Real-Time Communication in Web-browsers (RTCWeb)

Michael Tüxen

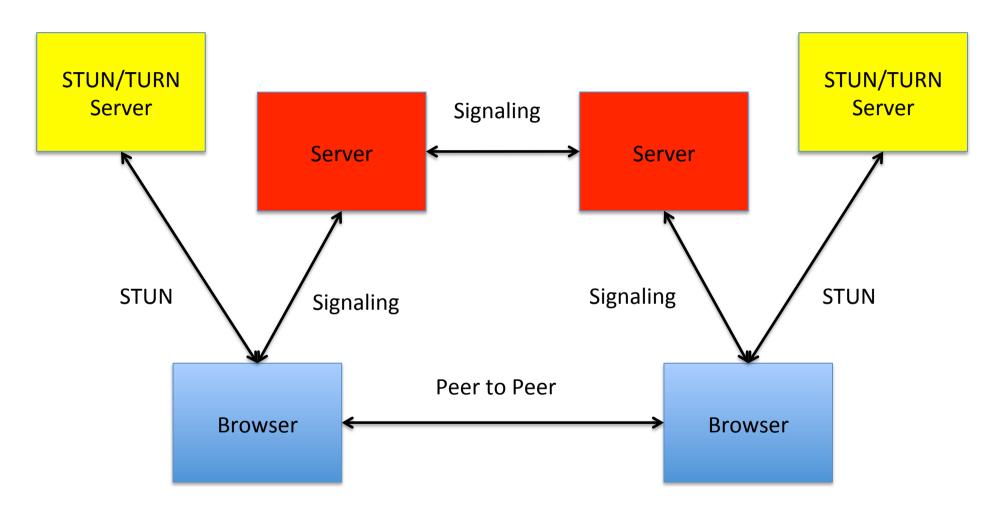
(tuexen@fh-muenster.de)

Outline

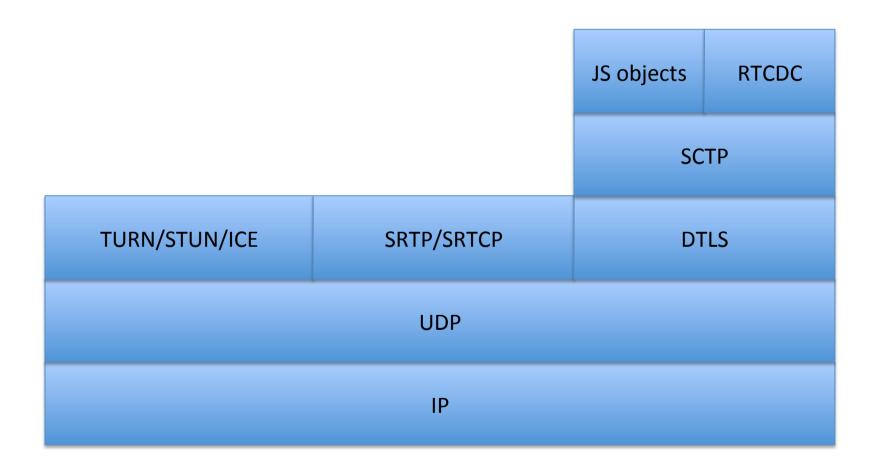
- RTCWeb overview
- Peer to peer protocol stack
- RTCWeb datachannels
- SCTP introduction
- Live demo

Motivation

- Multiple solutions for media and non-media peer to peer communication:
 - Skype (Microsoft)
 - Google Hangouts (Google)
 - Facetime (Apple)
 - Adobe Connect (Adobe)
 - WebEx (Cisco)
- Limitations:
 - Require proprietary software
 - Not interoperable


RTCWeb

- Joint activity between
 - the Real-Time Communications in Web Browsers (RTCWeb) Working Group of the Internet Engineering Task Force (IETF) defining the protocols.
 - The Web Real-Time Communication (WebRTC)
 Working Group of the World Wide Web
 Consortium (W3C) defining the Javascript API.


Current Status

- Implemented in
 - Firefox
 - Chrome
- Successful interoperability test for voice/video call at the beginning of February 2013.
- Protocol issues mostly resolved.
- Mandatory to implement audio codec: Opus and G.711.
- Still open
 - Mandatory to implement video codec: H.264 or V8?
 - Congestion control for media channel and handling of media and non-media channel.
 - SDP related things.
 - Many details.

