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Abstract
The actor model of computation has gained significant popu-
larity over the last decade. Its high level of abstraction com-
bined with its flexibility and efficiency makes it appealing
for large applications in concurrent and distributed regimes.

In this paper, we report on our work of designing and
building CAF, the “C++ Actor Framework”. CAF targets
at providing an extremely scalable native environment for
building high-performance concurrent applications and dis-
tributed systems. Based on our previous library libcppa,
CAF significantly extends its scopes of application and oper-
ation, as well as the range of scalability. The particular con-
tributions of this paper are threefold. First we present the
design and implementation of a type-safe messaging inter-
face for actors that rules out a category of runtime errors
and facilitates robust software design. Second we introduce
a runtime inspection shell as a first building block for con-
venient debugging of distributed actors. Finally we enhance
the scheduling facilities and improve scaling up to high num-
bers of concurrent processors. Extensive performance eval-
uations indicate ideal runtime behaviour for up to 64 cores
at very low memory footprint. In these tests, CAF clearly
outperforms competing actor environments.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent programming; C.2.4 [Distributed
Systems]: Distributed applications; D.3.4 [Processors]:
Run-time environments

Keywords Actor Model, C++, Message-oriented Middle-
ware, Distributed Debugging, Performance Measurement
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1. Introduction
In recent times, an increasing number of applications re-
quires very high performance for serving concurrent tasks.
Hosted in elastic, virtualized environments, these programs
often need to scale up instantaneously to satisfy high de-
mands of many simultaneous users. Such use cases urge
program developers to implement tasks concurrently wher-
ever algorithmically feasible, so that running code can fully
adapt to the varying resources of a cloud-type setting. How-
ever, dealing with concurrency is challenging and handwrit-
ten synchronisations easily lack performance, robustness, or
both.

At the low end, the emerging Internet of Things (IoT)
pushes demand for applications that are widely distributed
on a fine granular scale. Such loosely coupled, highly het-
erogeneous IoT environments require lightweight and robust
application code which can quickly adapt to ever changing
deployment conditions. Still, the majority of current appli-
cations in the IoT is built from low level primitives and
lacks flexibility, portability, and reliability. The envisioned
industrial-scale applications of the near future urge the need
for an appropriate software paradigm that can be efficiently
applied to the various deployment areas of the IoT.

Forty years ago, a seminal concept to the problems of
concurrency and distribution has been formulated in the ac-
tor model by Hewitt, Bishop, and Steiger [16]. With the in-
troduction of a single primitive—called actor—for concur-
rent and distributed entities, the model separates the design
of a software from its deployment at runtime. The high level
of abstraction offered by this approach combined with its
flexibility and efficiency makes it highly attractive for to-
day’s elastic multicore systems, as well as for tasks dis-
tributed on Internet scale. As such, the actor concept is capa-
ble of providing answers to urgent problems throughout the
software industry and has been recognized as an important
tool to make efficient use of the infrastructure.

On its long path from an early concept to a wide
adoption in the real world, many contributions were needed
in both, conceptual modeling and practical realization. In
his seminal work, Agha [1] introduced mailboxing for the
message processing of actors, and laid out the fundament



for an open, external communication [3]. Actor-based
languages like Erlang [4] or SALSA Lite [12] and
frameworks such as ActorFoundry—which is based on
Kilim [29]—have been released but remained in specific
niches, or vendor-specific environments (e.g., Casablanca
[26]). Scala includes the actor-based framework Akka [32]
as part of its standard distribution, after the actor model has
proven attractive to application developers. The application
fields of the actor model also include cluster computing as
demonstrated by the actor-inspired framework Charm++
[19]. In our previous work on libcppa [10], we
introduced a full-fledged C++ actor library to the native
domain.

In this work, we report on the enhanced “C++ Actor
Framework” (CAF)1. CAF has evolved from our previous
library libcppa with significant improvements and
additional capabilities. CAF subsumes components for
highly scalable core actor programming, GPGPU
computing, and adaptations to a loose coupling for the IoT
[17], It has been adopted in several prominent application
environments, among them scalable network forensics [33].
In the present paper, we focus on three contributions.

1. We enhance robustness of future actor programming by
introducing a type-safe message passing interface design.

2. We take first steps towards a distributed actor debugging
by an inspection shell for remote actors.

3. We design, implement, and evaluate a scheduling infras-
tructure for the actor runtime environment that improves
scaling up to high numbers of concurrent processors.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work along with our previous contri-
butions and the issues we identified. In section 3, we intro-
duce our software design for type-safe messaging interfaces
between actors. Our prototype infrastructure for runtime in-
spection is presented in Section 4. The design and imple-
mentation choices of our scalable scheduling platform are
contrasted in Section 5 with practical performance evalua-
tion. Finally, Section 6 concludes.

2. Background and Related Work
We believe that writing dynamic, concurrent, and distributed
applications using a native programming language such as
C++ is ill-supported today. Standardized libraries only of-
fer low-level primitives for concurrency such as locks and
condition variables. Using such primitives correctly requires
significant expert knowledge and can cause subtle errors that
are hard to find [25]. A naı̈ve memory layout may in ad-
dition severely slow down program execution due to false
sharing [31]. The support for distribution is even less suf-
ficient and developers often fall back to hand-crafted net-
working components based on socket-layer communication.

1 http://www.actor-framework.org

Transactional memory—supplied either in software [28] or
hardware [15]—and atomic operations can help implement-
ing scalable data structures [14], but neither account for dis-
tribution nor for communication between software compo-
nents nor for dynamic software deployment.

The actor model of computation [16] describes computer
programs in terms of independent software entities
exchanging messages and addresses fault tolerance in a
network-transparent way [5]. The actor is its universal
primitive for concurrency and distribution. Incoming
messages are buffered in FIFO order using a mailbox and
are handled sequentially [1]. Some implementations like
Erlang allow actors to skip messages for later retrieval,
while other implementations require actors to process
messages in the order of arrival.

2.1 Native Actors
The advent of multi-core machines and the proclaimed end
of Moore’s law [21] force programmers into intra-machine
concurrency. At the same time, native programming lan-
guages such as C++ are experiencing a renaissance. Since
the clock speed no longer increases significantly, computer
programs need to make use of existing resources as effi-
ciently as possible.

