
Emerging Communication Patterns
in Actor Systems

Dominik Charousset
dominik.charousset@haw-hamburg.de

iNET RG, Department of Computer Science
Hamburg University of Applied Sciences

November 2014



Agenda

1 Fallacies of Actor Messaging

2 Overload Scenarios & Communication Patterns

3 Goals & Design Space

4 Example Frameworks

5 Conclusion

Dominik Charousset iNET – HAW Hamburg 2



Fallacies of Distributed Computing

New developers often have a set of assumptions (L. P. Deutsch):

The network is reliable
Latency is zero
Bandwidth is infinite
The network is secure
Topology doesn’t change
There is one administrator
Transport cost is zero
The network is homogeneous

These assumptions ultimately prove false, leading to performance issues
and system failure.

Dominik Charousset iNET – HAW Hamburg 3



Fallacies of Actor Programming

Some of Deutsch’s fallacies also apply to actor programming:

Latency is zero
Bandwidth is infinite
Topology doesn’t change
There is one administrator
Transport cost is zero

Dominik Charousset iNET – HAW Hamburg 4



More Actor Fallacies

There are also new ones:

Unbound mailboxes means infinite space
The runtime is intelligent

Dominik Charousset iNET – HAW Hamburg 5



The Truth about Message Passing

All messages go through ...

... the river of slime

Dominik Charousset iNET – HAW Hamburg 6



The Truth about Message Passing

All messages go through ...

... the river of slime

Dominik Charousset iNET – HAW Hamburg 6



The Slime

Actors drop messages into the slime
Other actors eventually take it out
The slime is not intelligent
The slime fights back if you overload it

Dominik Charousset iNET – HAW Hamburg 7



Angering the Slime

How to anger the slime:
Send large messages to compute very little
Add many, many buffers by building complex topologies
Send messages faster than they are consumed

If you do any of this, the slime will slow you down or even kill you.

Dominik Charousset iNET – HAW Hamburg 8



Agenda

1 Fallacies of Actor Messaging

2 Overload Scenarios & Communication Patterns

3 Goals & Design Space

4 Example Frameworks

5 Conclusion

Dominik Charousset iNET – HAW Hamburg 9



Causes for Overloads

Different communication patterns cause different overload scenarios
External systems send too many requests, all nodes overloaded
Single dispatcher (1:N) acts as bottleneck, others under-utilized
Dispatcher (1:N) has no feedback channel, all workers overloaded
(Accidental) N:1 message flows shuts down a single node

Dominik Charousset iNET – HAW Hamburg 10



1:N Patterns

S

WW WW

1 Supervisor (S)
N Workers (W)

Dominik Charousset iNET – HAW Hamburg 11



Select Single Worker

S

WW WW

Select / Anycast

Supervisor delegates single work items
Strategy is critical (round-robin, shortest mailbox, ...)

Dominik Charousset iNET – HAW Hamburg 12



Broadcast

S

WW WW

Broadcast

Supervisor multiplies work items
Fair scheduling among workers required

Dominik Charousset iNET – HAW Hamburg 13



Scatter/Gather

S

WW WW

Scatter/Gather

Supervisor multiplies work items & collects/combines results
Same as broadcast + heavy load on Supervisor

Dominik Charousset iNET – HAW Hamburg 14



N:1 Patterns

A

CC CC

Single actor (A) offering a service
N clients (C) using it

Dominik Charousset iNET – HAW Hamburg 15



N:M Compositions

S

WW WW

CC CC A

CC CC

W

WW WW

Real-world systems are compositions of several patterns
Complex service hierarchies, patterns emerge during development

Dominik Charousset iNET – HAW Hamburg 16



Load Management

Actors must manage the flow of messages
Actors in critical path must be “defended” against overload
Feedback channel between receiver and sender(s) needed
Senders must adopt to consumption rate

