

Authenticated and Secure Automotive Service Discovery with DNSSEC and DANE

Mehmet Mueller, Timo Häckel, Philipp Meyer, Franz Korf and Thomas C. Schmidt 26 April – 28 April 2023, Istanbul, Türkiye 2023 IEEE Vehicular Networking Conference (VNC)

Dept. Computer Science, Hamburg University of Applied Sciences, Germany {mehmet.mueller, timo.haeckel, philipp.meyer, franz.korf, t.schmidt}@haw-hamburg.de

Outline

- 1. Introduction to In-Vehicle Networks
- 2. Service Authenticity for Automotive Service-Oriented Architecture
- 3. DNSSEC-based Service Discovery Performance
- 4. Conclusion & Outlook

Future In-Vehicle Networks

Automotive Security Issues

- Previous automotive protocols target closed network environments no security
- SOME/IP is a widely accepted automotive SOA middleware
 - Provides a complementary service discovery protocol
 - Service discovery lack security mechanisms
- Related work introduces custom security measures based on pre-deployed certificates
- Not proven, complex in managing and updating certificates
- Common service authenticity on the Internet uses certificates or keys
- ightarrow DNSSEC with DANE feature robust service authenticity w/ certificate and key management

Service Authenticity Based on DNSSEC and DANE

DNSSEC Chain of Trust

- Resource Records (RRs) contain endpoint information
- DNSSEC ensures integrity and authenticity of all RRs with signature records (RRSigs)
- DANE introduces TLSA RR to store service certificates
- Robust security solution with established key and certificate management mechanisms
- Possibility for private DNSSEC namespaces

Envisioned Deployment Scenario

- → Offline operation w/o pre-deployed certificates
- $\rightarrow \textbf{Secure, established} \\ \textbf{update scheme} \\$

SOME/IP Service Discovery

Our Approach: DNSSEC in SOME/IP Service Discovery

- ightarrow DNSSEC ensures authentic endpoint information
- → Challenge-response mechanism ensures publisher authenticity

DNSSEC-based SOME/IP Service Discovery Implementation

- Implementation based on vsomeip reference implementation
- Integrated standard DNS resolver in vsomeip
- Integrated standard cryptographic operations and algorithms for service authentication

Performance Analysis Based on SOME/IP Reference Implementation

 $\label{eq:decompared} \rightarrow \mbox{Discovery performance negligible} \\ \mbox{compared to multicast scattering}$

→ Crypto operations main impact on subscription latency

Benefits of Secure Service Discovery with DNSSEC and DANE

- Over 15 years of operational experience of DNSSEC
- Hardened for global deployment
- Pre-deployed certificates not needed
- Established mechanisms for key and certificate management
- Assured service authenticity using a challenge-response mechanism
- Scalable without delay penalty for service discovery

Conclusion & Outlook

Summary

- SOME/IP is widely accepted but lacks service authenticity
- DNSSEC with DANE contribute a robust security solution and key management
- DNS namespace preserving SOME/IP SD query properties
- Endpoint authentication with a challenge-response mechanism

Future Work

- Security design and assessment for remaining SOME/IP service primitives
- Operational guidelines for namespace management and service updates
- Evaluation of scalability in a production-grade vehicle

Authenticated and Secure Automotive Service Discovery with DNSSEC and DANE

Contact: Mehmet Mueller

mehmet.mueller@haw-hamburg.de

Dept. Computer Science, Hamburg University of Applied Sciences, Germany

SOME/IP Service Discovery Protocol

- Endpoint information from offers is not authenticated
- Endpoint itself is not authenticated during subscription
- No protection against Man-In-The-Middle attacks

SOME/IP lacks service authentication.

Service Authenticity with Asymmetric Cryptography (Simple View)

DNSSEC + DANE

DNS Namespace

IP address	L4-protocol	port number
(4 Byte)	(1 Byte)	(2 Byte)
10.0.0.5	UDP	30509

QNAME

RDATA (SVCB)

_someip.minor.major.instance.id.service.
_someip.major.instance.id.service.
_someip.minor.instance.id.service.
_someip.minor.major.id.service.
_someip.instance.id.service.
_someip.major.id.service.
_someip.minor.id.service.
_someip.minor.id.service.
_someip.id.service.

port=30509 ipv4hint=10.0.0.5 protocol=UDP instance=2 major=1 minor=2

SOME/IP SD Modification for Using DNSSEC

SOME/IP SD Modification for Using DNSSEC

Feature Comparison

Feature	SOME/IP SD (and related work)	SD w/ DNSSEC and DANE (our approach)
Introduction and deployment	AUTOSAR, Nov. 2016	IETF, DNSSEC 1997
Target environment	Local in-vehicle network	Global Internet deployment
Service discovery scheme	Multicast	Unicast DNS
Endpoint detail distribution	Offers w/ runtime location	Consumer requested records
Authentication scheme	None by default, challenge- response, central authoriza- tion server	Challenge-response during subscription
Certificate distribution and update procedure	Pre-deployed certificates, no automated mechanism	Consumer requested, established mechanism