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The Internet of Things (IoT)
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● Network of appliances
○ Often constrained embedded devices
○ Act as sensors and actuators
○ Depend on machine-to-machine communication
○ Connected through Internet standards

● Typical communication patterns
○ Data collection: many-to-one
○ Control: one-to-many

● Platform for distributed applications



Problem Statement

● Highly distributed application design
● Development requires specialized knowledge

○ Communication, synchronization and scalability
○ Usually in low-level languages (such as C)
○ Error-prone and hard to debug

● Deployment is platform-specific
● No established programming model
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● Ease application development
● Reduce the development overhead
● Professionalization

○ Reusability, Robustness, Portability
● Promote experimentally driven research

○ IoT environments often unpredictable
○ Reproducibility is not a given
○ Provide tools to test and deploy software

● Search for the glue of IoT programming

Relevance of Research
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Approach

● Actors as base entities
○ Run concurrently & in isolation
○ Can spawn new actors

● Distributed runtime environment
○ Network transparent message passing
○ Distributed error-handling

● Network of actors as a design candidate
○ Program distributed applications
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● Implementation of the actor model
● Available under Revised BSD or Boost license
● Small memory footprint
● Different runtime implementations

○ Memory management & scheduler
● Static type-checking
● Runtime inspection tools

The C++ Actor Framework
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Adaption to the IoT

● Communication protocols
○ Lossy links are common
○ Handle infrastructure failure

● Requires suitable messaging layer
○ Message exchange
○ Synchronization
○ Error propagation and mitigation

● Security
○ Nodes may contain private data
○ Encryption & authentication

9



Network Stack
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● Transactions
○ Each message exchange is independent
○ Even if it is fragmented

● CoAP
○ Duplicate message detection
○ Reliable message transfer
○ Fragmentation of large messages

● CAF
○ Message header compression
○ Error propagation

Transactional Layer
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Support of Embedded OSs

● The friendly Operating System of the IoT
● POSIX compliance
● Energy efficient
● Real-time capable
● Development in C or C++
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● Goal: CAF on RIOT
○ libcaf_core
■ native port (done)
■ stm32f4discovery (WIP)

○ Implement network stack in CAF (open)
○ libcaf_io
■ native port (open)
■ stm32f4discovery (open)

● Takes a surprising amount of time
● Progress can be found on Github

○ Branches are topic/riot and topic/caf

Roadmap
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The First Idea

● Let’s use GCC to compile for native
○ Substitute pthread for RIOT’s pthread
○ “what():  Enable multithreading to use std::thread: 

Operation not permitted”
● Dig into GCC source code

○ if (!__gthread_active_p()) { /* err */ }
○ Removing the error check helps

● Turned to the libstdc++ mailing list
○ “Using a custom pthreads implementation is not 

expected, so it's not surprising if it doesn't work 
perfectly. (...)”

● Undesirable workflow anyways 15



Thread, Mutex and Condition

● Preserve API of the Standard Template 
Library (STL)
○ Few changes to CAF implementation
○ Familiar to most C++ developers

● Introduce new headers
○ STL or RIOT-based depending on build flag
○ Use caf namespace to prevent ambiguity
○ Omits pthread indirection

#ifdef __RIOTBUILD_FLAG
// Our implementation
#else
// Include STL header, provide functions in caf namespace
#endif
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Getting Threads to Run

● Mostly straight forward (e.g., clang, GCC, …)
● Implemented thread stack as a member

○ Clang-built executable worked fine
○ GCC-built executable crashed when it entered main
○ Switched GDB to asm mode
○ Stack pointer incremented by an unbelievable amount

● The stack is allocated on the heap
○ A stack on a stack of the same size is a bad idea
○ Detach requires it to be no member
○ Questionable on embedded
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How About Locks?

● Removed the destructor of unique_lock
○ Critical for its functionality (release the mutex)
○ My test was an example from the internet
○ Always unlocks the mutex manually (unnecessarily)

● Triggered me to write my own tests
○ Tests for thread, mutex and condition variable
○ Should have done this previously
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● Disabled features
○ Memory Management
○ CAF examples & unit tests

● Changes for the compiler
○ Include modules from RIOT
■ sys, core and cpu
■ Will be linked in a later step

○ Static and 32 Bit
○ Include C files with: extern “C”

Compiling CAF for RIOT
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Static Initialization

● A simple example with CAF on RIOT crashes
○ GDB points to comparison with uninitialized objects
○ These should have been initialized before main
○ Test reveals that static initialization is not working

