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Abstract—Content objects are confined data elements that
carry meaningful information. Massive amounts of content ob-
jects are published and exchanged every day on the Internet. The
emerging Internet of Things (IoT) augments the network edge
with reading sensors and controlling actuators that comprise
machine-to-machine communication using small data objects.
IoT content objects are often messages that fit into single IPv6
datagram. These IoT messages frequently traverse protocol trans-
lators at gateways, which break end-to-end transport and security
of Internet protocols. To preserve content security from end to
end via gateways and proxies, the IETF recently developed Object
Security for Constrained RESTful Environments (OSCORE),
which extends the Constrained Application Protocol (CoAP)
with content object security features commonly known from
Information Centric Networking (ICN).

This paper revisits the current IoT protocol architectures and
presents a comparative analysis of protocol stacks that protect
request-response transactions. We discuss features and limita-
tions of the different protocols and analyze emerging functional
extensions. We measure the protocol performances of CoAP
over Datagram Transport Layer Security (DTLS), OSCORE,
and the information-centric Named Data Networking (NDN)
protocol on a large-scale IoT testbed in single- and multi-hop
scenarios. Our findings indicate that (a) OSCORE improves on
CoAP over DTLS in error-prone wireless regimes due to omitting
the overhead of maintaining security sessions at endpoints,
(b) NDN attains superior robustness and reliability due to its
intrinsic network caches and hop-wise retransmissions, and (c)
OSCORE/CoAP offers room for improvement and optimization
in multiple directions.

Index Terms—IoT protocol architecture, CoAP, OSCORE,
DTLS, ICN, secure networking, protocol evaluation, network
experimentation

I. INTRODUCTION

THE Internet design follows an end-to-end principle [1],
which strongly shaped its transport layer. Transport ses-

sions shall establish directly between applications without in-
termediaries. On transport, (datagram) transport layer security
(D)TLS augmented end-to-end sessions with security features
following the intend to provide secure channels between appli-
cation endpoints that are transparent to applications. (D)TLS
interception [2], [3], however, breaks the end-to-end paradigm
from a security perspective. At the same time, a growing
number of use cases demands for application layer gateways
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and transport assistance, which both hinder end-to-end session
security.

Currently, the Internet of Things (IoT) emerges with massive
deployments of constrained devices that are shielded behind
application gateways. These gateways translate between the
Constrained Application Protocol (CoAP) [4] over DTLS [5]
and HTTPS, or the Message Queuing Telemetry Transport for
Sensor Networks MQTT-SN [6] over DTLS and MQTT [7]
over TLS, which require re-authentication and re-encryption.
In addition, cryptographic overhead burdens the constrained
nodes that interact in low-end wireless transmission systems
while being challenged by maintaining security sessions for
all the small data transfers. The IoT is thus a use case against
end-to-end session security.

We are interested in resolving the tussle of provisioning
authenticated and eventually encrypted content to users in
networks that cannot maintain persistent, bilaterally trusted
relationships. For this, we explore generic methods that bind
security credentials directly to content objects instead of to
transmission channels: content object security.

Content objects security is an orthogonal approach to secure
communication on the Internet. It changes the session-centric
paradigm by adding authentication and encryption (if desired)
to each data chunk—independent of its endpoints. Content
object security in turn allows for content caching and transport
translation at gateways, while preserving all properties of data
security. In spite of deployment facility, it is desirable to
provide such security functions at base protocol layers.

Information-centric Networking was first to introduce con-
tent object security on the network layer for the sake of
ubiquitous caching. Recently, the IETF Core working group
released OSCORE [8], which extends the IoT ecosystem
around CoAP to content object security. As application layer
protocols, CoAP/OSCORE can still be expected to take a basic
role in the IoT, since machine-to-machine communication only
requires a reduced feature set and less protocol diversity to
serve its selected applications.

In this paper, we revisit the current competing IoT secure
protocol architectures and qualitatively evaluate their prospects
and potentials. Our long-term objective is to work toward a
data-centric, resilient Web of Things. We present and compar-
atively evaluate the full solution space for exchanging secure
content objects in the IoT. This extends our previous work [9]
by deepening the discussion, considering latest protocol devel-
opment, as well as evaluating communication resilience and
caching.

Starting from a problem statement and related protocol
work in Section II, we present a comprehensive set of im-
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plementations within the RIOT [10] networking subsystem in
Section III. Theoretical evaluations of the protocol security
features follow in Section IV. Section V analyzes the specific
features concerning redundancy, resilience, and recovery of
protocol functions. Our network experimentation on a large-
scale testbed are discussed in Section VI along with various
results that indicate significant performance improvements
over CoAP/DTLS by OSCORE as well as NDN. Section VII
concludes with an outlook.

II. THE PROBLEM OF SECURING IOT CONTENT AND
RELATED PROTOCOL WORK

A. Problem Statement

The Internet of Things is evolving to connect numerous,
often constrained devices that regularly exchange massive
amounts of data. Authenticity and possibly confidentiality of
information is of vital interest in a wide range of applications.
The problem, though, is that low-end devices need to optimize
resources and thus need to minimize cryptographic operations
and state while (re-)transmitting packets [11].

At the same time, low-power lossy networks frequently
experience packet loss and require retransmissions—multihop
transfers often significantly challenge these error-prone
regimes [12]. Overhead from cryptographic credentials or
signaling security sessions consumes additional energy and
may quickly become critical for these low-power devices.

Low-end IoT nodes often operate intermittently to save
resources [13]. Duty cycling or energy shortages may force
devices into deep sleep with little capacities for saving protocol
state or security credentials in non-volatile memory modules.
Firmware updates, disruptive environments, or intermittent
power availability may repeatedly cause unanticipated system
resets. Any of these harsh conditions may lead to a loss of
state at endpoints. Once lost, session and security state needs
reestablishing to continue operation. Methods for replicating
protected data, as well as lightweight recovery mechanisms
from state loss including an efficient rediscovery and re-
association of networked nodes are hence vital for seamless,
perpetual operations: they save computational resources, radio
cycles, and preserve system energy.

Many IoT scenarios such as multi-destination control mes-
saging or convergecast sensor readings, but in particular over
the air (OTA) firmware updates can take advantage of multi-
party communication, which in the wireless IoT often pairs
with mobility. Multicast mobility is an asymmetric prob-
lem [14]. While the movement of receivers is often easy to
compensate by local network reconfigurations, the impact of
mobile sources on routing and forwarding is complex and
requires assisting measures or services. Secure communica-
tion contexts require proper group keying and secure group
membership management, which require dedicated treatment
on the protocol level if bound to communication endpoints.

In a wider context, trust relationships in the IoT are het-
erogeneous and change with varying deployment settings.
While the exchanging endpoints are often widely distributed
(e.g., sensors and a cloud), IoT gateways often need to translate
between protocols. If translators are required to re-authenticate

and re-encrypt, all communicating parties must pre-establish
trust with the IoT gateways in place. This will be a major
problem in provider-bound deployments such as 5G.

There are several ways to securely transfer content across
the constrained IoT. The most common approach builds on
securing the transport layer, which establishes confidentiality
and trust between end points and remains neutral with respect
to application layer protocols. An option for content object
security has been newly developed for CoAP communica-
tion between IoT nodes, after a longer research period on
information-centric IoT networking had worked out the advan-
tages of securing content objects autonomously. We discuss
properties, underlying mechanisms, and protocols for these
three approaches in the following three subsections.

