collectively failed

Dominik Charousset iNET – HAW Hamburg 29

Linking Actors in libcppa – Example

void bob_fun(); // will fail
void alice_fun() {
 auto bob = spawn<linked>(bob_fun);
 send(bob, "hello bob");
 become (/* will bob ever call back? */);
}
void carl() {
 self->trap_exit(true);
 auto alice = spawn<linked>(alice_fun);
 become (
 on(atom("EXIT"), arg_match) >> [](uint32_t r) {
 if (r != exit_reason::normal)
 cout << "something went wrong..." << endl;
 }
);
}

Dominik Charousset iNET – HAW Hamburg 30

Linking Actors in libcppa – Example

void bob_fun(); // will fail
void alice_fun() {
 auto bob = spawn<linked>(bob_fun);
 send(bob, "hello bob");
 become (/* will bob ever call back? */);
}
void carl() {
 self->trap_exit(true);
 auto alice = spawn<linked>(alice_fun);
 become (
 on(atom("EXIT"), arg_match) >> [](uint32_t r) {
 if (r != exit_reason::normal)
 cout << "something went wrong..." << endl;
 }
);
}

spawn bob with linked lifetime:
if bob fails, alice fails as well

(and vice versa)

Dominik Charousset iNET – HAW Hamburg 30

Linking Actors in libcppa – Example

void bob_fun(); // will fail
void alice_fun() {
 auto bob = spawn<linked>(bob_fun);
 send(bob, "hello bob");
 become (/* will bob ever call back? */);
}
void carl() {
 self->trap_exit(true);
 auto alice = spawn<linked>(alice_fun);
 become (
 on(atom("EXIT"), arg_match) >> [](uint32_t r) {
 if (r != exit_reason::normal)
 cout << "something went wrong..." << endl;
 }
);
}

self always points to the running
actor itself

Dominik Charousset iNET – HAW Hamburg 30

Linking Actors in libcppa – Example

void bob_fun(); // will fail
void alice_fun() {
 auto bob = spawn<linked>(bob_fun);
 send(bob, "hello bob");
 become (/* will bob ever call back? */);
}
void carl() {
 self->trap_exit(true);
 auto alice = spawn<linked>(alice_fun);
 become (
 on(atom("EXIT"), arg_match) >> [](uint32_t r) {
 if (r != exit_reason::normal)
 cout << "something went wrong..." << endl;
 }
);
}

receive exit messages as
ordinary messages; overriding

the default behavior

Dominik Charousset iNET – HAW Hamburg 30

Linking Actors in libcppa – Example

void bob_fun(); // will fail
void alice_fun() {
 auto bob = spawn<linked>(bob_fun);
 send(bob, "hello bob");
 become (/* will bob ever call back? */);
}
void carl() {
 self->trap_exit(true);
 auto alice = spawn<linked>(alice_fun);
 become (
 on(atom("EXIT"), arg_match) >> [](uint32_t r) {
 if (r != exit_reason::normal)
 cout << "something went wrong..." << endl;
 }
);
}

carl traps exit messages of alice,
alice would fail whenever carl

fails (default behavior)

Dominik Charousset iNET – HAW Hamburg 30

Linking Actors in libcppa – Example

void bob_fun(); // will fail
void alice_fun() {
 auto bob = spawn<linked>(bob_fun);
 send(bob, "hello bob");
 become (/* will bob ever call back? */);
}
void carl() {
 self->trap_exit(true);
 auto alice = spawn<linked>(alice_fun);
 become (
 on(atom("EXIT"), arg_match) >> [](uint32_t r) {
 if (r != exit_reason::normal)
 cout << "something went wrong..." << endl;
 }
);
}

exit messages always consist of the
atom 'EXIT' and the exit reason as uint32

Dominik Charousset iNET – HAW Hamburg 30

Linking Actors in libcppa – Example

void bob_fun(); // will fail
void alice_fun() {
 auto bob = spawn<linked>(bob_fun);
 send(bob, "hello bob");
 become (/* will bob ever call back? */);
}
void carl() {
 self->trap_exit(true);
 auto alice = spawn<linked>(alice_fun);
 become (
 on(atom("EXIT"), arg_match) >> [](uint32_t r) {
 if (r != exit_reason::normal)
 cout << "something went wrong..." << endl;
 }
);
}

a normal exit reason would
indicate that alice is done

(no failure occurred)

Dominik Charousset iNET – HAW Hamburg 30

libcppa Facts Sheet

Open source (GPLv2) C++11 actor library
Runs on GCC ≥ 4.7, Clang ≥ 3.2 (Linux + Mac)
Will run on Windows as soon as MSVC supports required features
Hosted on GitHub
Feedback & contributions always welcome!
Hot topics in the iNET group:

Actors on ARM / embedded systems
Actors & publish/subscribe (multicast)
Message routing & composability

Dominik Charousset iNET – HAW Hamburg 31

Agenda

1 Why focus on concurrency & distribution?
2 The problem with implicit sharing
3 The actor model & libcppa:

Concurrency without threads
Transparent inclusion of OpenCL
Pattern matching
Network transparency

4 Limitations Induced by C++11

Dominik Charousset iNET – HAW Hamburg 32

Limitations Induced by C++11

C++ can not serialize functions or classes:
No migration of actors to other nodes at runtime
Function spawn can not create actors on remote nodes

No language support for pattern matching
More code noise compared to functional languages
Pattern matching is limited to any_tuple

No reflection-like access to data types (C++1y?)
Serialization of messages managed by libcppa’s type system
User-defined data types must be announced

Dominik Charousset iNET – HAW Hamburg 33

Limitations Induced by C++11

C++ can not serialize functions or classes:
No migration of actors to other nodes at runtime
Function spawn can not create actors on remote nodes

No language support for pattern matching
More code noise compared to functional languages
Pattern matching is limited to any_tuple

No reflection-like access to data types (C++1y?)
Serialization of messages managed by libcppa’s type system
User-defined data types must be announced

Dominik Charousset iNET – HAW Hamburg 33

Limitations Induced by C++11

C++ can not serialize functions or classes:
No migration of actors to other nodes at runtime
Function spawn can not create actors on remote nodes

No language support for pattern matching
More code noise compared to functional languages
Pattern matching is limited to any_tuple

No reflection-like access to data types (C++1y?)
Serialization of messages managed by libcppa’s type system
User-defined data types must be announced

Dominik Charousset iNET – HAW Hamburg 33

Thank you for your attention!

Developer blog: http://libcppa.org

Sources: https://github.com/Neverlord/libcppa

iNET working group: http://inet.cpt.haw-hamburg.de

Dominik Charousset iNET – HAW Hamburg 34

