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Abstract
The message-driven nature of actors lays a foundation for
developing scalable and distributed software. While the actor
itself has been thoroughly modeled, the message passing
layer lacks a common definition. Properties and guarantees
of message exchange often shift with implementations and
contexts. This adds complexity to the development process,
limits portability, and removes transparency from distributed
actor systems.

In this work, we examine actor communication, focusing
on the implementation and runtime costs of reliable and
ordered delivery. Both guarantees are often based on TCP
for remote messaging, which mixes network transport with
the semantics of messaging. However, the choice of transport
may follow different constraints and is often governed by
deployment. As a first step towards re-architecting actor-to-
actor communication, we decouple themessaging guarantees
from the transport protocol. We validate our approach by
redesigning the network stack of the C++ Actor Framework
(CAF) so that it allows to combine an arbitrary transport
protocol with additional functions for remote messaging.
An evaluation quantifies the cost of composability and the
impact of individual layers on the entire stack.

CCSConcepts •Networks→Programming interfaces;
Transport protocols; • Computing methodologies→ Dis-
tributed computing methodologies;

Keywords Actor Model, Transport Layer, Networking, Re-
liability, Service Guarantees
ACM Reference Format:
Raphael Hiesgen, Dominik Charousset, and Thomas C. Schmidt.
2018. A Configurable Transport Layer for CAF. In Proceedings of the
8th ACM SIGPLAN International Workshop on Programming Based

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
AGERE ’18, November 5, 2018, Boston, MA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6066-1/18/11. . . $15.00
https://doi.org/10.1145/3281366.3281369

on Actors, Agents, and Decentralized Control (AGERE ’18), November
5, 2018, Boston, MA, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3281366.3281369

1 Introduction
Concurrency and distribution are an inherent part of modern
systems and prevalent in most areas from personal comput-
ing and data centers to mobile platforms and the IoT. One
challenge apparent in those areas is the dynamic adaption
to the environment of deployment. Personal devices—often
mobile notebooks, tablets, or phones—change locations, rely
on cloud services, and regularly communicate through NATs
and firewalls. For cloud scenarios and Mobile Edge Comput-
ing (MEC), this leads to service mobility and unpredictable
location of nodes, which change application deployment ac-
cording to user behavior. The IoT is still an emerging field
with applications in home, infrastructure, and industrial au-
tomation targeted at a heterogeneous variety of deployments
that include gateways.

The actor model of computation [15] seamlessly integrates
concurrency and distribution, and gains popularity for de-
signing and developing applications that meet the demands
of flexible adaptivity and high scalability. Actors solely com-
municate via network-transparent message passing while
applying a strong failure model. In reaction to a message, an
actor can send messages, create new actors, or configure its
future behavior. Actors offer a high level of abstraction that
allows developers to focus on their application while the
underlying framework takes responsibility for error prone
tasks such as synchronization and networking—the imple-
mentations of which require domain-specific knowledge and
experience.

Problem Statement Although the behavior of actors has
been carefully modeled, their message passing layer lacks a
clear definition. Communication guarantees regarding mes-
sage delivery or ordering often diverge between implemen-
tations and contexts. For example, Armstrong [5] assumes
message passing in Erlang “[. . . ] to be unreliable with no
guarantee of delivery”. The Erlang software documentation
closely couples reliability to the reliability of TCP transport.
Similarly, according to its documentation1 Akka delivers
messages with an “at-most-once” semantics, even though

1https://doc.akka.io/docs/akka/current/general/
message-delivery-reliability.html, accessed Aug’18
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authors acknowledge that the guarantees are much stronger
in local deployment. The same discrepancies can be found
for ordering guarantees. Here non-local messages between
a pair of actors often follow FIFO ordering while local mes-
sages are usually ordered causally—a result of synchronous
calls to enqueue messages into a local mailbox.
There are many reasons for these discrepancies in the

implementation of local and remote contexts [16]. First, lo-
cal guarantees are much easier achieved than by protocols
involving network communication, where uncertainty and
unreliability need explicit treatment. Often an analysis of
the alternatives and a reasoning for the offered guarantees
is missing.
In practice, guarantees are often enforced by a tight cou-

pling with the transport protocol of the desired character-
istics. This approach may be acceptable for a large number
of applications. However, it must be considered a severe
limitation when scaling from small embedded devices over
mobile and desktop to cloud services. While TCP is the dom-
inant protocol throughout the Internet, HTTP tunnels and
WebRTC can enable communication between nodes hidden
behind firewalls and NATs. Scaling to high performance en-
vironments, technologies such as DCTCP or InfiniBand are
optimized for closely coupled clusters. On the low end of
the scale, constrained environments depend on specialized
standards such as 6LoWPAN or CoAP over UDP to address
a loose coupling in lossy networks.
Choosing a transport protocol is a trade-off between the