Implementations of the actor model traditionally focused
on virtualized environments such as the JVM [20], while
actor-inspired implementations for native programming lan-
guages focus on specific niches. For example, Charm++ is
directly aimed at software development for supercomputers
and a chare—the primitive for concurrency abstraction in
Charm++—only offers a subset of the typical actors charac-
teristics. In our previous work on libcppa [10], we pre-
sented the design and implementation of a full-fledged na-
tive actor system with a strong emphasis on efficiency and
runtime performance. In detail, libcppa contributed 1) a
lock-free mailbox algorithm with an average of O(1) for
both enqueue and dequeue operations, 2) an efficient net-
work layer for dynamically distributing systems, 3) a copy-
on-write messaging system that minimizes copy operations,
and 4) an adaptive runtime system with the ability to inte-
grate heterogeneous hardware components via OpenCL.

Based on feedback from both academia and industry, but
also following our own experience with libcppa, we iden-
tified the following shortcomings that are addressed in the
present work. First the dynamic typing and pattern match-
ing for messages at runtime contradicts the philosophy of
C++ developers that rely on static, strong type checking.
Rather than a matter of convention, this is a relevant issue
of software reliability whenever large systems are build out
of many small software entities (like actors). A compiler
should be enabled to validate the (messaging) interfaces be-
tween components and detect sources of failures early. Sec-
ond analyzing, tweaking and debugging of distributed ac-
tors requires comprehensive support from a runtime system
along with a convenient toolkit for aiding software develop-



ers. Third a comprehensive analysis of our previous imple-
mentation revealed limitations in scalability of the runtime
system when running on massively parallel hardware plat-
forms.

2.2 Verification and Debugging
Parallel execution and the inherent non-determinism of the
actor model render static verification of complex, distributed
applications using model checking techniques impossible
[27]. Although complexity analysis can help programmers
to understand and predict performance [2], static models of
an application can neither be used to verify their correctness
nor to guarantee certain runtime characteristics. Rather than
verifying an application by modeling and tracing each state
transition statically, applications can be partially verified on
a state-by-state basis using either recorded execution traces
or in real-time [8].

When implementing distributed applications, developers
usually rely on systematic testing and ad hoc debugging. The
actor model aids developers in both cases. Since the actor
model requires developers to split the application logic into
many independent components, those components can be
tested individually. For example, the property-based black-
box testing tool “Quviq QuickCheck” [6] demonstrates an
approach to reveal obvious and subtle bugs in Erlang ap-
plications using controllable random test case generation.
When facing the complex task of debugging distributed ap-
plications, developers can use a recorded message flow of
the distributed execution in a postmortem analysis. This ap-
proach has been examined by HP and lead to the develop-
ment of the distributed debugger Causeway [30]. An alter-
native approach to tackle the complexity of distributed de-
bugging has been made by Dennis Geels, et. al. by using the
recorded message flow to replay messages in order to repro-
duce erroneous behavior [13].

Both verification and debugging rely on extensive support
from the runtime system. In this work, we focus on a runtime
inspection architecture as first stepping stone to a framework
for debugging, verification, and online performance analysis
of distributed actor applications.

3. Type-safe Messaging Interfaces
Traditional message passing systems are often implemented
in languages performing dynamic type checking or in
strongly typed languages but using a dynamic approach
with runtime type checks. Such a dynamic approach hides
information from the compiler, thus rendering a static
analysis of the messaging interfaces impossible. This
validation step is crucial for composing large software
systems out of small software entities as developers
otherwise need to rely on systematic testing of each
integration individually. With CAF, we present a software
design for strongly typed messaging interfaces that enables

the compiler to verify messaging protocols statically at
compile time.

3.1 Defining Messaging Interfaces using Patterns
An actor is defined in terms of the messages it receives and
sends. Its behavior is hence specified as a set of message
handlers that dispatch extracted data to associated functions.
Defining such handlers is a common and recurring task in
actor programming. The pattern matching facilities known
from functional programming languages have proven to be a
powerful, convenient and expressive way to define such mes-
sage handlers. Since C++ does not provide pattern matching
facilities, we have decided to implement an internal domain-
specific language (DSL) for C++. This DSL is limited to
actor messages, because a solution for arbitrary data struc-
tures cannot be implemented without a language extension.
Unlike other runtime dispatching mechanisms, our pattern
matching implementation discloses all types of incoming
messages as well as the type of outgoing messages to the
compiler. In this way, the compiler can derive the interface
of an actor from the definition of its behavior.

Whenever an actor does not want the compiler to derive a
messaging interface from its behavior definition, it can store
a pattern using instances of the type behavior. This type-
erasure step is always performed for the dynamic actors we
have introduced in our previous work on libcppa [10].

A match expression, i.e., the definition of a partial func-
tion, usually begins with a call to the function on that re-
turns an intermediate object providing the operator ”>>”.
The right-hand side of the operator denotes a callback—
usually a lambda expression—which should be invoked after
a tuple matches the types given to on. The example below
showcases a match expression with four cases.

auto callback = [](int i) { /* ... */ };
auto expr = (

// case 1
on(42) >> []() {...},
// case 2
on("print", val<int>) >> callback,
// case 3
on("print", arg_match) >> callback,
// case 4
[](int i, float f) {...}

);

The first case illustrates how on can be used to dispatch
on the content of incoming data. The callback is only called
when a message arrives that consists of exactly one inte-
ger of value 42. It is worth noting that the callback discards
the matched value and takes no arguments. Users are free
to skip any number of arguments from left to right. Case 2
makes use of this feature as well by suppressing the leading
string element and only consuming the integer. Whenever
users wish to match only for the type of an element val<T>
can be used as wildcard parameter, whereas T is the desired
type. Instead of repeating the types of the callback on both



sides, arg_match can be used to cause CAF to deduce all
further types. In case 3, on deduces the type string from
"print" and then int from the signature of the given fall-
back. Hence, case 2 and 3 are identical. It is worth men-
tioning that our pattern matching implementation behaves
as a functional programmer would it expect it to, i.e., only
the first matched expression is executed. Case 3 is shadowed
by case 2 and thus unreachable. Finally, case 4 accounts for
the fact that developers can also add callback functions to a
match statement without prefixing it with on. In this case, all
types are deduced as if prefixed by on(arg_match).