B. Transport Layer Security in the IoT

Datagram Transport Layer Security (DTLS) [5] closely
follows TLS [15] in terms of protocol behavior and security
guarantees. Unlike its stream-oriented relative, DTLS adds fa-
cilities to operate in unreliable datagram environments. It con-
tributes a modified record layer that tolerates packet loss and
message reordering. To break up inter-record dependencies,
DTLS bans stream ciphers and uses explicit sequence numbers
in datagrams. A cryptographic context thus spans exactly one
record. UDP is the prevailing transport in IoT deployments.
Compared to TCP, it exhibits no substantial protocol overhead
and allows for implementations with low memory footprints.
Utilizing DTLS to secure existing application protocols such
as CoAP and MQTT-SN hence appears to be the best logical
choice—at least at first glance.

Concerns arose in recent studies that question the appli-
cability of DTLS in large-scale IoT systems. First, certain
cryptographic challenges during handshake processes are in-
feasible. While processing time for cryptographic operations
diminish with hardware crypto modules, message sizes are
inflated. Asymmetric key ciphers require handshake overhead
and large payload sizes, which immensely boost handshake
completion times to the order of seconds and minutes in multi-
hop deployments due to packet fragmentation [16].

The stateful session characteristic further comes at the cost
of multicast capability, since security contexts are identified
by the classic 5-tuple between two endpoints. Particularly
in scenarios that involve device mobility and multi-homing,
a generally accepted effort applies connection identifiers to
security channels—independent of the 5-tuple [17]. Fig. 1 (a)
illustrates a realistic deployment setup for CoAP over DTLS:
End-to-end security commonly terminates at the gateway to
allow for protocol conversions, e.g., to HTTPS over TCP.

C. Content Object Security in the IoT

OSCORE [8] is a protocol extension to CoAP and addresses
the terminating security issue at gateways. Instead of securing
sessions between endpoints, OSCORE protects entire CoAP
messages and provides integrity, authenticity, and confiden-
tiality on an object level. The original CoAP message is
thereby encapsulated as an authenticated and encrypted CBOR
Object Signing and Encryption (COSE) [18] object by an outer
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Fig. 1. Typical deployment setups for CoAP over DTLS, OSCORE, and NDN in the IoT. Validity of session keys terminates at gateways for transport layer
security due to transport conversions, e.g., UDP to TCP. Content object security is unaffected by gateway operations and reaches end-to-end.

CoAP option. In addition to cryptographic efforts, the protocol
further includes countermeasures to prevent response delay
and mismatch attacks. A strong message binding between
requests and corresponding responses is constructed with the
use of identical identifiers in their authenticated components,
which persist over retransmissions. Replay windows allow for
rearranged messages to be processed independently. Applica-
tions built on it use CoAP mechanisms like If-Match or the
Echo [19] option to protect against any ill-effects of rearranged
messages.

OSCORE utilizes the request-response semantics of its
underlying CoAP layer and an elaborate nonce construction
to obtain compact response messages. When combined with
CoAP observation (continuous responses to a single request),
OSCORE protects the sequence of notifications using its
own sequence numbers. When combined with CoAP block-
wise transfer, it fragments large resources into pieces small
enough for the end points to process in a single cryptographic
operation without hindering further block-wise processing by
proxies. Unlike DTLS, OSCORE does not come with a built-
in key exchange protocol, and relies on pre-shared keys. A
lightweight authenticated key exchange (LAKE [20]) is under
development as a companion protocol.

A major improvement over the conventional transport layer
security concept is the ability to secure multicast messages.
CoAP supports a one-to-many group communication [21]
when used with UDP. While DTLS fails to perform in
multicast environments, the object security characteristic of
OSCORE allows for protected requests and responses in these
deployments [22].

Fig. 1 (b) illustrates the envisioned deployment option.
Messages are cryptographically secured and despite protocol
conversions on gateways, their properties stay intact while
traversing up to cloud services.

D. Content Security in the Information-Centric IoT

Information-centric Networking [23], [24]—a clean-slate
approach of the Future Internet initiatives—abandons the host-
centric Internet paradigm in the favor of autonomous content,
which allow for an unhindered replication of authenticated data
objects. A decade of research has created a variety of ICN

flavors that have three principles in common [25]: Decoupling
of named content from hosts, universal caching, and content
object security.

Named Data Networking (NDN) [26] enjoys significant
popularity and has been identified early as a candidate for
low-end IoT edge networking [27]. An adaptation layer to
the low power lossy wireless exists with ICNLoWPAN [28].
In contrast to the end-to-end stateless packet processing on
the Internet, NDN utilizes a stateful, hop-by-hop forwarding
fabric that decouples content objects from their locations and
enables seamless on-path caching. NDN follows a simple
request-response scheme on the network layer using the two
message types Interest and Data, each treated individually
by the forwarding state machine. Fig. 1 (c) illustrates the
additional content caches that support content replication and
local recovery from losses.

NDN supports integrity and authenticity as protocol features
by appending cryptographic signatures to data packets. While
originally the intrinsic security only applied to data packets,
the upcoming NDN protocol version allows for a signature
inclusion in Interests. Confidentiality is not supported on the
protocol level, but left to the applications, which may encrypt
content.

III. COMPOSABLE NETWORK STACKS FOR OBJECT
SECURITY IN CHALLENGED IOT DEPLOYMENTS

The decision for a software platform that can cope with
constrained IoT is crucial. As we aim for maintainability
and sustainability, we extend existing code bases instead of
designing and implementing from scratch. As such, we utilize
the open source IoT operating system RIOT [29] and leverage
its existing network stack, which follows a cleanly layered ar-
chitecture [30]. In course of our evaluations, we contribute and
upstream improvements to the RIOT integrations of DTLS,
OSCORE, and NDN.

A. The RIOT Networking Subsystem

The RIOT networking subsystem displays two interfaces
to its externals (see Fig. 2): The application programming
interface sock and the device driver API netdev. Internal
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Fig. 2. The RIOT networking subsystem.

to stacks, protocol layers interact via the unified interface
netapi, thereby defining a recursive layering of a single
concept that enables interaction between various building
blocks: 6lo with media access control (MAC), IP with routing
protocols, transport layers with application protocols, etc. This
grants enhanced flexibility for network devices that come with
stacks integrated at different levels.

B. CoAP Over DTLS

gCoAP is the feature-rich native CoAP implementation of
RIOT. It implements the server-side and client-side, it supports
the most common methods GET, POST, PUT, DELETE, it
handles confirmable messages, and it allows for observing re-
sources. gCoAP further provides the CoAP proxy functionality
to redirect client requests and maintains a response cache to
reduce round-trip times. The cache is using a least recently
used eviction strategy to prioritize responses of the most recent
requests. As depicted in Fig. 2, gCoAP uses the sock API. On
the north-bound it attaches to sock_udp and sock_dtls,
which makes it completely network stack agnostic. In the
default configuration, the native 6LoWPAN [31] network stack
of RIOT—Generic (GNRC)—provides the south-bound imple-
mentation of sock_udp. The DTLS counterpart is provided by
the external package tinyDTLS. It follows a threadless design
and depends on events, which are handled by the sock layer
within the gCoAP thread. This DTLS setup supports two ci-
phersuits: (i) pre-shared authentication and key exchange using
the Advanced Encryption Standard (AES) in Counter with
CBC-MAC mode (CCM) [32] with a 128-bit key length, and
(ii) an Elliptic Curve Cryptography (ECC) based AES-CCM
with an Elliptic Curve Diffie-Hellman Ephemeral (ECDHE)
key exchange.