scope of services a protocol offers and the environment of
its operation. Simply deploying the protocol that offers the
best guarantees is not a viable solution. While constrained
environments might not be able to handle the messages sizes
or network load, other applications may require low-latency
and would rather loose messages than wait for retransmits.
This trade-off further motivates the need for decoupling mes-
saging guarantees from transport. Instead, an exchangeable
transport layer augmented by configurable services can ad-
dress scalability, adaptivity, as well as dynamic deployment
at the same time.
Developers should be able to rely on a set of guarantees

offered by a framework instead of rewriting applications to
handle these tasks or tying communication to a specific pro-
tocol. These guarantees should be enforced across protocol
choices and layers and allow transparent deployment of data
transport based on the use case or environment.

Contributions In this work, we re-examine the duties and
workings of actor communication with the goal to identify a
set of reasonable guarantees for message passing between
actors. The C++ Actor Framework [11, 12] is used as a refer-
ence. Specifically, we contribute:

1. A survey and discussion of communication aspects
relevant to actor frameworks, focusing on reliable de-
livery and ordering.

2. A redesign of the CAF network layer to address our
observations and allow a composable transport imple-
mentation.

3. A first evaluation of our design focusing on the cost
of composability.

Overview Section § 2 discusses related work while Section
§ 3 introduces CAF, the framework hosting our subsequent
work. § 4 reflects the main aspects considered in our design:
reliable delivery and ordering. We present the redesign of the
CAF network layer in § 5, and evaluate our implementation
in § 6. Finally, § 7 concludes with an outlook.

2 Related Work
Reliable Delivery This aspect signifies how likely it is for
a sent message to reach the destination and whether feed-
back is available in case of failure. Akka delivers messages
unreliably with “at-most-once” semantics per default2. This
means a message is delivered either once or not at all to the
destination mailbox. Included in the framework is a solution
for “at-least-once” delivery in form of a persistence module
which additionally allows actors to recover their state after
a crash. Erlang is named as an inspiration for defaulting to
weak delivery guarantees as it successfully uses a similar
approach.
Armstrong defined message passing in Erlang “[. . . ] to

be unreliable with no guarantee of delivery” in his thesis [5].
The additional effort required to write applications that can
handle unreliable message passing furthers scalability and
increases robustness against errors. A later publication [6]
goes into more detail on the topic and couples the reliability
of messages passing to the reliability of TCP. However, TCP
itself is not enough to guarantee delivery to an actor. Errors
in the runtime environment (RE) can occur after a message
was accepted at the application endpoint, but before it was
passed on. An example for this type of failure in a simple
distributed Erlang setup is provided by Svensson et al. [24].

Microsoft released Orleans [7], an implementation of the
actor model that targets clusters. It hides most of the dis-
tribution and error handling from developers. Failed actors
are detected by the runtime environment and redeployed
transparently before delivering a message. The RE favors
availability over consistency when redeploying actors and
accepts temporary inconsistencies such as actors performing
redundant calculations. Per default, messages are exchanged
with a “maybe” delivery guarantee to avoid the associated
costs in every message exchange. However, “at-least-once”
delivery can be enabled, which retransmits messages until
reception is acknowledged3. Since the RE does not detect

2https://doc.akka.io/docs/akka/current/general/
message-delivery-reliability.html, accessed Aug’18
3http://dotnet.github.io/orleans/Documentation/clusters_and_clients/
configuration_guide/messaging_delivery_guarantees.html, acc. Aug’18
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duplicates, implementing “at-least-once” delivery burdens
developers with deduplication in their implementation.
The blog post “Nobody Needs Reliable Messaging”4 an-

alyzes reliability in the context of SOA, Web Services and
REST. It argues that reliability requires conformation on the
application layer which makes an implementation on a lower
layer redundant. A similar conclusion is drawn for duplicate
message detection, e.g., a duplicate order in an online market
would lead to the same messages with different sequence
numbers on the transport layer. Related to this discussion,
Saltzer et al. [22] explore the implications of end-to-end com-
munication. Without knowledge of higher layers it might be
tempting to provide more functionality than needed. While
functionality can be implemented on top of communication
systems, in some cases it may be beneficial to implement
partial functionality on lower levels to enhance the overall
performance and reduce the complexity and overhead. As a
result, the assumption that avoiding redundancy improves
performance should be viewed with care.

In his dissertation, Agha argues the guarantee of communi-
cations delivery should be modeled as it eases the reasoning
about the system in regard to its correctness or termination
properties [3]. However, he notes that the buffers required
for the communication are limited by nature which makes it
impossible to ensure delivery in all cases.

