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Non-uniform Memory Access (NUMA)

• Memory access is slow compared to processor speed

• Main memory distributed among cores

• Latency for local access is smaller

• This architecture is accessible via a NUMA API
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NUMA Hardware Example
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A sample NUMA architecture with 8 nodes and 64 processing units.
(Twisted Ladder Topology)
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Does a locality-aware scheduler improve the performance of CAF?
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Introduction



CAF

• Actor library written in C++11
• Low memory footprint
• Fast, lock-free mailbox implementation
• Type-safe message passing

• Focus on scalability
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The CAF Scheduler

• Cooperative scheduler running in user space

• Random work-stealing
• Fixed number of workers with separate job queues
• Workers process their own queue until it is empty
• Then, pick a random victim worker to steal one job

• No a priori knowledge of the application behavior required

⇒ How can we optimize data locality in the scheduler?
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Data Locality

Communication Locality (CL)

• Minimize effort for communication

• Schedule actors near their received messages

• Process cached messages directly when possible

Execution Locality (EL)

• Minimize the effort to access state

• Execute actors near their initial worker

• Return actors to the same NUMA node
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NUMA-Aware Work Stealing



Probabilistic Work Stealing (PWS)

• Increase probability to steal from nearby workers 1

• Originally designed for computer networks

“The probability to become a victim is proportional to the
inverse of the distance to the thief.”

1Quintin et al., 2010, Hierarchical Work-stealing.
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Erlang: Hubs and Affinity

Colocate actors (hubs) with their communication partners
(affinity group). 2

• Initial Actor Placement
• Developer give hints when spawning actors
• Hubs have their own affinity group and are spread over workers
• Regular actors inherit affinity and are placed close to their hub
• Actors store their initial NUMA node as their home node

• Hierarchical Load-Balancing and Work-Stealing
• A periodic load-balancer migrates actors back home
• Actors can be move across nodes to balance the system
• Work stealing prefers workers in the proximity

2Francesquini et al., 2013, Actor Scheduling for Multicore Hierarchical
Memory Platforms
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Locality-Guided Scheduling



Weighted Work Stealing

LGS implements weighted work stealing:

• Improve probability of stealing based on NUMA architecture

• Interpret processor architecture as a small distributed system

• NUMA-hops between PUs indicate distance
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Picking Victims

Preparation during startup

• Each worker sorts other workers into groups g0 ⊆ . . . ⊆ gk

• g0 contains direct neighbors, gk contains all other workers

• Index correlates with distance (lower is better)

Strategy at runtime

• Try to steal from each group in order of increasing index

• Pick workers from each group at random

• Start at the beginning after a successful steal

⇒ Minimal runtime overhead with configurable granularity.
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Actor Pinning

LGS implements automatic static soft actor pinning:

• Pinning: actors have a "favored" worker for execution

• Soft: actors can be stolen for balancing reasons

• Static: the "favored" worker is set only once

• Automatic: no developer interaction required

13



Initial Actor Placement

• Store worker as home processing unit (HPU) on first execution

• Stolen actors choose a worker on their original NUMA node
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Scheduling

• Actors can be stolen by arbitrary workers

• Idle actors are scheduled on their HPU or a direct neighbor
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Evaluation



Test Setup

• Server running SUSE Linux (kernel 3.16.7)
• Four AMD Opteron 6376 processors at 2.3 GHz
• Eight NUMA nodes, each with eight cores and 64GB memory
• NUMA access via hwloc 3

• GCC 4.8.3, Java 1.8.0_40 (OpenJDK), hwloc 1.11.4rc2-git

• Activated cores scale from 4 to 64 (in steps of 4)

• Mean runtime in secs over 10 runs with 95% conf. interval

3http://www.open-mpi.de/projects/hwloc/
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Benchmark: Matrix Search

Self written benchmark with heavy memory access

• Solve word-finding puzzles distributed by a coordinator

• Actors hosts their own word-grid, aligned row-wise in memory

• Only matches along columns are valid to bypass prefetching

• Uneven puzzle complexity for irregular rescheduling
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Results: Matrix Search
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• Similar performance for up to 12 workers, then LGS pulls ahead
• Difference increases until 28 workers (bus capacity?)
• Overall LGS outperforms CLS by up to 26.6% 18



Benchmark: Condict & Concsll

• Central data structure encapsulated by central actor

• Others access structure by sending get & put requests

• Condict: dictionary with read/write complexity O(1)

• Concsll: sorted liked list with read/write complexity O(N)

• Part of the Savina Benchmark Suite 4

4Imam et al., 2014, Savina – An Actor Benchmark

19



Results: Condict – Concurrent Dictionary
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• Both CAF implementations perform well
• CLS up to 17.6% faster than LGS
• Remaining impls. show a strong increase in the beginning 20



Results: Concsll – Concurrent Sorted Linked List
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• Similar performance except for CLS and Akka
• LGS shows the best performance (32.5% better than CLS)
• Data structure access explains performance differences 21



Savina Summary
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• Relative runtime of LGS compared to CLS in CAF
• A few benchmarks show excellent results
• Performance degrades significantly for others 22



Conclusion & Future Work



Conclusion

• NUMA architectures exposed through software APIs

• LGS exploits this knowledge to focus on execution locality
• Weighted Work Stealing
• Soft Actor Pinning

• Extensive evaluation
• Memory intensive benchmarks perform excellently
• Significantly impacts other benchmarks
• Maybe suitable as an optional strategy

• Future Work
• Examine the possibility for scheduling hints
• Comparison with other NUMA-aware actor systems
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Q
A

Thank you for your attention.
Questions?

Developer blog: http://actor-framework.org
Sources: https://github.com/actor-framework/

iNET: https://inet.haw-hamburg.de

24

http://actor-framework.org
https://github.com/actor-framework/
https://inet.haw-hamburg.de