C. CoAP With OSCORE

We provide libOSCORE1 as an implementation of the
OSCORE [8] model that integrates into RIOT. Unlike other
approaches, e.g., a yet to be mainstreamed Contiki imple-
mentation2 and c_OSCORE3 on top of Zephyr, libOSCORE
focuses on portability across different CoAP libraries and
provides replay protection.

Distinct features of libOSCORE are its handling of the
request-response correlation data and its zero-copy approach.
In the former, initialization vectors (Partial IVs) [18],
which are used to create unique nonces for the underlying
authenticated encryption algorithm, are consistently passed
by reference. They carry a flag indicating first use and get
invalidated by consumers. This allows leveraging OSCORE
optimizations for safe representational state transfer (REST)
operations. In memory management, libOSCORE expects its
user to provide suitable memory locations and provides struct
definitions to make that portable. This saves execution time,
main memory (RAM) and storage (ROM) at the cost of
some implementation complexity on the user side. It allows
processing of messages from the receive-buffer in a single
reading pass after in-place decryption and without dynamic
memory allocation.

In CoAP libraries that build and read their messages in
buffers (cf, gCoAP), integration of libOSCORE happens in
two stages: (i) basic integration, and (ii) full integration.

The basic integration describes the most elementary way of
interacting with libOSCORE. It only requires a mapping of
certain CoAP operations and cryptographic primitives. Appli-
cations that use this mode directly access OSCORE objects
and steer every step of the encryption and decryption process
for each packet. Generally, usage of this mode is tedious and
error-prone and therefore discouraged for user applications.
On the other hand, a basic integration allows for a full control
of OSCORE internals, which can be leveraged to perform
protocol optimizations by libraries or protocol extensions.

The full integration requires a functional basic integration
as prerequisite. At that stage, libOSCORE messages are used
as backends for the native CoAP library. Application code
is identical for the unprotected and OSCORE-protected case,
and thus tightly coupled to the native CoAP implementation.
The CoAP library dispatches operations on messages through
libOSCORE atop of, or directly through the transport protocol,
depending on the application’s configuration (e.g., the choice
of a security context for a message) or presence of the
OSCORE option. This mode of operation is the recommended
way of building user applications, as APIs hide security
operations and prevent security breaches due to a misuse
of OSCORE internals. The stack in Fig. 2 shows the full
integration state where applications interact only with gCoAP.

An intermediate integration is available in libOSCORE for
cases when full integration is unfeasible with a particular
library or simply incomplete. At that level, an additional
library provides code to orchestrate and simplify cryptographic

1https://gitlab.com/oscore/liboscore
2https://github.com/Gunzter/contiki-ng/tree/oscore_12
3https://github.com/Fraunhofer-AISEC/c_OSCORE
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procedures. This mode is most suited for narrow-purpose
helper libraries up to full-fledged REST frameworks, which
generally provide their own APIs towards user applications.

We further implement experimental protocol features to
explore the design space as discussed in our comparative
evaluation (Section VI). In detail, we allow proxy nodes to
cache OSCORE responses so they can be served for request
retransmissions from the same client.

D. Named Data Networking

CCN-lite [33] is a lightweight NDN forwarder, which
supports all primary features: in-network caches, hop-wise
retransmissions, request aggregation along paths, and multi-
source, multi-destination forwarding. It runs on a variety of
hardware platforms—ranging from commodity hardware to
embedded devices. While the core forwarder is self-contained
and platform independent, adaptors provide access to the
system communication API. CCN-lite is integrated into RIOT
as an external package. It contributes a RIOT adaptor, which
hosts its own thread and translates between CCN-lite messages
and netapi packets.

IV. THEORETICAL EVALUATION OF PROTOCOL SECURITY

Performance measures such as security properties largely
differ for each protocol configuration. In the following, our
performance assessment considers protocol design choices
and thus provides insights that are independent of specific
deployments. We focus on four protocol compositions: (i)
CoAP (Protected) with encrypted and authenticated response
payload as baseline implementation. (ii) CoAP over a secured
DTLS 1.2 session. (iii) OSCORE to provide object security
for request and response messages. (iv) NDN (Protected) using
signed Data messages and encrypted as well as authenticated
content.

A. Cryptographic Algorithms

Cryptographic primitives quickly touch critical resource
limits in low-power, wirelessly connected regimes, as compu-
tational complexity and memory consumption strongly vary
with algorithms and implementations. The limited amount
of main memory and slow CPU clock speeds in embed-
ded IoT devices can push completion times of resource-
exhaustive operations by orders of magnitude beyond a rea-
sonable performance on commodity hardware—notably for
asymmetric cryptography. While long computations reduce
sleep cycles and drain batteries much faster, they also affect the
responsiveness of the overall—commonly single-threaded—
system. Hardware-assisted cryptography can largely improve
on resource consumption, but necessary crypto 𝜇chips are not
always integrated into hardware platforms due to economical
reasons. For a detailed analysis of crypto-primitives on low-
end IoT devices we refer to [34].

In our following protocol selection, we specifically focused
on low-complexity modes in crypto using pre-shared keys
to not burden the protocol assessment with disproportionally
long intra-stack delays. Since CoAP appoints an authenticated

encryption using AES with a block size of 128 bits in
CCM mode and an 8-byte authentication tag as mandatory-
to-implement [4, Section 9.1.3.1], we configured this choice
for all protocol deployments.

B. Security Properties

CoAP (Protected) exhibits the weakest security properties
in our comparison: While it uses an authenticated encryption
for the payload, it does not provide any security measures
for the actual CoAP messages to protect CoAP signaling.
Protocol headers are prone to tampering and messages are
susceptible to interception as well as packet delay attacks.
These shortcomings make the binding of requests to correct
responses fragile. The inability to map responses to particular
requests is especially dangerous in cases when resources pub-
lish mutable content [19], [35]. Consequently, even in the case
when the payload is secured, delayed and replayed messages
can affect the state machine on the client and server. Since
the message headers are not protected against confidentiality
attacks, this configuration easily leads to privacy concerns.
Plaintext requests will contain resource URIs, which typically
help to identify sensitive application information and therefore
potentially leak private data. Responses may not include
resource URIs, but included tokens unambiguously identify
potentially intercepted requests and thus their resource URIs.
CoAP over DTLS is the common method for securing
message transmissions in an IoT network. DTLS provides
integrity, authenticity, and confidentiality for UDP datagrams
within sessions based on pre-established private keys. It
operates below the application layer and inherently takes
CoAP requests as well as responses into consideration. A
drawback from this layering, however, is that the DTLS record
layer is not aware of CoAP semantics. This introduces a
twofold problem: First, this configuration suffers from the
same request-response binding issues when messages are
delayed and replayed [35] while recent mitigations [19] are
not deployed yet. Second, end-to-end security terminates at
gateways in usual IoT setups when protocol conversions from
CoAP to HTTP take place. Minimal DTLS implementa-
tions commonly provide the lightweight DTLS cipher suite
TLS_PSK_WITH_AES_128_CCM_8 [36], which does not
provide perfect forward secrecy. Adaptations [37], allow for
the combination of existing cipher suites with the Ephemeral
Elliptic Curve Diffie-Hellman key agreement protocol.
OSCORE achieves a secured communication by protecting
request and response messages on CoAP level. This is in
contrast to CoAP over DTLS that establishes secure channels
between endpoints. OSCORE provides integrity, authenticity,
and confidentiality by nesting the actual CoAP message as an
authenticated and encrypted payload, interleaving information
relevant to routing and retransmission in the unprotected outer
parts. This layer hides sensitive information, such as the
resource path and the CoAP method of the original mes-
sage. Furthermore, the security of inner messages stays intact
across protocol translations on gateways (e.g., from CoAP
to HTTP/S). OSCORE provides a strong request-response
binding with mechanisms like sequence counters and sliding
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TABLE I
SUMMARY OF SECURITY PROPERTIES FOR EACH PROTOCOL

CONFIGURATION. (3) INDICATES OPTIONAL SPECIFICATIONS, WHICH ARE
UNAVAILABLE IN THE USED IMPLEMENTATIONS.