Reliable Ordering Ordering describes relationships among
messages exchanged between two ormore actors, i.e., whether
messages arrive in the same order they were sent. This is
usually limited to the order of arrival in mailboxes. Actors
are free to process messages out-of-order or deploy mail-
boxes that sort incoming messages by priority. There are
four orderings with increasingly strong assurances that we
consider here: non-deterministic, first in - first out, causal and
total. There are several opportunities to establish ordering.
While some guarantees could be implemented by a suitable
transport or application layer protocol, other require more
complex synchronization between nodes.
First-in, first-out ordering (FIFO) means that messages

sent first arrive first. This guarantee only creates a relation
between messages from a single sender and is not transi-
tive. Transitivity would maintain order even if a message is
received and forwarded by an intermediate node.

The “happened before” relation [18, 21] describes the logic
of causal message ordering. Unrelated messages are deter-
mined to be “concurrent” or “independent”. Hence, causal
ordering is not restricted to messages exchanged by a pair
of actors, but can establish a relationship between messages
throughout the whole system.
A total order extends causal order and gives order to all

messages in the system not only to causally related ones.
Hence, all messages arrive in the same order at all receivers.
Introducing a total order requires the synchronization of all
4http://www.infoq.com/articles/no-reliable-messaging, accessed Aug’18

participants. To achieve this, the totem protocol [4] passes
a token around in a logical ring, which allows the owner to
broadcast messages. Until the token is acquired, messages are
buffered locally. An alternative approach could be a central
sequencer that provides sequence numbers for all messages
and advances the time.
The actor system Orleans [7] is an example of a frame-

work that does not enforce ordering at all. It wants to avoid
the related impact on scalability as well as the overhead in
processing power and state that is required to restore the
order of received messages. CAF follows a similar approach
and currently does not maintain the order of messages ac-
tively and instead relies on the ordering implicitly inherited
from TCP. This leads to causal ordering in a local context
and transport-dependent ordering for remote messaging.
Erlang and Akka both enforce FIFO ordering. Although

Erlang defines this ordering as part of their basic rules of
message passing [5], the decision is not further explained
besides stating that it eases application development. Akka
stresses that this is only true for the order in which messages
are enqueued into the mailbox [19]. In particular, system
messages such as errors use special mailboxes and may be
delivered out-of-order. Akka implements ordering on top of
TCP, but utilizes additional per-connection queues to sort
messages and handle errors such as TCP reconnects and full
buffers.
Long et al. [20] explore reasons for ordering problems

in message passing systems. The three main criteria they
identify are 1) synchronization, i.e., either asynchronous
or synchronous messaging, 2) processing, comparing non-
deterministic against in-order delivery and processing, as
well as 3) the sharing aspects data sharing and data isola-
tion. For example, code that looks sequential but depends on
asynchronous, unordered messages may lead to undefined
behavior. They build a message passing model by combin-
ing different aspects of these semantics. Their base model
uses asynchronous message passing, with non-deterministic
message delivery and processing as well as data sharing se-
mantics. The other models are built by exchanging different
aspects as well as adding transitive in-order delivery. A static
analysis is used to evaluate how programs are affected by
ordering problems when exchanging messages with these
models. Their evaluation shows that synchronous, in-order,
and data isolation have the biggest effect on ordering prob-
lems for applications. In contrast, transitivity only helps
in for very few cases. For framework designers, they see
in-order delivery and data isolation as the most critical se-
mantics. This analysis can help to weigh guarantees against
their costs when choosing what to provide as a default.
Blessing et al. [8] propose implementing causal ordering

by arranging participating nodes in a tree topology. While
the approach further relies on FIFO ordering between each
pair of nodes, it does not require additional meta data. This

http://www.infoq.com/articles/no-reliable-messaging
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work related to the Pony actor language which aims to im-
plement transparent distribution, i.e., hide the characteristics
of distribution from the programmer.

3 The C++ Actor Framework
The C++ Actor framework (CAF) [10, 11] combines the bene-
fits of native program execution with a high level of abstrac-
tion. The best known implementations of the actor model,
Erlang and Akka, are both implemented in languages that
rely on virtual machines. In contrast, CAF is implemented
in C++, thus compilies to native code and has shown signifi-
cant performance benefits. C++ is used across the industry
from high performance computing installations running on
thousands of computing nodes all the way down to systems
on a chip. CAF fits into the gap between the high level of
abstraction offered by the actor model and an efficient, native
runtime environment.

Following the tradition of the actor model, actors are cre-
ated using spawn. The function takes a C++ functor or class
and returns a handle to the created actor. Hence, functions
are first-class citizens and developers can choose whether
they prefer an object-oriented or a functional software de-
sign. Per default, actors are sub-thread entities scheduled
cooperatively using a work-stealing algorithm [9]. This re-
sults in a lightweight and scalable actor implementation that
does not rely on system-level calls as required whenmapping
actors to threads. Uncooperative actors that require access to
blocking function calls can still be bound to separate threads
by the programmer to avoid starvation. Recent optimization
work by Torquati et al. [25] pushed CAF into the direction of
low latency communication by reducing messaging latency
by up to two orders of magnitude for low and moderate data
rates.

