
Dynamic Service-Orientation for Software-Defined In-Vehicle Networks

2023 IEEE 97th Vehicular Technology Conference: VTC2023-Spring June 20–23, 2023 | Florence, Italy

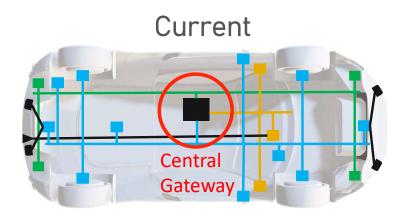
<u>Timo Häckel</u>, Philipp Meyer, Mehmet Mueller, Jan Schmitt-Solbrig, Franz Korf, and Thomas C. Schmidt

Dept. Computer Science, Hamburg University of Applied Sciences, Germany

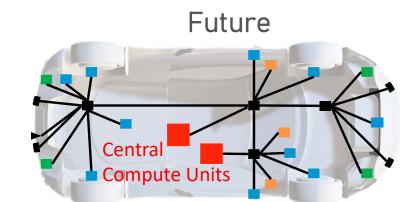
Outline

- I. Evolution of In-Vehicle Networks
- II. SDN-Supported Automotive Service-Oriented Architecture
- III. Service Discovery Performance Analysis
- IV. Conclusion and Outlook

Evolution of In-Vehicle Networks


VTC2023-Spring

Dynamic Service-Orientation for Software-Defined In-Vehicle Networks



Evolution of In-Vehicle Networks

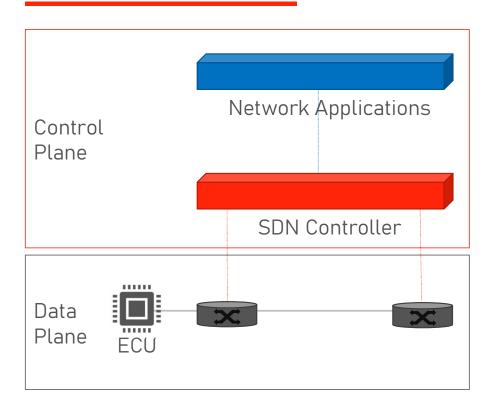
- Heterogeneous bus systems
- Pre-compiled communication
- Static configuration
- No flow control capabilities

HAMBURG

- Time-Sensitive Networking
- Service-Oriented Architecture
- Dynamic Service Discovery
- Software-Defined Networking

Dynamic Service-Orientation for Software-Defined In-Vehicle Networks

VTC2023-Spring


SOME/IP Protocol for Automotive SOA

- Distributed service discovery with multicast
 - Susceptible to spoofing, no trust mechanism
- Publish/subscribe and request/response model
 - Access control and authentication are missing
- Multiple instances of the same service can coexist
 - No mobility and failover mechanism in the network
- UDP(+multicast)/TCP-IP endpoints
 - Requires additional group management
 - Dynamic SOA does not translate to lower layer QoS

Software-Defined Networking in Cars

- Flexible and updatable network
- Flow awareness and isolation
- Central control even for real-time flows (TSSDN)
- Secure dynamic traffic steering

 \rightarrow SDN elevates safety and security for in-vehicle communication

VTC2023-Spring

||.

SDN-Supported Automotive Service-Oriented Architecture

VTC2023-Spring

ldea

- Adapt the network to running services, locations and paths
- Central controller can unlock future potentials
 - Optimize service discovery
 - Enforce quality-of-service
 - Enable seamless service mobility
 - Respond to incidents (failover)
 - Protect service discovery

\rightarrow SOME/IP protocol remains unaltered

SOME/IP – SDN Interaction

SDN Vanilla

- Intercept all unknown flows
- Learn MAC and IP addresses
- Flood multicast requests and announcements on every hop
- Set up path when first data frame arrives
- Requires additional group management, e.g., IGMP