CoAP NDN

Protected DTLS OSCORE Protected

Request Message
Integrity 8 3 3 (3)
Authenticity 8 3 3 (3)
Confidentiality 8 3 3 8
Response Message
Integrity 8 3 3 3
Authenticity 8 3 3 3
Confidentiality 8 3 3 8
Attack Resiliency
Replay Insensitivity 8 (3) 3 3
Perfect Forward Secrecy 8 (3) 8 8

windows, which renders many attacks ineffective. The original
specification is missing a key exchange protocol and thus does
not provide perfect forward secrecy. Adaptations [38] allow for
an Ephemeral Diffie-Hellman over COSE.
NDN authenticates response messages between arbitrary
endpoints without the need for session state. While appli-
cation payload can be encrypted, NDN does not provide
confidentiality for message headers. Moreover, NDN reduces
security features to response messages only4. Names are an
integral part of the NDN forwarding fabric and may contain
sensitive application information. Thus, privacy concerns arise
from plaintext names in NDN messages. An encryption or
obfuscation of names inevitably affects the routing system and
adds an exhaustive overhead. Unlike the CoAP variants, NDN
follows the principle of immutable content: A specific name
invariably points to the same content object. This property
reduces the attack surface and desensitizes applications to
delayed and replayed messages.

We summarize the observed advantages and drawbacks of
the discussed protocol schemes in TABLE I, with a strong
focus on the actual protocol behavior rather than on application
payload security.

C. Security Message Overhead

In all protocol configurations, security extensions add mes-
sage overhead and consequently affect transmission times.
Notably for IEEE 802.15.4, inflated messages easily increase
media access times by a few milliseconds, whereas computa-
tional overhead in common IoT network stacks is in the range
of microseconds [30]. We now quantify the overhead in terms
of packet size which is introduced by the different security
extensions. In Section IV-D, we will put this into perspective
with respect to the common CoAP and NDN packets.

CoAP (Protected) and NDN (Protected) do not add any
message overhead to requests. All configurations other than
CoAP (Protected) add a structural overhead related to security.
DTLS includes 11 bytes for the DTLS 1.2 record layer in
all datagrams, excluding the epoch field. The NDN packet
format uses flexible Type-Length-Value (TLV) fields to encode

4Specification v0.3 is in progress and adds security features to Interests

TABLE II
MESSAGE OVERHEAD OF SECURITY MEASURES IN BYTES. OVERHEAD

DOES NOT APPLY TO COAP AND NDN REQUESTS.

CoAP NDN

Protected DTLS OSCORE Protected

Req Resp Req Resp Req Resp Req Resp

Structure – 0 11 11 4 3 – 11
Context ID – 2 2 2 1 0 – 1
Nonce – 2 8 8 1 0 – 0
MAC – 8 8 8 8 8 – 40

message headers. Security related TLVs similarly account for
11 bytes overhead. OSCORE exploits implicit information that
results from a strong request-response binding and further
utilizes a concise binary object representation (CBOR). This
nets to a structural overhead of four and three bytes.

The security context identifier consists of two bytes for
CoAP (Protected) and CoAP over DTLS. In the former sce-
nario, contexts are identified by the 2-byte key identifier within
our payload, while the latter scenario uses a 2-byte epoch field
in the record layer to denote a secured session. OSCORE and
NDN are able to reduce the length of small context identifiers.
OSCORE omits the security context in response messages and
requesting devices must deduce it from the request state.

For AES in CCM mode, the same nonce is required for
encryption and decryption. The nonce is of variable length
and usually ranges between 7–13 bytes [32]. We design our
experiment to use partially implicit nonces [39]. Two bytes
of the nonce are encoded into messages, while the remaining
bytes are deduced implicitly, e.g., from the hash of a resource
URI. This allows 216 messages per resource until a refresh of
established security contexts is advisable. OSCORE repeatedly
encodes smaller values in a single byte and CoAP (Protected)
uses a 2-byte representation. In responses, OSCORE uses the
same nonce to protect objects and thus omits the nonce. CoAP
over DTLS uses eight bytes as a result of concatenating the
epoch and sequence number fields. The remaining four bytes
of the DTLS nonce are implicit and generated as part of the
handshake process [36]. NDN benefits from the immutable
content property: Since names always map to the respective
content, its hash is used as nonce.

We use a message authentication code of eight bytes as
defined by the TLS AES-CCM cipher suites [36]. NDN
appends another 32-byte hash-based message authentication
code (HMAC) signature that envelops the complete response
packet. TABLE II summarizes the message overhead for the
discussed protocols.

D. Security Overhead in Comparison to Basic CoAP and
NDN Messages

We now dissect each message of the protocols under
comparison in detail and relate the basic CoAP and NDN
packet sizes to the security extension (see Fig. 3). Our analysis
distinguishes between requests and responses and includes all
handshake messages for DTLS. We assume that a response
payload includes a 2-byte temperature value.
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Fig. 3. Packet structures of control- and data-plane packets for each protocol configuration.

IEEE 802.15.4 admits a maximum physical layer packet
size of 127 octets. Assuming a typical configuration of 8-byte
source and destination hardware addresses, considering a given
2-byte frame control field, 1-byte sequence number, 2-byte
personal area network (PAN) identifier, and a 2-byte frame
check sequence, the total MAC header overhead adds up to
23 bytes for each protocol. This leaves 104 bytes for upper
layer headers and user data.

In CoAP setups, the 6LoWPAN header occupies 35 bytes
because it accommodates three 6LoWPAN dispatch bytes and
two IPv6 addresses. Moreover, each packet counts six bytes
for the compressed UDP header.

Special consideration is required for ClientHello and Server-
Hello packets in a DTLS handshake. In contrast to previous
calculation, they surpass the maximum physical packet size
and trigger a hop-wise 6LoWPAN fragmentation. While the
MAC header overhead is therefore doubled, the 6LoWPAN
overhead increases by only nine bytes for the inclusion of
fragmentation dispatches in both fragments.

In contrast to unprotected CoAP responses, CoAP (Pro-
tected) messages inflate by 12 bytes to include the context
id, nonce, and message authentication code of AES-CCM
(see Section IV-C). CoAP over DTLS emits 29 and 27 more
bytes for requests and responses, respectively, due to the
DTLS record layer. OSCORE messages display similar but
extenuating effects: requests increase by 14 and responses by
only 11 bytes. The primary explanation for this surprisingly
smaller increase is a reduced header overhead of OSCORE
compared to the DTLS 1.2 record layer. Nonces are further
omitted from responses to decrease their header overhead.