The network stack in CAF consists of several components
that manage network communication. The middleman pro-
vides the user-facing API of CAF in a distributed context.
When communicating with actors on remote nodes, a local
proxy is created for each directly known actor. Brokers are
actors that abstract over a network interface and provide an
actor interface for sending and receiving data. CAF deploys
a system broker to parse and handle the application layer
protocol BASP (Binary Actor System Protocol) for the man-
agement and communication between CAF nodes. Finally,
a multiplexer uses a system-dependent multiplexing imple-
mentation to bridge the gap between socket operations and
the broker interface.

Figure 1 shows the path that a message takes in CAF. The
first step is a synchronous local operation (1). For messages
to remote actors, the local proxy transparently forwards
messages to the local system broker which serializes the
message (2). Then, the Broker resolves the address of the
receiver and transmits the message. After reception on the
remote node a broker deserializes the message (3). Then, it
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Figure 1.Message path through CAF.

is enqueued into the mailbox of the receiver (4). When the
receiver is scheduled and its mailbox contains no messages
that arrived previously or have a higher priority, it dequeues
the message (5) and processes it (6).

4 Communication Guarantees for Actors
Message passing is the central communication primitive of
the actor model for exchanging data and driving the applica-
tion logic. Hence, the characteristics of the messaging layer
dictate failure models and API decisions.

In this work, we focus on reliability and ordering as central
aspects of any message exchange. Both concepts are well un-
derstood in packet-switching networking and implemented
in transport protocols such as TCP or QUIC [17] on UDP.
However, most implementations of the actor model simply
rely on guarantees made by the transport protocol rather
than thoroughly defining actormessaging. This is convenient
for implementers of the actor model, but tightly couples fun-
damental system properties to deployment technologies. We
leave failure detection, error propagation, reachability and
security to future work. Incorporating these aspects is a
natural extensions to our results presented here.

There are many choices when deciding on communication
guarantees. We argue that a good design reduces complexity
to a minimum for both users and implementers. Users of
the system must be able to quickly form a consistent mental
model without being overwhelmed by having to consider di-
verse edge and corner cases. Implementers likewise must be
able to understand and—most crucially—debug many layers
of interdependent software modules.

Reducing complexity is especially important when model-
ing a distributed system. Many sources of errors combined
with unpredictable control flow timing pose a different chal-
lenge than designing a software stack for a single-node or
even a single-thread program. Operational overhead requires
careful consideration as well. Finally, incorporating a choice
of desired guarantees enables developers to rely on the de-
fault implementationwithout adding additional hand-crafted
layers on top.
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This sections examines reliable delivery and ordering in
regard to actor systems and discusses which guarantees impl

4.1 Reliable Message Delivery
At the lowest level, physically available memory is always
limited. Messages cannot reach their destination if an actor
mailbox or network buffer fails to allocate sufficient storage.
However, to model delivery guarantees is still valuable for
reasoning about program correctness [3].

Message delivery is reliable if each message either reaches
its destination eventually or gets discarded with an error
report to the sender. In other words, the system must never
drop messages silently. However, the actor model is based
on asynchronous message passing and does not specify er-
rors for dropped messages. Likewise, limiting mailbox sizes
is typically neither addressed nor implemented. Dedicated
communication channels that signal status and demand go
beyond the scope of this work but are addressed by the forth-
coming streaming API in CAF.

Messages to remote actors travel through several software
layers until they reach the destined actor. Figure 1 depicts
this path specifically for CAF, but each implementation of
the actor model will have similar steps. Hence, using CAF for
examining individual steps and discussing algorithm choices
translates well to other systems.

Local Sending is a synchronized operation that only fails
when running out of memory. Remote actors are represented
by proxies that transparently forward messages—along with
meta information for reaching the remote actor—to the sys-
tem broker. Mailbox state of remote actors remains opaque,
as proxies act only as a message relay. Tightly synchronizing
proxies with remote actors could potentially catch overloads
early, but ultimately would only shift stress between nodes
and impair performance by inducing very high communica-
tion overhead.

Transmitting packets to remote nodes requires peerman-
agement and serialization of messages to a portable format.
The BASP broker in CAF acts as the central network hub and
provides all required functionality. In particular, the broker
1) maps node IDs to sockets, 2) forwards EXIT and DOWN
messages between local and remote actors, and 3) generates
EXIT and DOWN messages for monitored / linked remote
actors on node failures. The latter requires liveliness detec-
tion of remote nodes. Most frameworks simply rely on TCP
by interpreting connection aborts as node failure. Trying
to re-establish communication requires extensive buffering
and sychronization when trying to maintain exactly once
delivery between nodes. Alternatively, raising errors early
can at least reduce the amount of buffered and potentially
lost messages by giving actors immediate feedback about
potentially unreachable remotes.