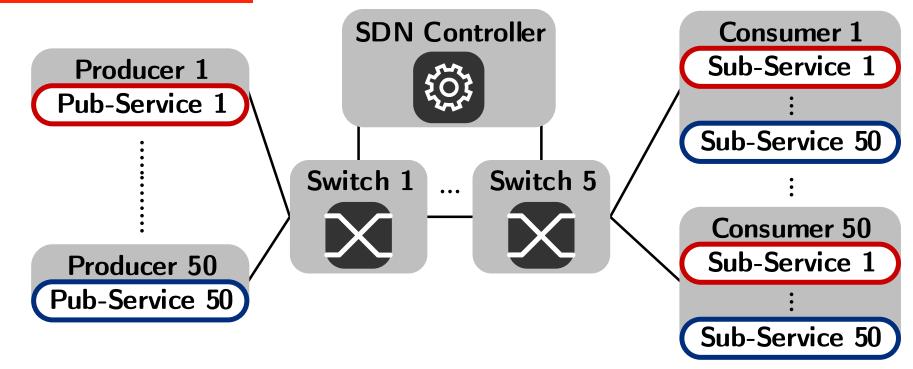
SOME/IP aware

- Intercept discovery packets
- Learn about services
- Cache announcements and respond to requests
- Set up path when subscription established
- Adapt paths as subscribers join or leave

Controller as rendezvous point → constant distance for nodes

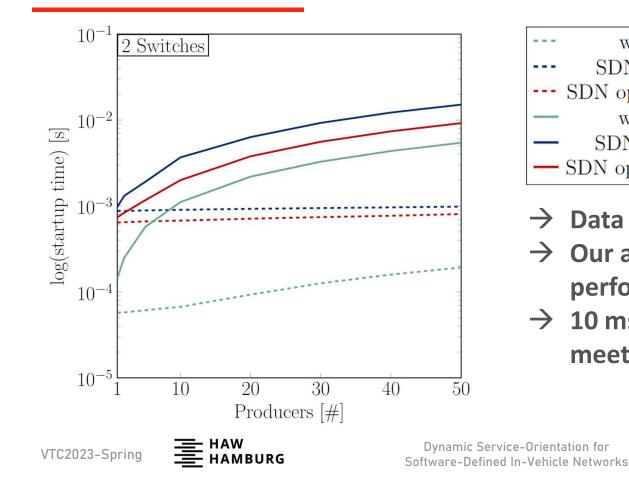
|||.

Service Discovery Performance Analysis


VTC2023-Spring

Dynamic Service-Orientation for Software-Defined In-Vehicle Networks

Simulation Study in OMNeT++



Three scenarios: w/o SDN, SDN vanilla, optimized SDN

VTC2023-Spring

Scalability Comparison

	w/o SDN,	1	subscription
	SDN vanilla,	1	subscription
S	SDN optimized,	1	subscription
	w/o SDN,	2500	subscriptions
—	SDN vanilla,	2500	subscriptions
— S	DN optimized,	2500	subscriptions

- \rightarrow Data transfer not impacted
- → Our approach improved SDN performance by up to 50%
- → 10 ms for 2500 subscriptions meets automotive requirements

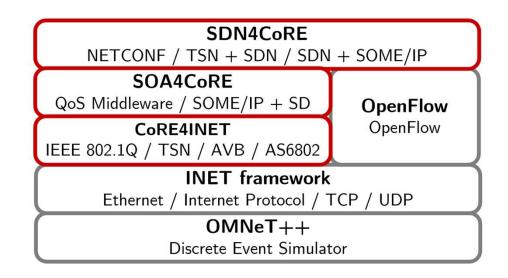
IV.

Conclusion and Outlook

VTC2023-Spring

Dynamic Service-Orientation for Software-Defined In-Vehicle Networks

Conclusion and Outlook


- Dynamic in-vehicle services require network support
- SDN can elevate safety and security for in-vehicle communication
- SOME/IP-aware controller
 - Acts as rendezvous point, constant distance for nodes
 - Transparent for services, data transfer is not impacted
 - Improves service discovery performance with SDN by up to 50%
 - 10ms start up for 2500 subscriptions meets automotive requirements
- Future work: Optimize service discovery, mobility, and reconfiguration for improved robustness, QoS support, and security enhancements

Dynamic Service-Orientation for Software-Defined In-Vehicle Networks

Simulation Frameworks available Open Source at

Contact: Timo Häckel - <u>timo.haeckel@haw-hamburg.de</u> Hamburg University of Applied Sciences, Germany

Strategies for Integrating Control Flows in Software-Defined In-Vehicle Networks and Their Impact on Network Security