Our DSL-based approach has more syntactic noise than
a native support within the programming languages itself,
for instance when compared to functional programming lan-
guages such as Haskell or Erlang. However, we only use ISO
C++ facilities, do not rely on brittle macro definitions, and
our approach only adds negligible—if any—runtime over-
head by making use of expression templates [34]. There is no
additional compilation step required for the pattern match-
ing. Neither does CAF rely on code generators nor does it
need any vendor-specific compiler extension.

An important characteristic of our pattern matching en-
gine is its tight coupling with the message passing layer. The
runtime system of CAF will create a response message from
the value returned from the callback unless it returns void.
Not only is this convenient for programmers, it also exposes
the type of the response message to the type system. This in-
formation is crucial to define type-safe messaging interfaces.

It is worth mentioning that we support both function- and
class-based actors. The former are implemented as a free
function returning the initial behavior for the actor, whereas
the first argument denotes the implicit self pointer. Class-
based actors are derived from either a type-safe or dynam-
ically typed actor base class and must override the virtual
member function make_behavior() returning the initial
behavior. In our examples, we make only use of function-
based actors as they require less implementation overhead.

3.2 Strongly Typed Message Interfaces
Dynamically typed actors in CAF use handles of the type
actor, whereas type-safe actors use handles of type
typed_actor<...>. The template parameters denote the
messaging interface using a series of
replies_to<...>::with<...> clauses. For example,
the following type testee identifies an actor that either
receives two integers and responds with a single integer or
receives a floating pointer number and responds with two
floating point numbers.

using testee =
typed_actor<

replies_to<int, int>::with<int>,
replies_to<float>::with<float, float>>;

When trying to send anything else to an actor of this
type, the compiler will reject the code with the error message
“typed actor does not support given input”.

However, the example above is not an idiomatic typed
messaging interface. Since the actor receives primitive types
only, the interface lacks semantic information as to what the
receiver is supposed to do with those values. The following
example models an actor offering a simple service for addi-
tion and subtraction of integer values.

struct add_request { int a; int b; };
struct sub_request { int a; int b; };
using math =

typed_actor<
replies_to<add_request>::with<int>,
replies_to<sub_request>::with<int>>;

math::behavior_type f(math::pointer self) {
return {
[](const add_request& req) {
return req.a + req.b;

},
[](const sub_request& req) {
return req.a - req.b;

}
};

}
// announce custom types (only once)
announce<add_request>(&add_request::a,

&add_request::b);
announce<sub_request>(&sub_request::a,

&sub_request::b);
// usage example
math ms = typed_spawn(f);
send(ms, add_request{1, 2}); // ok
send(ms, 1, 2); // compiler error

This examples uses custom message types instead of
prefixing values with atoms. The type alias
math::behavior_type is a type that does not perform
the type erasure we have previously seen by assigning the
patterns to a behavior. Instead, input and output types are
exposed to the runtime system and—more importantly—to
the compiler. User-defined message types—as showcased in
the example—must be announced to the type system of
CAF to enable serialization and deserialization at runtime.

Whenever a message type changes, existing code will
either still works as expected if merely additional fields
where added or the compiler will reject the program and
points the programmer to each use of that particular message
type individually.

3.3 Dynamic Message Interfaces
To illustrate the trade-offs and differences for typed and un-
typed actors, we provide an implementation of the example
in 3.2 using the dynamically typed API. The definition of
user-defined messaging types is no longer required. Instead,
an idiomatic way to add semantic information to a message
is by prefixing it with atoms as shown below.



behavior f(event_based_actor* self) {
return {
on(atom("add"), arg_match)
>> [](int a, int b) {

return a + b;
},
on(atom("sub"), arg_match)
>> [](int a, int b) {

return a - b;
}

};
}
// usage example
actor ms = spawn(f);
send(ms, atom("add"), 1, 2); // ok
send(ms, 1, 2); // invalid but compiles

3.4 Message Passing Interfaces Summary
A dynamic approach has the benefit of being able to provide
a single primitive and actors can encode their acquaintances
as list over that primitive type. This resembles the original
actor modeling that did not specify how–or even if–actors
specify the interface for incoming and outgoing messages.
Rather, actors are defined in terms of names they use, access
rights to acquaintances they grant, and patterns they specify
to dispatch on the content of incoming data [16].

With strongly typed actors, the compiler statically verifies
the protocols between actors. Hence, the compiler is able to
rule out a whole category of runtime errors, because protocol
violation cannot occur once the program has been compiled.
It is worth mentioning that the compiler does not only verify
the correct sending of a message but it also can verify the
handling of the result when using sync_send. For instance,
the following example would be rejected by the compiler.

math ms = typed_spawn(f);
sync_send(ms, add_request{10, 20}).then(
[](float result) {

// compiler error: math actor will
// send an int as result, not a float

}
);

When using sync_send, the sent message will have a
unique ID. The sending actor can use .then to install a mes-
sage handler that is only used for the response message to
that particular ID. The sender synchronizes with the receiver
by skipping any any other incoming message until it has ei-
ther received the response message or an (optional) timeout
has occurred. Any error, e.g., if the sender no longer exists or
is no longer reachable, will cause the sender to exit with non-
normal exit reason unless it provides a custom error handler.

It is worth mentioning that the synchronization does not
rely on blocking system calls and thus does not occupy
any thread belonging to CAF. Instead, any actor engag-
ing in synchronous communication will simply not invoke
any of its behavior-specific message handlers until the syn-

chronous communication has taken place, ignoring all but
the requested response message.

When using a statically typed system, developers are trad-
ing convenience for safety. Since software systems grow
with their lifetime and are exposed to many refactoring cy-
cles, it is also likely that the interface of an actor is subject
to changes. This is equivalent of the schema evolution prob-
lem in databases: once a single message type–either input
or output–changes, developers need to locate and update all
senders and receivers for that message. When introducing a
new kind of message to the system, developers also need to
identify and update all possible receivers by hand.

With CAF, we lift the type system of C++ and make
it applicable to the interfaces of actors. At the same time,
we are aware of the fact that dynamically typed systems do
have their benefits and that these approaches are not mu-
tually exclusive. Rather, we believe a co-existence between
the two empowers developers to make the ideal tradeoff be-
tween flexibility and safety. Hence, we have implemented a
hybrid system with CAF. Type-safe and dynamic message
passing interfaces are equally well supported and interaction
between type-safe and dynamic actors is not restricted in any
way.