Deserializing at the remote node follows successful trans-
mission. Network communication is inherently unreliable
and bares additional sources of errors such as packet loss,

packet duplication, or link failure. Moreover the exact failure
is often hard to detect. As an example, nodes cannot distin-
guish between loss and delay until data arrives. Timeouts, re-
transmissions, and deduplication offset or solve some issues
at the cost of increased communication, slow buffering, and
additional complexity. Transport protocols such as TCP offer
increased reliability by implementing guarantees for commu-
nication between two endpoints. Failures on the transport
layer still give vague feedback to determine the liveliness of
remote nodes. Initiating and managing reconnects after com-
munication errors is not part of transport protocols. Instead,
applications need to deploy necessary state and connection
tracking manually. Hence, simply relying on TCP neither
prevents message loss nor failures [24]. Overall, improving
reliability of the network transport improves usability of the
communication primitives as it relieves developers from the
complexity to implement their own protocols. Deserializa-
tion fails when running out of memory. Dropping messages
under temporary heavy load can become an option in the
presence of an application layer protocol that handles re-
transmissions. Observing repeated retransmission requests
from remotes also allows nodes to detect likely overloaded
peers and to raise related error or status messages.

Enqueueing messages into the mailbox of the receiv-
ing actor concludes the processing steps involving brokers.
Again, this operation can only fail when lacking sufficient
memory. An error at this stage usually indicates an imbalance
between the message arrival rate and processing capacity.
Detecting and managing such issues requires some form of
flow control between actors.

Dequeuing messages from the mailbox is the final step
under control of the framework before handing control to
user code. Estimating wait time of messages is bound to be
very imprecise because it depends on processing time, fair-
ness of the scheduling, prioritization ofmessages by the actor,
etc. Unlike network packets, the framework could track indi-
vidual messages to reproduce a global view of all messages in
the system. However, considerable performance impacts due
to the high synchronization overhead make global tracking
undesirable in practice. The framework could still check for
per-message timeouts at the point of dequeuing and drop
timed-out messages. Such user-defined timeouts could force
errors, but require very precise estimates by developers to
add any value, in particular, trigger neither too aggressively
nor too generous during ordinary program flow. In the worst
case, a timeout is triggered while the response message is
already traveling through the system back to the sender.

Processing messages can fail due to exceptions in user
code. Such errors automatically terminate the actor and the
framework propagates this failure through DOWN and EXIT
messages. Estimating processing times again is very impre-
cise at best, unless developers have provided information
for predicting runtime from message content. Actors yield
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control back to the framework after completing a message,
optionally producing a response message.

Discussion Three messaging steps stand out among the
six that were discussed: 1) local send, 2) enqueueing into the
mailbox, and 3) receiving a processing confirmation.

The first one, a “fire and forget” send, stands out because
it is the simplest, most bare-bone step. Its messaging model
remains asynchronous with little complexity, overhead, and
state. Combined with messages that propagate liveliness of
actors and nodes, complex systems can be built on top. While
this approach burdens developers with error handling for
basic messaging, the resulting applications are robust to a
variety of failures. Most notably, this leaves the implementa-
tions with a discrepancy between local and remote message
passing, thus breaking transparent distribution.
Reliable delivery to the destination mailbox extends the

local guarantees to the remote messaging. The assurances
of this step go beyond network transport and additionally
address deserialization as well as buffering issues. The actor
model does not include means to propagate these failures.
Both failures categories are not easy to address generically.
If deserialization fails there is no solution to fix it at runtime.
Adding a specific message to propagate the error is possible
although well defined message passing interfaces seem to be
a better way to address the problem. When running out of
memory a system has limited options to address the failure.
Simply dropping messages that could not be processed for
such a reason might allow an application layer protocol to
retransmit messages until the receiver acknowledges receipt.
Acknowledging message processing provides the most

insightful information about end-to-end communication [22].
At the same time, addressing a generalized use-case is a very
complex task heavily dependent on the application logic.
Processing time per message, average delay in the mailbox,
current load and the messaging interface of the receiver all
influence whether a message is processed and how long it
takes. As a result, a reasonable failure case cannot be defined
across all scenarios. Propagating related information requires
messages with custom handlers at the sender side since a
generic reaction cannot be assigned.
From a model perspective reliable delivery that raises re-

mote to local guarantees is valuable for modeling and makes
it easier for developers to argue about their code. In prac-
tice, the step from delivery over the network to enqueuing
messages into mailboxes does not provide enough benefit
to merit an additional application layer protocol. Cases that
merit overhead to ensure delivery are often interested in the
processing results and not only the delivery, thus falling into
the category of the end-to-end argument.