In contrast to CoAP, where responses display smaller packet
sizes than requests, NDN data packets exhibit larger sizes
than Interests. This is a result of names being fully included
in returning data packets. NDN data packets increase by an
8-byte AES-CCM MAC and an 32-byte HMAC signature,
compared to unsecured NDN packets with an overall packet
size of 64 bytes. Since Interest messages do not contain any
security measures, their packet sizes remain unaffected.

V. REDUNDANCY, RESILIENCE, AND RECOVERY

We now discuss prospective protocol features that are under
early discussion in the IETF, or could be utile in the near fu-

ture. The focus of this section is on protocol resilience against
unanticipated service interrupts, fast and lightweight recovery,
as well as on potential benefits from multi-destination content
replication and caching.

A. Resilience to Loss of Security State

Nodes in the constrained IoT have frequent reasons to power
down or even reboot. Protocol state which frequently updates
such as session keys, nonces, or sequence numbers usually
remains in main memory to reduce the number of energy-
intensive I/O operations on non-volatile memory modules, and
is therefore endangered to be lost. In distributed system set-
tings such loss of state causes difficulties with synchronizing
protocol behavior.

Security protocols usually manage state with varying de-
mands on state persistence. Keying material is deployed stat-
ically at device bootstrap, dynamically exchanged, or derived
from a key establishment scheme. These keys are considered
immutable for the lifetime of a single security context and
are persisted into non-volatile memory. Reorder and replay
protection mechanisms require per-message state in the form
of sequence counters, which update continuously with byte
flow in a specific context. While these counters are essential
for an efficient operation and remain effective across spurious
system reboots, it strains energy and memory lifetime to
preserve all individual state changes.

In this evaluation, we review the protocol behavior on unex-
pected security state loss for our selected protocol ensemble.
CoAP over DTLS deployments perform session establishment
between endpoints to negotiate keying material and to agree on
suitable cryptographic ciphers. Derived keys are valid for the
lifetime of the session and are renegotiated on rare occasions,
in which case the session epoch number gets incremented. The
epoch number identifies delayed packets that did not properly
transition to the new ciphers yet. Session keys and epoch fields
easily persist on non-volatile storage to make them available
throughout system reboots.

The sequence number in the DTLS record layer allows for
detecting reordered and replayed messages below the CoAP
layer. For this, each session endpoint individually advances
a sliding window following its received sequence numbers.
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Fig. 4. Protocol behavior due to loss of mutable OSCORE state after unanticipated client and server shutdowns with and without optimizations [8].

Since sequence numbers and the window bitmap are frequently
updated, persisting them on a storage module is infeasible. A
state loss due to unanticipated fail on either side thus requires
a full handshake of six to ten message flights to re-establish the
session. An optimization is the ticket-based session resumption
feature [40], which reduces the handshake down to three
flights. Tickets are created on the initial handshake and can
be stored in non-volatile memory.
CoAP with OSCORE shares some DTLS basic properties,
but has different recovery options. Keying material of a pre-
established security context is infrequently updated and there-
fore demands only a minimal amount of persistent storage I/O.
Here as well, message sender sequence numbers (SSN) and
sliding windows are employed to provide a replay protection
mechanism. Only CoAP server nodes advance a sliding replay
window for request messages.

Like in DTLS, an unexpected shutdown renders even per-
sisted key material unusable when no recovery options are
available. This hits OSCORE, however, harder than DTLS, for
while DTLS can restart with a full handshake, OSCORE needs
external mechanisms to arrive at a fresh security context. A
simple but inefficient mechanism to avoid that is to persist
the volatile state on each message, which adds to round
trip times and memory wear. As shown in Fig. 4 a, every
single sequence number and each advancement of the replay
window is persisted to maintain a consistent state beyond an
unanticipated system reset.

The appendix B.1 of the OSCORE specification [8] intro-
duces two mechanisms to reduce the persistence operations
to a few writes per reboot and takes the writes out of the
request-response latency path, while introducing little or no
randomness requirements. We distinguish between loss of
volatile state on the client and the server side. On the client
side (depicted in Fig. 4 b), sequence numbers are leased in
chunks of 𝐾 numbers, and the last value of the leases is
persisted. On system boot, or when the pool of leased numbers
is near exhaustion, another chunk is leased and the persisted
number increased. The interval provides a trade-off between

costly write operations and the amount of sequence numbers
that are lost after this procedure until a rekeying becomes
necessary, and can be configured or adjusted automatically
at runtime.

Fig. 4 c depicts the behavior when a CoAP server loses
the sliding replay window state. As the server does not persist
a replay window, it cannot determine that any request is not
a replay, and rejects it. Along with the rejection, it sends an
encrypted fresh Echo value [19]. (While using a random nonce
is an option, our implementation draws from the previously
established sequence number pool). A client with the correct
key material can repeat this request and mirrors the echo tag
back to the server. On success, the server then accepts this
request and initializes its replay window starting at a sequence
number it knows to be fresh.
NDN IoT deployments typically use pre-shared keys or
a complementary public key infrastructure to protect Inter-
est and data messages. For deployments with asymmetric
cryptography, content producers use key material to provide
message authenticity and integrity by digitally signing content
objects, while consumers require the corresponding public
key counterparts to perform origin authentication on incoming
data messages. A static configuration of necessary keys may
work for a small set of devices in a network, but becomes
unmanageable if content origins dynamically leave and join
trust relationships. A trust schema [41] can be leveraged
to configure automatic decisions for content producers and
consumers to dynamically create, choose, and receive the
correct key material based on the content names. In addition,
temporary session keys can be derived from key exchange pro-
tocol extensions, such as OnboardICNg [42], or LASeR [43].
OnboardICNg builds on the authenticated key exchange pro-
tocol (AKEP2) [44] and LASeR is inspired by the extensible
authentication protocol with session-key derivation using a
pre-shared key (EAP-PSK) [45]. Both generate temporary
security contexts that are valid for the lifetime of a session
and the resulting keys can be used to maintain forward secrecy
across consecutive sessions.
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Fig. 5. Node discovery with OSCORE using a scoped multicast request.

Similar to DTLS and OSCORE, persisting pre-shared se-
crets or session keys on device bootstrapping or session
establishing allows for continuing a secured communication
after unexpected system reboots. NDN does not include se-
quence numbers in messages, nor does it maintain frequently
changing security state on devices, since the hop-wise content
replication and immutability of named objects already reduce
the attack vector for reordering and replay attacks (see Sec-
tion IV-B).

B. Protected Multicast Device Discovery

Multicast on the network layer is a scalable mechanism
for contacting large groups of possibly unknown devices. In
fixed IPv6 networks it is an essential protocol feature for
establishing communication relations (e.g., using neighbor dis-
covery [46]). In low-power, wireless regimes devices running
6LoWPAN face additional challenges.