● GCC offers an array with init functions
○ RIOT startup code never called them

● RIOT mailing list provided a fix for native 
○ Only works for native with GCC
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GCC Static Initialization

Provided by @dangnhat

typedef void (*func_ptr)(void);
extern func_ptr __init_array_start[];
extern func_ptr __init_array_end[];
int size = __init_array_end - __init_array_start;
int i, flag = 0;
for (i = 0; i < size; i++) {
    if (__init_array_start[i] == startup) {
        flag = 1;
        continue;
    }
    if (flag == 1){
        (__init_array_start[i])();
    }
}
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Chrono

● By now we have basic functionality on native
○ Start actors and send messages
○ But delayed messages never arrive

● Time is measured differently on RIOT
○ OS X/Linux use seconds since 1970-01-01
○ RIOT uses time since system start

● Most of the std::chrono is header only
○ We can include the header
○ Provide our own implementation
■ Timepoint class 
■ Function to acquire the time 
■ Breaks STL specification
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Demo Time!
(native)



● CMake supports toolchain files
○ -DCMAKE_TOOLCHAIN_FILE
○ Configure architecture, processor, compiler and flags
○ Created a file for the stm32f4discovery

● CMake automatically tests the compiler
○ Test fails when using the arm-none-eabi
○ Module CMakeForceCompiler should fix this
○ Did not work for me, can be achieved manually

CMake Cross compiling
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Moving to arm-none-eabi

● Startup files handle static initialization
● libstdc++ for ARM is not complete

○ Can not provide hardware/OS dependent impl.
○ Does not include to_string

● Missing dso handle
○ Must be defined during startup to use global objects

● Actors use hardware address for their ID
○ stm32f4 does not have one, make it random
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Embedded Debugging

● There is a GDB for arm-none-eabi
● CAF with debug symbols is huge

○ Only link specific objects with debug
● Files not found to show code position

○ Moving code to the “right” path helps
● Some breakpoints can not be set
● No backtrace 
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Where we are now

● Extended STL functionality on RIOT
○ Thread, mutex, condition variable, (chrono)
○ Needs to be turned into a PR

● Limited support for CAF on RIOT
○ On native port all my tests succeeded
○ On hardware some problems persist
○ Work on IO did not start yet
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Demo Time!
(stm32f4discovery)
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Exceptions

● Disabled in GCC for some architectures
○ Luckily not for the stm32f4discovery

● Exception cause the board to restart
● Requires memory specific region

○ Saved to eh_frame section
○ Found startup files only
○ Support for other boards in RIOT

● Did not work for the stm32f4discovery
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Security

● Authentication, authorization and encryption
○ Establish encrypted channels (DTLS)
○ Generate key at local TA (key generation)
○ Authenticate runtime environments

● Challenges
○ Constrained power & energy
○ Nodes physically acquired

● Crypto is hard to do right
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Test Environments

● Comfortable and fast vs. realistic and slow
● RIOT offers a native port

○ Not a realistic environment
● Few nodes in our lab

○ 7 Raspberry Pis running Linux
● FU Berlin (DES Testbed)

○ 60 nodes distributed in several rooms and floors
● INRIA Technology Institute in France

○ Connected through RIOT and Safest
○ 2700 nodes distributed through France
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● IA-OEM-DAUB1
○ Drivers for Windows and Linux (only old kernels)
○ Not open, but include binary-blob

● atusb
○ Tip from the linux wpan IRC
■ Drivers not in mainline kernel (but netnext)
■ Merged our own kernel for the Raspberry Pi

○ The last one was delivered to us
○ Design is open, but expensive to produce only a few

● R-Idge
○ Suggested on the RIOT mailing list
○ Easy to use & available

6LoWPAN USB Dongles
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Conclusion

● Took much longer than I expected
○ Finding the thread mistake took me ~1 ½ weeks
○ Spent a lot of time with the debugger

● Some mistakes could have been avoided
○ By a complete picture of the functionality
○ More test-cases (e.g., test-first)

● Will probably be faster next time (libcaf_io?)
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Some Future Work

● Get this running on the stm32f4discovery
● Move threads, mutex, ... to RIOT
● Implement the network stack
● Port libcaf_io to RIOT
● Enable exceptions
● Include a security concept
● Do lots of testing
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Thanks for Listening

Thanks to Martin and Dominik,
they helped a lot!
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