It is up to the architect of a software system to choose
when to make use of untyped actors and when to pay the
initial programming overhead for typed actors. As a general
recommendation we can give based on our experiences with
CAF, typed actors should be used for any kind of actor that
can have non-local dependencies. Such actors are usually
central components of a larger system and offer a service
to a set of actors that is either not known at coding time
or might grow in the future. Type-safe messaging interfaces
allow the compiler to keep track of non-local dependencies
that exist between central actors and a—possibly large—
set of clients. Whenever all possible acquaintances of an
actor are known at coding time and if this set of actors is
tightly coupled—ideally only exist in the same translation
unit—untyped actors are usually a good choice, because they
reduce code size.

4. Runtime Inspection
Debugging of distributed systems is inherently complex and
well known as a hard problem. In addition to difficulties
that derive from concurrent control loops within applica-
tions, distribution adds a messaging layer to the list of chal-
lenges. Monitoring distributed messaging including its tem-
poral logic is tedious and requires a complete observation
infrastructure.

Actors can detect hard errors by monitoring each other
and implement recovery strategies, but this mechanism does
not provide software developers with sufficient intelligence
to understand the cause of an error. The (possibly correlated)
state of an incident remains invisible. Further, this mecha-
nism does not help developers in finding inefficiencies or



bottlenecks in their software architecture. In general, dis-
tributed systems easily attain non-trivial coincident condi-
tions that are harmful, but hard to find without proper tool
support.

The first building block required for implementing a high-
level, convenient toolkit for debugging is a runtime inspec-
tion infrastructure. This infrastructure must provide a full
view on crucial information of the distributed system to al-
low for understanding the runtime behavior of an applica-
tion. In particular, it must reveal the state of distribution, in-
terconnection and messaging of all participating nodes. In
this work, we make the collected information available to
developers by complementing the runtime inspection com-
ponents with an interactive shell.

4.1 Collecting Events in a Distributed System
Figure 1 illustrates the components of our runtime inspection
infrastructure. It consists of 1) one configurable Probe at
each node that collects events and aggregates statistics of
individual processes, 2) a Nexus that receives events from
Probe instances and makes them accessible to others, and 3)
one or several front-end applications that query the Nexus
and can subscribe to events. In this work, we present an
interactive shell for a basic inspection front end. The Probes
as well as the Nexus are modeled and implemented as actors
and communicate via message passing. By monitoring each
other, the Probe is able to detect a temporary failure of the
Nexus and periodically tries to reconnect. A Probe failure
indicates a disconnect from its node, either due to a program
or system failure.

Nexus

Frontend
(GUI or shell application)

Node A

Probe

Node B

Probe

…

…

Node N

Probe

Figure 1. Runtime Inspection Architecture of CAF

4.1.1 Probes
Probes have access to the network layer of CAF. On startup,
Probes receive configuration input from command line argu-
ments as well as a configuration file. The minimal configu-
ration needed to initialize the probe is the network contact
of the Nexus. Probes intercept and forward three kinds of
messages to the Nexus.

Activity events are triggered by incoming or outgoing
connection and message exchange with actors on different

nodes. Forwarding the entire message flow to the Nexus
grants maximal transparency, but induces high network traf-
fic and runtime overhead. This information corresponds to a
complete logging of the distribution system and can be cru-
cial while investigating erroneous behavior. Whether or not
the full message exchange between nodes is protocoled to
the Nexus can be configured at runtime.

Error events are triggered by network failures. For in-
stance, when the connection to a node was lost unexpectedly
or the delivery of a message has failed because the target
node either does not exist or a connection failure occurred
during transmission.

Runtime statistics are periodically generated by the
Probe and include RAM usage, CPU load, and the number
of currently active actors. In this way, observers can spot
uneven distribution of work load in the distributed system
and can react to over-utilization of the distributed system,
e.g., by adding more nodes.

4.1.2 The Nexus
The Nexus provides a global view of the distributed system.
It receives and collects events as well as runtime statistics
from all Probes and forwards them to front-end applications
(clients). The Nexus uses only type-safe messaging inter-
faces to communicate to its clients and Probes, and statefully
manages the configuration of new Probes. New clients sub-
scribe at the Nexus by sending an add_listener message
and in turn receive all messages in a transparent way.

The Nexus also receives messages to configure the ver-
bosity of the probes, e.g., to enable or restrict the full mirror-
ing of communication between nodes. Configuration mes-
sages are broadcasted to all Probes in order to guarantee
a consistent view over all nodes. Furthermore, the Nexus
serves as network hub for its clients by exposing all of its
connections. Hence, clients can send messages to individ-
ual nodes or actors that are transparently forwarded by the
Nexus. This allows front-end applications to not only ob-
serve the system but to interact with it.

4.1.3 Front-end Applications
With our design of the runtime inspection framework, we
want to enable front-end applications falling in the following
three main categories.

Observing autonomous agents — monitor a distributed
systems and verify that it is running within its specified pa-
rameters. An example for this kind of application is an au-
tomated alert system. Users of such a system may specify
thresholds and rules to trigger system alerts. Those rules
could query the throughput or load of (parts of) the actor
system, possibly revealing that the number of requests can-
not be handled in time with the available resources. Other
characteristic use cases are in stability and reliability mon-
itoring. An alerting system may control how many node or
connectivity failures occur prior to alerting a system admin-
istrator.



Supervising autonomous agents — interactively moni-
tor and control certain characteristics of the distributed sys-
tem. This task includes an active manipulation of the system
components and allows for immediate reaction on informa-
tion gathered, instead of only passively observing it. Agents
of this kind can for example enable interactive intervention
on errors or perform a distributed load balancing by migrat-
ing actors from nodes working to capacity to other nodes.

Performance monitoring & visualization — use run-
time statistics to extract a meaningful view of the state of
the distributed system. Such tools may grant users conve-
nient access to aggregated information about resource usage
on each host as well as the current state of deployment at
runtime. Our interactive shell is an example application for
this use case and gives developers valuable insights about the
runtime characteristics of their system. Such live views can
be used to refactor the application for better performance
while it is still in development, or to optimize the deploy-
ment of a system in production.