4.2 Reliable Message Ordering
Reading code and understanding side effects is easier when
messages sent by sequential statements are delivered in the

same order [20]. Relying on the same ordering for local and
remote messages prevents deployment specific bugs and
eases porting local applications to distributed systems. In the
same way, reproducing failures is easier to achieve if com-
munication is predictable. While priority messages naturally
break ordering, users expect that effect.

Non-deterministic ordering is easy to implement. Al-
though dependent on the implementation details of local
message passing, this often leaves developers with different
guarantees for local and remote communication [16].

First in, first out (FIFO) ordering can be implemented for
actor-to-actor or node-to-node communication. It requires
sequence numbers to determine order and buffering to re-
store it in both cases, but with differing granularity. Im-
plementing ordering per actor distributes the problem and
avoids ordering unrelated messages between different actors.
In practice, this not only introduces an additional step be-
tween the application layer protocol and actor messages, but
requires state that scales with the number of actors in the
system. Moving ordering to a protocol between each pair
of nodes offers much better scalability as the state to track
sequence numbers and buffers only scales with the number
of peers. On the downside, a delayed message also impacts
unrelated messages.

Causal ordering can be established in various ways. Re-
stricting communication to synchronous message passing is
often easy to implement, but heavily impacts the application
behavior. The asynchronous nature of actor messages does
not map well to such a restriction. Annotating each message
with metadata is another option. The additional informa-
tion that needs to be exchanged are time vectors with a size
equal to the number of processes n [13]. Moreover, message
sizes increase further to determine causal dependencies for
transitive message passing with more than one intermediate
node [2]. A third alternative is a fixed routing topology such
as a ring or a tree as discussed in the context of the Pony lan-
guage [8]. This overloads routing and leads to a worst cases
where messages are routed from one leaf through the root
to another leaf, thus introducing latency. Maintaining the
topology with nodes joining, leaving, or failing is a complex
task that becomes more tedious in mobile environments.

Total ordering requires a straight forward but very ex-
pensive implementation. One node in the system is chosen
as a sequencer that determines the message order. Such an
approach introduces a strong coupling in the system as even
local messages would have to be subject to this process.

Discussion Local delivery in CAF leads to a causal order-
ing of messages enqueued into a mailbox. This is a result of
implementing mailboxes as lock-free FIFO queues which are
accessed by actors in a single non-blocking but synchronous
call when sending messages.
Total order is not a desirable property for messages ex-

changed between actors. By definition, actors are concurrent
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and isolated entities. Adding a strong coupling in the form
of a central sequencer to all communications impacts scal-
ability and performance without significant benefit. While
some use cases may justify the overhead to maintain a total
order, the majority of cases does not. As such, it is not a good
candidate for default ordering.
Implementing causal ordering also comes at significant

cost. Relying on synchronous communication introduces a
strong coupling between actors and nodes. Although syn-
chronization on a local machine is cheap, extending it to a
remote context significantly impacts performance and scala-
bility. The cost of synchronization over the network is several
orders of magnitude higher and introduces undesirable delay.
Developers would have a strong incentive to avoid remote
communication breaking transparency on another axis. Al-
ternatively, adding vector timestamps to messages largely
increases the amount of data exchanged in the system. In ad-
dition, hosts schedule high amounts of actors and frequently
spawn new ones that only run for a limited time or task. A
changing amount of participants is generally not handled
well by vector clocks. Neither approach comes without trade-
offs that significantly impact performance and scalability of
an actor system.

While ordering eases software development, strong order-
ing guarantees are costly and introduce the need for synchro-
nization. FIFO ordering has a comparably low overhead and
provides part of the ordering characteristics of local messag-
ing to remote messaging. For each pair of actors reasoning
about exchanged messages is straight forward. As such it is
a tradeoff between desirable properties and overhead.

5 A Composable Network Stack
Maintaining a consistent set of communication guarantees
across exchangeable transport protocols requires design changes
to the CAF network stack. Although support for UDP was
added recently, developers who want to integrate new trans-
port protocols are still required to adjust various components
throughout the I/O library. Extending the guarantees of trans-
port protocol requires implementation on top of a broker
and is not easily reusable.

The redesign addresses these issues and leads to a compos-
able network stack that can be extended with new transport
protocols and augmented with reusable protocol layers to
add to its functionality. With the goal to enable use of arbi-
trary transport protocols, this concept uses TCP and UDP as
examples for the design. These two protocols do not cover
all functionality that transport protocols can offer, but differ
greatly in their included guarantees. While UDP is a bare-
bones protocol that provides connectionless transmission
of datagrams with few guarantees, TCP streams bytes with
strong reliability and ordering guarantees among others.
Thus, this protocol selection provides the opportunity to
examine how our concept could integrate them.