Dominik Charousset iNET – HAW Hamburg 17



Agenda

1 Fallacies of Actor Messaging

2 Overload Scenarios & Communication Patterns

3 Goals & Design Space

4 Example Frameworks

5 Conclusion

Dominik Charousset iNET – HAW Hamburg 18



Preliminary Considerations

Messaging layer cannot “stop” actors from sending (too much)
Slime is not intelligent, actors are (should be)
Latency cannot be foreseen or precalculated, only observed
Bursts must not stop the system from running
Silently dropping messages not an option

Errors have to be explicit
Dropping messages is a valid strategy, if observable

Dominik Charousset iNET – HAW Hamburg 19



Goals

Make emerged communication patterns explicit
Traceable interaction between identifiable subsystems
Ease reasoning about software architecture

Provide high-level software building blocks
“Standardized” message types for composable interfaces
Simple setup for common patterns, configurable and tunable

Dominik Charousset iNET – HAW Hamburg 20



Architecture Design Space

“Bottom-Up”: Build each subsystem individually as black box
Hides service hierarchies
No inter-component dependencies
But: overhead (load management) between all components

“Top-Down”: Build topology for large (sub-) system
Service hierarchies explicitly modeled
Load management only once at each critical path
But: (potentially) high complexity

Dominik Charousset iNET – HAW Hamburg 21



Load Management

Do as much work as possible, but not more
Buffers can become harmful: system should stay responsive
Reject task as soon as possible, before committing resources
Once task is accepted, complete as early as possible
Give clients clear indication why task has been rejected

User might try again later (temporary burst)
Allow non-interactive client to slow down or propagate error

Dominik Charousset iNET – HAW Hamburg 22



Management Strategies

Token Bucket
Each task consumes a token
One token per worker + buffer for small bursts
Finished tasks release token
Reject task if no token is left

Rate Limit
Allow only X tasks/second
Based on engineered capacity or adaptive

Wait queue with limited sojourn time
Sojourn time: time between enqueue & dequeue
Restrict time elements are allowed to stay in queue
Reject task if no worker became available in due time
Defines worst case latency

Dominik Charousset iNET – HAW Hamburg 23



Load Management Design Space

Static vs. dynamic setup (templated vs. virtual dispatching)
Templated code makes algorithm choice explicit
Virtual dispatching allows for runtime configuration

Feedback loop design (negative vs. positive)
Small buffer at worker can minimize idle time
No buffer at worker avoids delaying tasks unnecessarily

Buffer sizes and adaption rates
Balance between additional latency and short burst smoothening
Configurable rates require good guidance for users

Dominik Charousset iNET – HAW Hamburg 24



Agenda

1 Fallacies of Actor Messaging

2 Overload Scenarios & Communication Patterns

3 Goals & Design Space

4 Example Frameworks

5 Conclusion

Dominik Charousset iNET – HAW Hamburg 25



Erlang: “Jobs” Load Regulation Framework

Regulation at the edges
Highly configurable load management framework
Protects core nodes from overloads by rejecting excessive work
Inter-node feedbacks, pluggable queues, etc.
Subsystem as black box

Dominik Charousset iNET – HAW Hamburg 26



Akka: Routers

Route incoming messages to outbound actors
Several predefined strategies:

RoundRobinRoutingLogic
RandomRoutingLogic
SmallestMailboxRoutingLogic
BroadcastRoutingLogic
ScatterGatherFirstCompletedRoutingLogic
ConsistentHashingRoutingLogic

Serve as building block for load management

Dominik Charousset iNET – HAW Hamburg 27



Agenda

1 Fallacies of Actor Messaging

2 Overload Scenarios & Communication Patterns

3 Goals & Design Space

4 Example Frameworks

5 Conclusion

Dominik Charousset iNET – HAW Hamburg 28



Conclusion

Communication patterns should be explicitly designed
Understanding message flow is crucial for performance
Ideal position of load managers depends on patterns

Dominik Charousset iNET – HAW Hamburg 29



Thank you for your attention!

Feedback and ideas?

Dominik Charousset iNET – HAW Hamburg 30


	Fallacies of Actor Messaging
	Overload Scenarios & Communication Patterns
	Goals & Design Space
	Example Frameworks
	Conclusion