4.2 An Interactive Inspection Shell
Our runtime inspection infrastructure is a stepping stone
towards a debugging tool for distributed actors. Findings
bugs or spotting flaws in the architecture of a system is an
interactive, iterative process. Hence, our first focus was on
writing an interactive shell.

The interactive shell bundled with CAF allows users to in-
teractively traverse through the actor system. It has a global
mode as well as a node mode. The user can query all par-
ticipating nodes in the actor system by using the command
list-nodes. This command is available in both modes
and prints the full list of nodes. In a similar way as UNIX
shells allow its users to navigate a file system, our shell en-
ables the user to browse through the actor system using the
command change-node. The stateful tool stores the last
visited nodes and enables users to return to recently viewed
nodes by using the command back.

In the node mode, the user can access comprehensive in-
formation about the node using statistics. This com-
mand will display a) the hostname, b) the name of the op-
erating system in use, c) the number of currently running
actors, d) the CPU load, e) the amount of available and al-
located RAM, f) a full list of network interfaces, g) a list of
connected nodes (excluding the Nexus), and h) a list of ac-
tors on this node that communicated to other actors in the
network.

Since the shell itself is an actor, users are also capable
of interacting with the system directly. The command send
will deserialize a message from its arguments and send it to
an actor. For example, send 5 "Hello Actor" sends
the string “Hello Actor” to the actor with ID 5 on the current
node. The mailbox of the shell is also exposed to the ac-
tor. Its content can be queried by the command mailbox,
which will print the FIFO numbered list of current mailbox
entries. The command dequeue accesses the full content

_________ _____ __ __
/ ____/ | / ___// / / / C++

/ / / /| | \__ \/ /_/ / Actor
/ /___/ ___ |___/ / __ / Shell
\____/_/ |_/____/_/ /_/

Initiate handshake with Nexus ... done
$ list-nodes

alice.me.org:27746
bob.you.org:69999
charlie.him.org:13807
$ change-node alice.my.org
$ list-actors

4
$ send 4 @<>+@atom (’ping’)
$ await-msg

@<>+@atom ( ’pong’ )

Listing 1. Using cash to inspect a small network of actor
systems

of a message and also removes it from the mailbox. Alter-
natively, users can use pop-front to print and remove the
oldest element from the mailbox.

Figure 1 shows a sample use case of our interactive C++
Actor Shell (CASH). The inspected actor system consists
of a server, alice, and two clients, bob and charlie. In this
simplified case, we test whether the server does reply to the
message ping with a pong. First, we query all connected
nodes using the command list-nodes. Actor systems are
identified through their hostnames, as well as a unique iden-
tifier to resolve ambiguity if multiple systems are running
on the same host. We change our context to the node run-
ning the server with change-node and print a list of all
running actors with list-actors. In this case, the server
runs one actor with the ID 4. Using send, we can address it
with a message, which is of type atomwith the value ping.
Thereafter, we can receive the answer pong with the com-
mand await-msg.

The shell enables users to interact with the system in a
dynamic and convenient fashion. The present prototype can
already reveal bottlenecks in the application that can occur
when two or more actors have frequent message exchange,
but are located on different nodes, causing high network traf-
fic and possibly needless overhead. In using the shell, de-
velopers can get valuable feedback during the development
process. Still, it currently cannot provide statistics for indi-
vidual actors such as execution time, mailbox content, idle
times, etc. Collecting scheduling-related information in the
Probe is part of our ongoing and future work.

5. Scheduling Infrastructure
The design of CAF aims at scaling to millions of actors on
hundreds of processors. At first glance, it seems straightfor-
ward to implement actors using kernel-level threads. Since



an operating system schedules threads in a preemptive man-
ner, actors could not starve other actors. Yet, this naı̈ve ap-
proach does not scale up to large-scale actor systems, be-
cause threads have significant overhead attached to them.
Each thread requires its own stack, signal stack, event mask,
and other resources in kernel space. Mapping actors onto
threads thus contradicts idiomatic patterns of the actor pro-
gramming paradigm.

In our first lib [10], we addressed this issue by imple-
menting a userspace scheduler based on a thread pool. Ac-
tors were modeled as very lightweight threads that either a)
have at least one message in their mailbox and are ready, b)
have no message and are blocked, or c) are currently exe-
cuted. A central management component dispatched actors
of state ready to a thread. This design was an optimization
over the naı̈ve approach of coupling actors with threads, as
an actor was only assigned to a thread when ready for exe-
cution. Pre-allocated threads from the pool were shared with
other actors to minimize system overhead.

A first thorough performance evaluation on a 12-core ma-
chine revealed that this scheduling policy reaches its maxi-
mum performance on eight cores for classical divide & con-
quer algorithms. Adding additional concurrency increased
the runtime again, since the communication overhead in our
central management component outweighed the benefit of
additional resources.

A centralized scheduling architecture can efficiently
schedule tasks—or actors—based on known deadlines [24]
even in multiprocessor environments [11]. However,
without a priori knowledge about the tasks, a central
architecture cannot dispatch tasks more efficiently than a
fully dynamic, decentralized approach. It may induce
significant runtime overhead for short-lived tasks, though.

5.1 Work Stealing
Work stealing [9] is an algorithm to schedule multithreaded
computation using P worker threads, where P is the sum of
all available CPU cores. It has been developed as an alterna-
tive to work sharing scheduling approaches with centralized
dispatching. Work stealing replaces the central job queue by
P job queues, one individual queue for each worker. Each
worker dequeues work items from its own job queue until
it is empty. Once this happens, the worker becomes a thief,
picking one of the other workers—usually at random—as
victim and tries to steal a work item from its queue. This
approach drastically reduces the communication between
workers, since they work completely independent from each
other as long as there is still work remaining in each queue.
In consequence, work stealing induces less communication
overhead and outperforms work sharing due to its higher
scalability for most application scenarios. Moreover, steal-
ing is a rare event for most work loads and implementations
should focus on the performance of the non-stealing case
[22].

A widely used variant of work stealing is fork-join [23].
Fork-join models the work flow of an application in terms
of divide & conquer. A task forks by dividing a large com-
putation into smaller ones and then joins the results of its
child tasks. Because tasks do not share state, they can be ex-
ecuted independently and in parallel using a work stealing
algorithm. Fork-join has become particularly popular in the
Java community and a framework for fork-join scheduling is
part of the standard distribution since Java 1.7.