Architecture

Peer to Peer Protocol Stack

Data Channels

- Bidirectional
- Message oriented
- Priorities
- Reliability
 - Fully reliable
 - Partial reliable by limiting the number of retransmissions.
 - Partial reliable by limiting the life-time.
- Congestion controlled

Timeline of SCTP RFCs

- Core Protocol
 - Initial Base Specification (RFC 2960, October 2000)
 - Checksum Change (RFC 3309, September 2002)
 - Errata and Issues (RFC 4460, April 2006)
 - Updated Base Specification (RFC 4960, September 2007)
- Protocol Extensions
 - Partial Reliability (RFC 3758, May 2004)
 - Chunk Authentication (RFC 4895, August 2007)
 - Address Reconfiguration (RFC 5061, September 2007)
 - Stream Reconfiguration (RFC 6525, February 2012)
- API
 - Socket API (RFC 6458, December 2011)

SCTP Protocol Overview

- Connection oriented (SCTP association)
- Supports unicast
- Same port number concept as other transport protocols
- Message oriented
 - Supports arbitrary large messages (fragmentation and reassembly)
 - Supports bundling of multiple small messages in one SCTP packet
 - Flexible ordering and reliability
- Supports multihoming using IPv4 and IPv6
- Packet consists of a common header followed by chunks
- Extendable

Association Setup

- Four way handshake
- Resistance against "SYN flooding"
- Negotiates
 - Initial number of streams
 - Initial set of IP addresses
 - Supported extensions
- User messages can already be transmitted on the third leg (after one RTT i.e. same as TCP)
- Handles the case of both sides initiating the association.

Data Transfer

- TCP friendly congestion control
- User messages are put into DATA chunks (possibly multiple in case of fragmentation)
- Each DATA chunk is identified by a Transmission Sequence Number (TSN)
- Acknowledgements (SACKs) reporting
 - Cumulative TSN
 - Gaps (up to approximately 300 in a sack)
 - Duplicate TSNs
- Retransmissions
 - Based on timer
 - Based on gap reports

Association Teardown

- Graceful shutdown
 - Teardown without message loss.
 - Based on an exchange of three messages.
 - Supervised by timer
 - No half close state is allowed
- Non-graceful shutdown
 - Possibly message loss
 - Uses a single message

Service: Preservation of Message Boundaries

- Most application protocols are message based
- Simplifies application protocols and its implementation
- Awareness of message boundaries makes optimal handling at the transport layer / application layer boundary possible
- But special attention is needed for supporting arbitrary large messages

Service: Partial Reliability

- Allows to avoid spending resources on user messages not being relevant anymore for the receiver.
- The sender can abandon user messages base on criteria called PR-SCTP policy
- PR-SCTP policies are implemented on the sender side and does not require negotiation.
- Examples of PR-SCTP policies:
 - Lifetime
 - Number of retransmissions
 - Priority with respect to buffering

Service: Partial Ordering

- An SCTP association provides up to 2^16 unidirectional streams in each direction.
- The application is free to send a message on a stream of its choice.
- Minimizes head of line blocking, because message ordering is only preserved within each stream.
- In addition, messages can be marked for unordered delivery.
- The stream reconfiguration extension (RFC 6525) allows to
 - Add streams during the lifetime of an association
 - Reset streams (i.e. start over at stream sequence 0)

Service: Network Fault Tolerance

- Each end-point can have multiple IP-addresses
- Each path is continuously supervised
- Primary path is used for initial transmission of user data
- In case of a failure, another (working) address is used
- The Address Reconfiguration extension (RFC 5061) allows
 - Add and delete IP-addresses during the lifetime of an association
 - Select the local and remote primary path
- Currently being specified: loadsharing

SCTP Implementations

- Provided by OS vendor for
 - FreeBSD
 - Linux
 - Solaris
- The FreeBSD has been ported to support
 - Mac OS X as a network kernel extension (NKE)
 - Windows as a kernel driver
 - Windows, Linux, FreeBSD, MacOS X as a userland stack (included in Firefox)
- Commercial implementations for various operating systems
- Implementations are interoperable as shown in nine interoperability tests.

SCTP in the RTCWeb Context

- Lower layer is not IP, but DTLS, which is connection oriented.
- Kernel implementations not usable.
- Multihoming and dynamic address reconfiguration is not used.
- Support for multiplexing user messages from different streams required.
- Usage of an appropriate congestion control is required.

Management of Data Channels

- Opening can be in-band (using a simple protocol) or out-of-band (using SDP).
- In-band data channel opening:
 - Old version used a three way handshake for setup.
 - New version uses a single message for setup. Glare handled by using DTLS roles.
- Data channels are closed by resetting the corresponding SCTP streams.
- In case of SCTP stream shortage, the number of streams is increased, if possible.

Live Demonstration

- For Firefox Nightly set two environment variables:
 - NSPR_LOG_MODULES to SCTP:5,DataChannel:5
 - NSPR_LOG_FILE to /Users/tuexen/logfile
- To extract SCTP packet information use
- grep SCTP_PACKET logfile > sctp.log
- Text2pcap -n -l 248 -D -t '%H:%M:%S.'\
 sctp.log sctp.pcapng
- The .pcapng file can be read by Wireshark.
- You need a recent version of Wireshark...

Conclusion

RTCWeb

- is a major effort.
- might have a huge impact.
- still requires research efforts.
- provides peer to peer networking support to web browsers.
- allows new classes of web based applications
- can be used for development and research right now...