LoWPAN nodes are often subject to disruptive events,
e.g., lossy links and device mobility, which make a perpet-
ual connectivity between endpoints virtually impossible. Not
uncommonly, reappearing nodes may configure new endpoint
addresses due to expiring DHCP leases or privacy exten-
sions [47] for stateless address auto-configuration schemes
that limit the validity of addresses to a few hours or days
depending on the scenario setup. A CoAP deployment thus
usually requires a complementary infrastructure like the CoRE
resource directory [48], which allows to discover available
resource endpoints. Nevertheless, in high mobility scenarios,
propagations of frequently updating topologies to a central
registry can introduce an infeasible communication overhead.
A scoped multicast CoAP request is a lightweight alternative
for (re-)discovering CoAP endpoints in close vicinity.
CoAP over DTLS prohibits the use of multicast addresses,
because security sessions are bilaterally established between
endpoint pairs. A multicast CoAP request is thus not protected
by DTLS, which renders this lightweight alternative impracti-
cal for deployments with reasonable security demands.
OSCORE detaches the security context from endpoint-
specific information. A request can be sent as a CoAP multi-
cast message with OSCORE protection (in regular mode, with-
out the Group OSCORE [22] extension) with its encryption
and most privacy properties intact. Although such messages
are potentially received by a group of nodes (see Fig. 5), only

a single server that holds the corresponding security context
can decrypt and respond. The response possibly returns on a
unicast link to the client node. On a successful transaction,
subsequent requests can use this newly discovered unicast
address.

To stay reachable after an address change, an OSCORE
server could inform its peers of an identifier that is usable
for longer than its network addresses. This may happen by
explicit announcement, or as additional information when the
OSCORE context is set up. As such an identifier can be used
to track a device across address changes and possibly across
different OSCORE keys, its privacy implications need to be
considered before employing such a scheme.

Carefully designing group memberships in wireless de-
ployments with multicast support is pivotal to reduce energy
expenditure and excessive media utilization. Following the
IPv6 address architecture [49] (see Fig. 6), a 16-byte multicast
address decomposes into a 2-byte address classifier and a 14-
byte group identifier. The ff02 classifier identifies multicast
addresses that are link-local.

Classifier Group ID

ff02:0000:0000:0000:0000:0000:0000:0000

Fig. 6. IPv6 link-local multicast address format [49] using a 2-byte classifier
and a 14-byte group id.

We propose a scheme that maps OSCORE state into the
least significant bytes of an IPv6 multicast address and cor-
responding nodes configure these addresses on their network
interfaces. This optimization utilizes scoped multicast mes-
sages that are already filtered on the network layer and only
recipients with likely-to-match OSCORE contexts will receive
and process them.

We propose link-local identifiers that map to one or more
OSCORE contexts. These identifiers could be derived from
the OSCORE key ids, or could be distributed via an external
mechanism, e.g., during a session establishment process, or
could utilize global node identifiers, if available.

Choosing a suitable length within the multicast address is
a trade-off between two extremes: With too short identifiers,
collisions may force many nodes to receive and try to decrypt
messages. Long identifiers possibly consume too much of the
available address space. To find an advisable id length, we fol-
low the design decision for the solicited-node multicast
address [49], which is used in the neighbor discovery protocol
of IPv6 [46]. The address has the prefix ff02::1:ff00:0/104 and
allows for a 3-byte (24-bit) variability in the low-order.

We use the same amount of variability by using three bytes
long identifiers, but configure another multicast prefix to not
interfere with the neighbor discovery. An example prefix could
be the currently unallocated ff02::3:ff00:0/104 address (see
Fig. 7), but any serious deployment would need to check with
an up-to-date IANA registration to sustain interoperability with
coexisting protocols.
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Fig. 7. Link-local multicast addresses for OSCORE context discovery.

The base of 224 addresses makes it unlikely that a device
needs to process an OSCORE request intended for another
device. More precisely, the probability of collisions is known
from the birthday paradox. Equation 1 describes this prob-
ability for a year of 𝑑 ‘days’ and 𝑛 ‘people’. In our case,
𝑑 = 224 is the given address space and 𝑛 is the number
of multicast addresses in use. Evaluating equation 1 yields a
collision probability < 1% for 575 multicast addresses, which
must be considered a large number of security groups on a
single link.

Still, in case of a collision, the full key id that is part of
any request serves as a further distinction. Eventually, the
authenticated encryption of OSCORE filters out remaining
collisions.

𝑝(𝑛; 𝑑) = 1 −
𝑛−1∏
𝑘=1

𝑑 − 𝑘
𝑑

(1)

NDN allows for secured multicast messages similarly to OS-
CORE, provided a proper name to MAC address mapping [50]
is in place. In contrast to OSCORE, a multicast request discov-
ers content and not devices. Since content is matched by exact
and immutable names, no additional mechanisms to protecting
against re-ordering or replay are needed, even though a single
request can lead to returning responses from several content
producers or in-network caches. NDN deduplicates multiple
data messages of the same request on the forwarding plane by
serving only the first incoming data and thereafter discarding
all replicated messages.

C. Protected Multi-Source and Multi-Destination Messages

Scalable group communication is essential for supporting
key IoT use cases: Multi-source readings of uniform sensors
are most efficiently implemented as a convergecast following
a multi-destination read request. Groups of actuators are often
coordinated via multi-destination control messages. Over the
air (OTA) firmware updates are vital for device maintenance
and hard to implement without efficient multicast flows.

Multicast communication is an inherent property of the
information-centric NDN architecture. Endpoint information
is absent from the addressing scheme, which allows for di-
rect multi-source and multi-destination access by applications
mapping to a multicast scheme. In NDN, a multi-source com-
munication is enabled as follows: nodes on intersecting request
paths aggregate requests and returning responses fan out on the
interfaces to the corresponding requesters. Multi-destination
requests, on the other hand, are supported by on-path caches
and multiple fan-outs in the forwarding information base for
the same name prefix.

Responses that traverse a request path consume the request
state. Thus, responses are deduplicated on path intersections
when arriving from multiple destinations, and only the first

response is forwarded. Since requests and responses are pro-
tected on an object level, the security measures of NDN are
equally effective in unicast and multicast communication.

The classic CoAP request-response model enables multi-
destination requests by leveraging IP multicast groups with
response messages returning via unicast. In contrast to NDN, a
reliable multicast communication using acknowledgments and
retransmissions is unsupported, since the number of endpoints
within a multicast group is unknown in IP multicast. CoAP
proxies cache requests from multiple clients for the same
resource, and aggregate observations by fanning out single
responses to multiple clients using unicast messages. Sending
a request to a multicast address does not preclude caching,
but practical deployment via a proxy depends on experimental
extensions [51] and the client awareness of the origin being a
multicast location. Setups where the client is unaware of that
and a reverse proxy requests from multicast to return the first
response are conceivable, but we are not aware of any existing
implementation or experimentation.

With OSCORE, multicast requests are covered by Group
OSCORE [22], necessitating a client awareness of the mul-
ticast context. Work on distributing responses to multiple
clients is highly experimental [52], [53]. The approaches are
centered around the clients obtaining or building identical
requests to which the responses can be bound. Such request-
response mappings are necessary because knowing the request
is essential for understanding the response. They promise to
transfer both the caching and aggregation abilities of CoAP
over to OSCORE, and even to extend the base CoAP mecha-
nism to allow multicast distribution of responses. We further
evaluate the impact of group communication with caching in
our experiment report in Section VI-E.

VI. EVALUATION IN THE TESTBED

In this section, we compare the different protocol configu-
rations based on real implementations deployed in a testbed.