An inherent characteristic of fork-join application is that
each task recursively creates new tasks that become smaller
and smaller until they become trivial. Consequently, the old-
est elements in the job queue of a worker demand large
computations that will likely fork into smaller computation.
Newer tasks have been created by forking from larger com-
putations and the complexity decreases over time.

To exploit this typical behavior, each worker dequeues
work items from its own job queue in LIFO order until there
is no work item left. Once it becomes a thief, it steals the
oldest element, i.e., it dequeues in FIFO order. In this way,
the stolen work item is likely to have a high complexity
and to amortize the communication overhead induced by
stealing.

The fork-join work flow correlates to the work flow often
seen in actor applications. After receiving a task via a mes-
sage, an actor can divide it into smaller tasks and spawn one
new actor per newly created sub task. Because this is a com-
mon pattern, newer implementations of the actor model—
such as Akka—use this scheduling algorithm per default.

5.2 A Configurable, Policy-based Scheduler
Infrastructure

Despite suiting many work loads, work stealing schedulers
have limitations. When facing hard real-time requirements,
for example, central dispatching based on deadlines is cru-
cial. Furthermore, a priori knowledge about the runtime be-
havior of certain actors cannot be exploited efficiently in a
decentralized system with rigorously restricted communica-
tion. Hence, an implementation of the actor model should
provide a default scheduling algorithm that fits most appli-
cation scenarios while allowing users to deploy a custom im-
plementation.

Independently from the scheduling algorithm in use, de-
velopers need to balance throughput, fairness, and latency.
These three criteria have different impact depending on the
application domain. When optimizing for throughput, devel-
opers strive to maximize the number of messages a system
can handle per second. A fair scheduling, on the other hand,
tries to split CPU time evenly among all actors. Lastly, when
minimizing latency, developers want to have a short period
of time between receiving and handling incoming—usually
external—messages. A fair scheduling usually causes low
latency although the overhead attached to evening out CPU
time can increase latency if system resources are not used
efficiently.



These three criteria can be balanced by configuring the
number of messages an actor is allowed to handle before
returning control back to the scheduler. This can be supple-
mented by adding a time an actor should at least run before
returning control to the scheduler. In this way, large amounts
of messages that cause only minimal work will not pile up
in the mailbox of an actor.

Allowing actors to fully drain their mailbox usually
maximizes throughput, because it minimizes scheduling
overhead. This approach can nevertheless deliver
suboptimal throughput if the actors are running on an
intermediate node in a distributed system that consumes
several work items via the network and produces new work
items that are consumed on different nodes. In such cases,
this scheduling strategy can lead to bursts, as arriving work
items for currently waiting actors pile up. Although the
CPU on one host will have efficient use, other CPUs of
subsequent hosts might idle.

On the other extreme, actors would be only allowed to
consume one single message at a time before returning con-
trol to the scheduler. Combined with a round-robin schedul-
ing, this strategy guarantees a very fair scheduling, given
that no actor actively starves others. Still, striving to achieve
maximum fairness is not an efficient scheduling strategy in
most cases. CAF implements event-based actors and chains
message handler invocations rather than performing context
switching. Nonetheless, chaining unrelated message han-
dlers causes frequent cache misses by changing the working
set constantly and maximizes access to the job queue of each
worker.

As a general-purpose framework for actor programming,
CAF seeks to cover most use cases with an efficient default
implementation. However, this default implementation is
exposed to developers to grant them full access to
performance-critical components. This includes configuring
default implementations as well as replacing them if they
do not match the use case of the application.

Developers can install a user-defined scheduler with the
function set_scheduler.

template <class Policy = work_stealing>
void set_scheduler(size_t num_workers = P,

size_t max_msgs = MAX);

The num_workers argument defines how many threads
should be allocated. Per default, this value is set to P—the
number of processing units found at runtime. The second
argument, max_msgs, specifies how many messages an actor
is allowed to consume before returning control back to the
scheduler. Per default, this value is set to MAX , i.e., the
maximum value of type size_t. The template parameter
Policy needs to implement the following concept class.

struct scheduler_policy {
struct coordinator_data;
struct worker_data;
void central_enqueue(Coordinator*,

resumable*);
void external_enqueue(Worker*,

resumable*);
void internal_enqueue(Worker*,

resumable*);
void resume_job_later(Worker*,

resumable*);
resumable* dequeue(Worker*);

};

The scheduler itself consists of a central coordinator and
workers. Data fields needed for scheduling are configured
using coordinator_data and worker_data,
respectively. Enqueue operations to the coordinator via
central_enqueue are caused by “top-level” spawns, i.e.,
actors that have been spawned either from a non-actor
context or from a detached actor. Whenever a cooperatively
scheduled actor spawns actors, it uses internal_enqueue
on the worker it is being executed by. Since it is only being
called from the thread managed by the worker this enqueue
operation does not need to be synchronized. The function
external_enqueue can be used by the coordinator to
delegate an enqueue operation to one of its workers. Actors
that have exceeded the number of allowed dequeue
operations call resume_job_later. Workers use the
function dequeue to get the next actor in line.

In our default implementation, i.e., work_stealing, the
coordinator does not have a queue and simply forwards
enqueue operations to its workers in round-robin order.

An implementation based on a thread pool could do the
opposite, i.e., use a central queue in the coordinator and
no data fields in the workers. The max_msg parameter al-
lows developers to fine-tune the behavior of our default im-
plementation. Furthermore, the policy-based design enables
users to deploy their own scheduling algorithm in case their
application domain requires a specialized algorithm tailored
to the needs of that particular work load.

5.3 Performance Evaluation
In the remainder of this section, we analyse the performance
of CAF. This study focuses on the scalability of our schedul-
ing infrastructure in comparison to other common actor sys-
tems and extends our previous work [10]. Using a host with
four 16-core AMD Opteron processors at 2299 MHz each
(instead of the 12-core machine from previous benchmarks),
we first perform two micro-benchmarks on actor creation
and mailbox efficiency, and second we run two larger sce-
narios of mixed resource consumption. The first three bench-
mark programs are taken from [10], while the last Man-
delbrot calculation is adopted from the Computer Language
Benchmarks Game.