API

OS

Multiplexer
UDPTCP

Congestion control

Slicing

Ordering
Reliable delivery

TCP handshake

Middleman

Peer Management

Datagram Broker

Slicing

Ordering
Reliable delivery

Node failure detector

Congestion control

Datagram BASP
Stream Broker

Reconnect handler
Node failure detector
Stream BASP

Figure 2. Composition of the CAF network stack deploying
TCP and UDP.

The design of the network stack is shown in Figure 2.
Yellow boxes (normal border) signify general functionality
that can be provided by and for various protocols. Orange
boxes (dashed border) are TCP specific and purple boxes
(dotted border) are specific to CAF. Management of sockets
is handled by the multiplexer which interfaces with the OS
to provide asynchronous socket access. Located above the
multiplexer in the stack are brokers which are managed by
the middleman. A broker bundles a transport protocol with
additional layers and wraps it in a message passing interface.

In the example case, a TCP-based stream broker adds lay-
ers to detect remote node failures and attempt reconnects
in addition to a component for reading and writing BASP
messages from and to a byte stream. The second broker han-
dles datagrams characteristic for UDP. Similar to the stream
broker it deploys a failure detector and a layer to translate
between datagrams and BASP messages. Additionally, it is
extended to slice messages into datagrams of suitable size
to avoid IP fragmentation, order incoming datagrams and
ensure their delivery. A reconnect handler is not needed
due the connectionless nature of UDP. While some layers
might be valuable in both protocols, they could benefit from
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a protocol specific implementation. As an example, a TCP
failure detector could monitor the connection state to detect
failures.
Brokers are suitable components for this functionality.

They sit in-between the actor abstraction and low-level socket
API. As such, they already require protocol dependent code
to translate between the incoming bytes and application
data. Placing such functionality higher up would make it
part of the application logic. While developers are free to
do so, the default approach should cleanly separate the net-
working logic from the application logic. In contrast moving
lower down the stack hinders access as the functionality
would be colocated with low level code. Brokers are a fitting
abstraction for this task.

Implementation In CAF, a broker is a component that
abstracts over an endpoint for a specific transport protocol.
Instead of running in the system scheduler, it is scheduled in
the event loop of the multiplexer. The multiplexer executes
it when an I/O event occurs on its socket or when it receives
a message.
There are two types of brokers. The first one handles

regular events on a socket. Similar to other actors it handles
messages according to its behavior which has to include a
handler for the message type it receives for new data on its
sockt. It is configured by two policies: a transport policy and a
protocol policy. Policies are a way to implement configurable
components in C++.
A transport policy wraps a transport protocol by imple-

menting functionality to read from and write to a socket and
manage the related buffers.
The layers that augment guarantees or functionality are

thereby define the overall protocol are bundled in a proto-
col policy. Each layer accepts the type of the next layer as
a template argument and instantiates it as a member. An
exception is the upmost layer which does not have another
layer as a member. In addition, it dictates the message type
passed to the broker for new data.
Before sending data, the protocol policy gives each layer

the opportunity to write headers, set timeouts, and augment
the send buffer. Similarly, upon receipt each layer can read its
header, set timeouts, and sent messages. The order of layers
is meaningful and is reverse for sending and receiving.
The second broker type is responsible for accepting new

endpoints or multiplexing over a single socket, if desired.
It creates a new broker of the first type to handle new end-
points. It is configured by an accept policy that determines
how to react to incoming data. For TCP, an accept policy
could simply accept new connections and pass the sockets
to its broker, which in turn spawns brokers to handle regular
communication.

6 Evaluation
Network performance is critical when building a framework
that enables horizontal and vertical scalability. Using C++
for such a task further raises the expectation that the imple-
mentation performs well and its abstraction comes at little
cost. Our initial evaluations focus on the cost of layers in a
composable network stack.

6.1 Experimental Setup
Measurements were performed on a 2017 MacBook Pro with
a 2.9 GHz Intel Core i7 and 16GB RAM running macOS 10.14.
The benchmark § 6.3 uses Mininet [14] to simulate a network
link with loss. Mininet offers a VM image5 with a configured
environment. We used the image running in Virtual Box
Version 5.2.18 to perform all benchmarks.

Our benchmarks can be found online on GitHub6 and are
based on the CAF branch linked in the repository. For § 6.2
we used Google Benchmark7 in version 1.4.1 to perform the
measurements.