A. Experiment Setup

Scenarios & Parameters. We want to quantify the perfor-
mances of a protected CoAP and NDN communication in a
typical IoT data collection scenario with multiple sensor nodes.
For this, subsequent requests periodically traverse a gateway
into an IoT stub network. Each sensor device is requested
1000 times at an (randomly jittered) interval of 2 ± 0.5𝑠 and
returns a 2-byte temperature reading. To allow for comparison
of pull-based NDN with CoAP, we limit CoAP methods to
confirmable GET.

We align our experiments with respect to retransmission and
timeout configurations. All protocols employ the same retrans-
mission strategy: On failures, nodes wait two seconds before
retransmitting the original request. In NDN, retransmissions
are performed hop-by-hop, while CoAP performs them end-
to-end. At most four retransmissions will occur for each data,
which is the default configuration for CoAP [4, Section 4.8].
Remaining protocols do not have standard defaults and we
align with CoAP.
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We do not consider congestion from external cross-traffic in
this work. However, each individual transmission experiences
self-induced background traffic from on-going requests and
retransmissions. The jittered request interval further mixes the
event space and allows a greater exploration of the state space.
On average, this cross-traffic is constant per experimental run.

Software & Hardware Platform. All devices run RIOT
version 2019.10. NDN deployments are based on CCN-lite,
and CoAP experiments use the default GNRC network stack
of RIOT including libOSCORE and tinyDTLS (cf, Section III).

We conduct all experiments on the FIT IoT-LAB [54]
testbed. The hardware platform consists of class 2 devices [55]
featuring an ARM Cortex-M3 MCU with 64 kB of RAM and
512 kB of ROM. Each device is equipped with an Atmel
AT86RF231 [56] transceiver to operate on the IEEE 802.15.4
radio. The testbed provides access to several sites with varying
properties. We perform our experiments on the grenoble site in
a single-hop and multi-hop configuration. Our single-hop setup
consists of one gateway node and ten sensor nodes in broadcast
range as illustrated in Fig. 8. In the multi-hop configuration,
we use one gateway node, ten sensor nodes, and five forwarder
nodes. Forwarding states are statically configured on each node
to form the topology depicted in Fig. 8.

Protocol Configurations & Start-Up Conditions. In all
setups, we use AES in CCM mode with a 128-bit key and
limit the resulting message authentication code to eight bytes
as described in [36]. Each configuration also contains a 1-
byte key identifier where applicable. The NDN (protected)
setup further includes a hash-based message authentication
code (HMAC) salted with a pre-shared key. We limit the
number of security contexts on the gateway to ten and on each
sensor node to one. As a consequence, sensor devices maintain
only one DTLS session concurrently and all secured content
objects from a particular sensor device use a single security
context. As we do not evaluate key management schemes, we
compare all security protocols with pre-shared keys. Context
related variables such as sequence counters are set to default
on device start-up.
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Fig. 9. Temporal distributions of content arrival times.

B. Time to Content Delivery

We examine the delays measured between content requests
and content arrivals at the gateway. Fig. 9 combines the results
for CoAP and NDN configurations in the single-hop and multi-
hop setup. We first observe that protocol families are in rough
accordance for the single-hop case. Temporal performances
indicate a sub-second completion time for close to 100% of
all transmissions across the protocols. The unprotected NDN
configuration displays the fastest operation with 50% of trans-
missions finishing below 11 ms. Combining this observation
with our previous result that NDN transmits the smallest
request and response messages (see Fig. 3), we can conclude
that unprotected NDN succeeds in quickly exchanging its
small messages. In the unprotected CoAP configuration, 50%
of transmissions finish below 13 ms. The protected protocol
versions follow closely, whereby CoAP over DTLS is on the
slow end with 50% of transmissions finishing only below
16 ms.

Next, we consider the more challenging multi-hop scenar-
ios. Overall, results reveal much slower protocol operations.
This reflects the common experience in low-power regimes
that radio interferences and individual error probabilities accu-
mulate over several hops and decrease reliability for the entire
subnet. The staircase pattern visible for all protocols is based
on request retransmissions at the configured interval of 2 s
per retransmission. On the slower end, stairs show attenuating
effects due to an accumulating jitter for each retransmission.
We observe that all CoAP variants operate in agreement.
Roughly 55–60% of content requests complete in the sub-
second range without requiring retransmissions. Corrective ac-
tions, i.e., request retransmissions, delay the completion time,
but are able to increase the number of successful responses at
the gateway to 70–77%.

The effects of inflated messages also become apparent.
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Fig. 10. Content arrival times and their percental distribution during the evolution of an experiment in a single-hop scenario, with simulated reboots after
20% of all exchanges. DTLS and OSCORE clearly reflect these events as delayed handshakes or reply window recovery, respectively.

CoAP keeps packets smallest and reveals a better performance
than CoAP over DTLS, which requires the largest packets.
The delay distributions for NDN show surprising results.
Only 40–55% of all responses arrive in the sub-second range
at the gateway and therefore seem to indicate an inferior
performance of NDN compared with the CoAP variants. This
discrepancy is nevertheless due to the different retransmissions
strategies of CoAP and NDN. NDN implements hop-wise
retransmission, which stepwise increases the packet numbers
on the forwarding path and makes interference with parallel
content requests on the wireless links more likely. Hop-wise
retransmission with in-network caching, however, advances
packets toward receivers in each step and converges more
easily to successful content delivery. Hence, corrective actions
are able to boost the overall reliability of the NDN family to
92–97%.

C. Security Overhead

We now inspect the case, in which an endpoint repeatedly
connects to the IoT stub network to retrieve sensor readings.
This setup follows the previous single-hop scenario with one
minor change: The endpoint at the gateway simulates an
unexpected reboot by losing any volatile cryptographic state
after 20% of all exchanges. (With OSCORE, the simulated
unexpected reboot happens at the sensor node instead, as an
unexpected reboot of the gateway would have no visible effect
at all). Fig. 10 summarizes the evolution of content arrival
times throughout an experiment duration of ten minutes. In the
top row, we measure times to completion during the ongoing
experiments for all protocols, while the bottom row visualizes
the distributions of the completion times as measured for
each protocol. The supplementary TABLE III delivers an in-
depth view on the statistical key properties of the arrival time
distributions in Fig. 10, including the total average 𝜇, standard
deviation 𝜎, the first quartile Q1 (25%), third quartile Q3
(75%), and the median.

Mostly the completion times reflect the results already
presented in Fig. 9. Neither our protected or unprotected
CoAP deployments, nor the NDN counterparts use volatile

Protocol 𝜇 [ms] 𝜎 [ms] Q1 [ms] median [ms] Q3 [ms]

CoAP 13.93 2.83 12.82 13.48 14.43
CoAP (Prot.) 14.72 2.94 13.57 14.22 15.18
CoAP/DTLS 34.09 34.00 16.29 17.27 23.07
OSCORE 16.42 2.72 15.23 16.08 17.00
NDN 12.44 2.91 11.28 11.95 12.89
NDN (Prot.) 15.79 3.15 14.52 15.33 16.15

TABLE III
STATISTICAL KEY PROPERTIES OF CONTENT ARRIVAL TIMES IN

MILLISECONDS FOR SUCCESSFUL REQUESTS IN A SINGLE-HOP SCENARIO
WITH SIMULATED REBOOTS.

security state. The distributions of all transmission times of
the experiment thus accumulates at around ≈12–15 ms, even
for the case of unexpected reboots.