For comparative references, we use the implementations
of ActorFoundry, Charm++, Erlang, SalsaLite, and Scala
with the Akka library. In detail, our benchmarks are based
on the following implementations of the actor model: (1)
C++ with CAF 0.10 (CAF) and Charm++ 6.5.1 (Charm),
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Figure 2. Actor creation performance for 220 actors
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Figure 3. Mailbox performance in N:1 communication scenario
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Figure 4. Performance in a mixed scenario with additional work load



(2) Java with ActorFoundry 1.0 (ActorFoundry), (3) Erlang
in version 5.10.2 using HiPE for native code generation and
optimization level O3 (Erlang), (4) the latest alpha release
of the SALSA Lite programming language (SalsaLite) and
(5) Scala 2.10.3 with the Akka library (Scala). CAF and
Charm++ have been compiled as release versions using the
GNU C++ compiler in version 4.8.1. Scala, SALSA Lite and
ActorFoundry run on a JVM configured with a maximum of
10 GB of RAM. For compiling ActorFoundry, we have used
the Java compiler in version 1.6.0 38, since this version is
required by its bytecode post-processor.

We measure both clock time and memory consumption.
Measurements were averaged over 10 independent runs to
eliminate statistical fluctuations. Our results on memory are
visualized by box plots to represent its variability in a
transparent way. The source code of all benchmark
programs are published online at
github.com/actor-framework/benchmarks.

5.3.1 Overhead of Actor Creation
Our first benchmark considers a simple divide & conquer
algorithm. It computes 220 by recursively creating actors.
In each step N , an actor spawns two additional actors of
recursion counter N � 1 and waits for the (sub) results of
the recursive descend. This benchmark creates more than
one million actors, primarily revealing its creation overhead.
It is worth mentioning that this algorithm does not imply a
coexistence of one million actors at the same time.

Figure 2(a) displays the time to create about a million ac-
tors as a function of available CPU cores. CAF, Charm++,
SALSA Lite scale down nicely with cores, i.e., the schedul-
ing of actor creation parallelizes cleanly for them. CAF is the
fastest implementation with less than a second on twelve or
more cores. On 64 cores, CAF, SALSA Lite, Charm++ and
Erlang run the benchmark in 3 or less seconds, while Scala
and ActorFoundry take 17 and 14 seconds respectively.

Figure 2(b) compares the memory consumption during
the benchmark. Results largely vary in values and variation.
ActorFoundry allocates significantly more memory than all
other implementations, peaking around 3.5 GB of RAM with
an average of ⇡ 1.8 GB. Erlang follows with a spike above
2 GB of RAM and an average of ⇡ 1 GB. Scala has an
average RAM consumption of 500 MB, with a spike about
750 MB. SALSA Lite and Charm++ stay below 300 MB,
while CAF consumes about 10 MB. This low limit does
not imply that an actor uses less than 10 Bytes in CAF.
Merely, CAF releases system resources as soon as possible
and efficiently re-uses memory from completed actors.

5.3.2 Mailbox Performance in N:1 Communication
Scenario

Our second benchmark measures the performance in an N:1
communication scenario. This communication pattern can
be frequently observed in actor programs, e.g., whenever an

actor distributes tasks by spawning a series of workers and
awaits the results.

We use 100 actors, each sending 1,000,000 messages to
a single receiver. The minimal runtime of this benchmark is
the time the receiving actor needs to process its 100,000,000
messages. It is to be expected that the runtime increases with
cores, because adding more hardware concurrency increases
the probability of write conflicts.

Figure 3(a) visualizes the time consumed by the appli-
cations to send and process the 100,000,000 messages as a
function of available CPU cores. As expected, all actor im-
plementations show a steady growths of runtime on aver-
age, but differ significantly in values and fluctuations. As an
extreme, the performance of Erlang jumps by about an or-
der of magnitude indicating a largely discontinuous resource
scheduling. Fluctuations of all other systems remain at scale
and the relative slopes of increasing runtime are rather sim-
ilar. Except for Erlang, the scalability of message process-
ing thus shows an overall comparable behavior. CAF out-
performs all competitors in absolute values, underlining its
strong level of optimization. On 64 cores, CAF has an aver-
age runtime of 86 seconds, which is less than a tenth of the
1086 seconds measured for Scala.

Figure 3(b) shows the resident set size during the bench-
mark execution. In this scenario, a low memory usage can
hint to a performance bottleneck, as 100 writers should be
able to fill a mailbox faster than one single reader can drain
it. Erlang seems to deliver a good trade-off between run-
time and memory consumption at first, but fails to maintain a
reasonable runtime for high levels of hardware concurrency.
All three JVM-hosted application have a high memory con-
sumption while running significantly slower than CAF on
average, indicating that writers do block readers and mes-
sages accumulate in the mailbox while the receiver is unable
to dequeue them due to synchronization issues.

5.3.3 Mixed Operations Under Work Load
In this benchmark, we consider a realistic use case including
a mixture of operations under heavy work load. The bench-
mark program creates a simple multi-ring topology with a
fixed number of actors per ring. A token with an initial value
of 1,000 is passed along the ring and its value is decremented
by one in each round. A client that receives the token for-
wards it to its neighbor and terminates whenever the value
of the token is 0. Each of the 100 rings consists of 100 actors
and is re-created 4 times. Thus, we continuously create and
terminate actors with a constant stream of messages. In ad-
dition, one worker per ring performs prime factorization to
add numeric work load to the system.

Figure 4(a) shows the runtime behavior as a function of
available CPU cores. Ideal scaling would halve the runtime
when the number of cores doubles. All implementations ex-
cept for ActorFoundry almost exhibit such a linear speed-up.
The latter remains at a runtime above 200 seconds. Since it
never uses more than 500% CPU at runtime, a better scala-

github.com/actor-framework/benchmarks


bility cannot be expected. SALSA Lite is the only implemen-
tation under test that performs similar to CAF in this bench-
mark, followed by Akka which is about 10-20 % slower. It
is worth mentioning that SALSA Lite required a manual
work load distribution by the programmer. Without putting
each ring into its own “Stage”—a scheduling unit in SALSA
Lite—, the runtime increases by a factor of 10-20.