An obvious exception to this is CoAP over DTLS. Af-
ter a loss of cryptographic state at the gateway, a session
handshake must precede the initial request. Such handshake
for the configured cipher suite requires ten DTLS packet
transmissions in total. Fig. 3 depicts the composition of these
packets and clearly shows their considerable sizes. In some
cases, handshake messages are much larger than the actual au-
thenticated and encrypted user packets. Our evaluation shows
that DTLS handshakes complete after around 100 ms, whereas
in rare cases they even require up to 150 ms. Since these
handshakes are measured on a single hop, they clearly serve
as a good lower bound for DTLS negotiations in more complex
scenarios.

A proper DTLS session resumption [40] and Connection
IDs [17] could reduce the effects of handshakes after deep
sleep or address changes, but are not available in tinyDTLS
and require the persistence of context information that scales
with the number of connected sensor devices.

The OSCORE recovery process also displays a delay in-
troduced by the state loss. The effect, though, is much less
pronounced as state recovery completes within a single round-
trip as depicted in Fig. 4 c, and does not establish a fresh
security context. The messages involved are not depicted in
Fig. 3 for lack of a visible difference to the regular OSCORE
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messages, as their sizes differ only by up to 4 bytes throughout
the tests.

D. Request Creation Time

Our temporal protocol measurements finalize with evalu-
ating the message creation time of requests. We start our
measurement when an application triggers a request and stop
the time as soon as the packet is passed to the lower layer,
which is UDP in the CoAP variants and the link-layer in NDN.
Fig. 11 visualizes the results using two bar plots for each
protocol. The first bar shows average creation times for initial
requests and the second bar denotes average creation times for
request retransmissions.

CoAP in its unprotected and protected configurations ex-
hibits the lowest creation times at around 280 𝜇s. Since the
protected version only affects responses, equal times for re-
quests are expected. In both protocol versions, retransmissions
are built much quicker in around 43 𝜇s, since they already
exist in retransmission buffers. NDN behaves similarly, but
creation times increase to ≈ 810 𝜇s for initial requests and ≈
95 𝜇s for request retransmissions. The latter is mainly due to
complex (TLV) header structures, which require string parsing,
and significantly less optimized implementations of packet
processing in CCN Lite.

The behavior of CoAP over DTLS differs. Initial request
creation times escalate to around 600 𝜇s due to the authenti-
cated encryption. In particular, request retransmissions reveal
outlying results. Requests exist in CoAP retransmission buffers
and reduce overall creation times, but they still require to pass
through the DTLS layer. Hence, retransmission creation times
spend on average around 353 𝜇s and therefore eight times as
long as other CoAP setups. This problem arises from layering
independent protocols, which is not present in the OSCORE.
Protection takes place on the CoAP layer and retransmission
buffers already contain protected messages. Creation times for
retransmissions reside at around 45 𝜇s and are thus comparable
to the protected and unprotected CoAP composition.

E. Impact of On-Path Caching

In our previous evaluation of temporal performance
(see Section VI-B) we could observe that hop-wise

1, 2, . . . , 5 forwarders

2, 4, . . . , 10
producers

Fig. 12. Topology with three consumers and a varying number of forwarders
as well as producers to gauge the effects of hop-wise caching.
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Fig. 13. Success rates for plain CoAP compared to alternative deployments
with hop-wise caching capabilities.

(re-)transmission with content caching of NDN yielded higher
success rates than the host-centric protocols in this low-power
and lossy wireless regime. Notably, CoAP already brings the
architectural feature of CoAP proxies with caches, which can
be used to construct a deployment that is hop-centric like
NDN.

Content object security integrates seamlessly into hop-by-
hop deployments with untrusted CoAP proxies, whereas trans-
port layer security (i) would require proxies to be included in
trust relationships, and (ii) would cache content as unencrypted
plain data. We envision OSCORE a natural candidate and a
potential enabler for protected CoAP deployments that align
with information-centric concepts such as on-path caching.
This can increase the robustness of CoAP in networks with
intermittent connectivity.

In a preview of future prospects and developments, we
examine the effectiveness of content replication on request
paths. For demonstration purposes, we consider an extended
topology (Fig. 12) that consists of three consumer nodes, a
number of forwarders varying from one to five, and a number
of content producers increasing from two to ten. All producers
host ten different temperature readings and all three consumers
request every 2–3 seconds a random content item out of these
ten sensor readings for a period of 100 requests per producer.
Content caches for the extended CoAP deployment and for
NDN are dimensioned to hold 30 content objects.

We compare CoAP with and without caching and NDN
in Fig. 13. Success rates of data delivery are averaged over
the three consumers. In all three deployments, we record
success rates of close to 100% for simpler topologies. For
the more complex topologies starting at three forwarders and
six producers, we observe success rates that quickly collapse
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down to ≈ 40% for the plain CoAP deployment, while
the by caches extended CoAP and NDN setups are able to
remain operationally successful at rates of ≈ 80% and above.
The increased robustness in the presence of on-path caching
has two reasons. First, caching shortens request paths for
retransmissions of the same request, and second, content is
pulled closer to the consumers, such that subsequent requests
to the same CoAP resource do not need to fully traverse
the request path. The small fluctuations in the success rates
between NDN and CoAP with caching for the setups with
more than six forwarders is due to different qualities of their
implementations and their varying behavior under increased
network stress. Furthermore, the open testbed infrastructure is
shared by multiple users and interferences are unpredictable
and not suppressible.

These phenomena have been known from the information-
centric network world since years [57]. Content object security
enabled by OSCORE may introduce these network optimiza-
tions soon into the CoAP ecosystem.

VII. CONCLUSIONS AND OUTLOOK

In this paper, we explored the vision of content object
security on the network protocol level for the IoT. We an-
alyzed current protocols and prospective developments that
aim for securing content independent of network transport,
and measured different configurations of CoAP, OSCORE,
and NDN in a real-world testbed of constrained nodes. With
this comprehensive study, we spanned the full solution space
from end-to-end security sessions that act on transport chan-
nels to approaches that secure each data chunk individually.
Our findings indicate that in challenging environments those
protocols that can hop-wise transfer and cache content objects
significantly outperform protocols which cannot. Smoothly
integrated into the CoAP mechanics, OSCORE identified itself
as a promising candidate for the former.

We further identified security overheads and the burdens
from volatile and non-volatile protocol state that warrants
session persistence. As explicit replay and reorder protection
in NDN are unnecessary, energy-expensive I/O operations to
non-volatile storage can be minimized and caching simplifies.
In contrast, DTLS and OSCORE require up-to-date sequence
numbers and sliding replay windows to prevail even after un-
expected system resets, which marks these protocol elements
as candidates for future optimization.

As we show both the impact of overheads and of hop-by-
hop retransmissions, the present results help to justify, guide
and (in future work) evaluate further improvements in the com-
pared protocols: The upcoming DTLS 1.3 will optimize the
record layer footprint [58]. OSCORE extensions that allow for
(re-)establishing a security context (LAKE [20], EDHOC [59])
will need to keep extra round-trips to a minimum. Cacheable
group observations [52] enables NDN-like multicast features
in CoAP, which would be beneficial as discussed in this
paper. We plan to analyze these emerging approaches in future
work—toward architecting an information-centric, restful Web
of things [60].
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