Figure 4(b) shows the memory consumption during the
mixed scenario. Qualitatively, these values coincide well
with our first benchmark results on actor creation. CAF
again has a very constant and thus predictable memory foot-
print, while using significantly less memory than all other
implementations (below 30 MB). Noticeably, SALSA Lite
has the highest memory consumption of all benchmark pro-
grams, indicating that it may trade memory consumption for
runtime efficiency.

5.3.4 Computer Language Benchmarks Game
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Figure 5. Performance for calculating a Mandelbrot,
adapted from the Computer Language Benchmarks Game

The Computer Language Benchmarks Game2 is a pub-
licly available benchmark collection initiated by debian. It
compares implementations of specific problems in different
programming languages.

Among others, the benchmarks game offers the calcula-
tion of the Mandelbrot set, which we chose for our eval-
uation. The calculation of the Mandelbrot set is a straight
forward algorithm that parallelizes at fine granularity. The
benchmark plots an N -by-N pixel Mandelbrot set in the
area [�1.5� i, 0.5+ i]. While the original benchmark writes
the resulting bitmap to a file, we chose to omit the output
as we are not interested in I/O performance. Each program
distributes the problem by creating one actor per calculated
row. In contrast to the benchmarks game, we did measure-
ments with 4 to 64 cores in steps of 4, consistent with our
previous experiments. We consistently use a problem size
of N = 16000 and increased the iteration maximum from

2 http://benchmarksgame.alioth.debian.org/

50 to 500. This increase provides us with a problem that is
complex enough to observe scaling behavior up to 64 cores.

Our benchmark implementations are modified versions
of the x64 Ubuntu quad-core programs. We adjusted the
implementations to use actors for parallelization instead of
threads. Even if other solutions were faster, they could not
offer the features provided by the actor model—as
considered in this paper. The Erlang implementation is
directly taken from the website and uses HiPE. For Scala,
we chose the unnumbered Scala benchmark and adapted it
to use Akka actors. The CAF benchmark is adapted from
the C++ benchmark #9 and uses CAF for parallelization
instead of OpenMP. As Charm++ is also based on C++, it
uses the identical implementation for the Mandelbrot set.
However, parallelization in Charm++ did not work as
expected. We observed a drop in runtime after separating
actor creation and message passing into two loops instead
of one. This is surprising, since both versions finished the
loops nearly instantly, but afterwords required different
times for the remaining calculations. Furthermore, a
straight forward implementation in a way similar to our
other Charm++ benchmarks did not distribute the workload
over all cores. We improved the performance of Charm++
by assigning an equal fraction of actors to all cores
dynamically at runtime, which reduced the runtime
significantly. Due to the previous slow results, we excluded
ActorFoundry from this competition.

Figure 5 shows the runtime in seconds as a function
of the available CPU cores. Even though all benchmarks
show a good scalability on the overall, their runtime varies
largely. CAF shows the best performance in this bench-
mark with a runtime of 3.2 seconds on 64 cores, followed
by Scala at around 4.9 seconds. Charm++ requires 7.0 sec-
onds and Erlang performs worst at 28.2 seconds, which is
more than CAF requires on 4 cores. Since the benchmark
focuses on distributed number crunching, the performance
of Erlang does not surprise as the JVM of Erlang does not
perform competitively for heavy numeric calculations. How-
ever, we were surprised by the performance difference be-
tween Charm++ and CAF. Although both use the identi-
cal code for calculating the Mandelbrot set and performed
very similar on the actor creation benchmark, Charm++ re-
quires twice the runtime. Since both frameworks use a non-
preemptive scheduler, the performance difference must be
the result of overhead in the runtime environment. We do not
display memory measurements for this benchmarking task,
as results plainly reflect the size of the pixel array for the
Mandelbrot image set.

5.3.5 Discussion
The extensive benchmarks presented above essentially re-
vealed that the Actor implementations under test scaled well
in most scenarios. Only ActorFoundry could not utilize hard-
ware concurrency efficiently in our mixed case benchmark.
In all four benchmarking scenarios, CAF ran faster than the



only native competitor Charm++, and used less memory de-
spite both being implemented in C++. It is worth mention-
ing, though, that Charm++ is optimized for performance on
clusters and supercomputers and as a direct result may not be
as efficient at single-host performance. Still, there are over-
lapping use cases for those systems that make a comparison
justifiable. For our runtime comparison, we have used the
standalone version of Charm++ instead of its charmrun
launcher that can be used to distribute an application or par-
allelize it using processes.

On the overall, CAF consistently scaled ideally up to
64 cores and required significantly less memory than the
competitors. SALSA Lite and Scala revealed similar per-
formance characteristics in some scenarios, but no competi-
tor could reach the memory efficiency of CAF. The mailbox
performance benchmark is the only case where CAF con-
sumes more memory than Erlang and Scala. However, the
high memory allocation is a direct result of its highly scal-
able, lock-free mailbox implementation and allows CAF to
outperform competing implementation by orders of magni-
tude on 64 cores.

6. Conclusions and Outlook
Currently the community faces the need for software envi-
ronments that provide high scalability, robustness, and adap-
tivity to concurrent as well as widely distributed regimes.
In various use cases, the actor model has been recognized
as an excellent paradigmatic fundament for such systems.
Still, there is a lack of full-fledged programming frame-
works, which in particular holds for the native domain.

In this paper, we presented CAF, the “C++ Actor
Framework”. CAF scales up to millions of actors on many
dozens of processors including GPGPUs, and down to
small systems—like Rasberry PIs [17]—in loosely coupled
environments as are characteristic for the IoT. We
introduced an advanced scheduling core and presented
benchmark results of CAF that clearly confirmed its
excellent performance. We further reported on our ongoing
efforts to make this framework a production tool set for
reliable software development: a strongly typed message
interface design to reduce error-proneness, and a distributed
runtime inspection for monitoring and debugging.

There are four future research directions. Currently, we
are reducing the resource footprint of CAF even further and
port to the micro-kernel IoT operating system RIOT [7].
Second we work on extending scheduling and load sharing
to distributed deployment cases and massively parallel sys-
tems. This work will stimulate further, compatible bench-
marking [18]. Third we will extend our design to achieve
more effective monitoring and debugging facilities. Finally,
a robust security layer is on our schedule that subsumes
strong authentication of actors in combination with oppor-
tunistic encryption.
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