6.2 The Costs of Layers in CAF
Passing data through the layers of a protocol policy happens
on every send and receive call. Quantifying the time spent
in the new broker class when sending and receiving data is
valuable to evaluate the implementation in general and find
performance problems. The measurements in this section do
not include calls to the socket API. Instead, a mock transport
policy offers buffers to read from and write to. Benchmarks
that send data write their header and payload into a buffer of
the policy, thus introducing a dependency between runtime
and payload size. Since the mock data that is received can
mostly be prepared in advance, benchmarks that receive data
only have to copy data that they require to parse headers.
All benchmarks were performed for payload sizes from

128 to 8,192 bytes in increasing powers of two. All graphs
show the mean real time in microseconds over ten runs as a
function of the payload size and plot the standard deviation
as error bars.

Sending The first benchmark examines the cost to prepare
a message for sending. It compares the policies used for the
TCP and UDP-related implementations. For both protocols
we measure the operation cost to handle a raw protocol that
does nothing but write to the send buffer and a simplified
BASP protocol that prefixes data with a header consisting of
a source and destination actor as well as a payload size. The
UDP measurements additionally include an ordering layer
that adds a sequence number.
Figure 3 shows the results for TCP on the left and UDP

on the right. The time to send data rises linearly with the
payload size due to the copy operations. As expected, using
5http://mininet.org/download/
6https://github.com/inetrg/agere-2018
7https://github.com/google/benchmark
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Figure 3. Cost to prepare a message for sending with differ-
ent protocol layers. (left: TCP, right: UDP)

the raw protocol induces the least overhead in both cases
with similar time requirements for both protocols.

Adding a layer introduces additional overhead depending
on the layer implementation. The BASP layer comes at the
same cost for both protocol. The additional time require-
ments stem from the serialization of its three fields: actor ids
(64 bit) of the sender and receiver as well as a size parameter
(32 bit).

UDP additionally includes measurements for ordering.
The ordering header is smaller than the BASP header, only
including a single sequence number (16 bit). The cost for
adding ordering seems constant, whether it is deployed only
with the raw protocol or in addition to BASP.

The error bars are small overall with the exception of a
few measurement points. BASP for UDP with a payload size
of 2000 bytes and 4000 bytes shows small error bars as does
ordering with BASP for UDP with a payload of 8000 bytes.
This could be a result of measurements on such a small time
scale.

Receiving In general, message receipt promises to show a
greater impact on performance. Depending on the protocol, it
requires not only deserialization and parsing of the protocol
headers but may include checks such as the validation of
sequence numbers for ordering. In this benchmark the packet
to receive is prepared in advance but adjusted during each
receive call to include the expected sequence number and
payload size. This means that no message is received out of
order.
Figure 4 depicts the time required to prepare a single re-

ceived message for processing by the broker, showing TCP
on the left and UDP on the right. The measurements show
constant performance across all payload sizes due to the lack
of a copy operation.
Once again, the raw protocol has the least overhead as

it only passes a pointer to the data through the stack. The
difference in performance of the raw protocol compared to
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Figure 4. Cost to prepare a received packet for processing
with different protocol layers. (left: TCP, right: UDP)

the send operation (Figure 3) is likely the overhead to activate
the receiving broker to handle the message with the new
data.
The BASP layer has varying costs depending on the un-

derlying transport semantics. On top of a stream protocol
(left graph) it parses the stream and reads twice to parse a
complete message, a first read to get the header and dese-
rialize the payload size and a second read to get a number
of matching bytes. In contrast, BASP for datagrams (right
graph) expects the message to arrive in one datagram and
only requires a single read as a result.

Adding the ordering layer to the datagram broker is slightly
cheaper than BASP. Note that all messages arrive in order.
As a results, the layer only has to check the sequence number
but never perform buffering to reorder messages. The cost
of ordering is approximately constant whether it is deployed
only with the raw protocol or in combination with BASP.

The error bars are negligibly small for all measurements.

Receiving UDP Sequences An ordering layer that never
has to reorder is very cheap. Costs only arise once pack-
ets arrive out of order or not at all. Since ordering can be
deployed without reliability, missing message are dropped
eventually to avoid or the message flow just stops. There are
two triggers to drop a missing message: a timeout triggers
or the buffer of pending messages runs full. In both cases the
runtime delivers buffered messages starting with the small-
est buffered sequence number. This benchmark evaluates
the cost for our ordering layer to process a sequence of ten
messages in three scenarios:

1. Ordered: All messages arrive in the expected order.
2. Late: One message arrives late by one.
3. Dropped: One message is dropped during transport.
The maximum length of the pending message buffer is

configured to five messages. Timeouts are complicated to
benchmark as they rely on time and are generally long com-
pared to execution times for the operations measured here.
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Thus timeouts are not represented in the benchmark. In
general, triggering a timeout can be expected to be more
expensive than delivering messages due to a full buffer as it
requires interaction with the clock in CAF.
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Figure 5. Cost to handle a sequence of ten packets in the
presence of message loss and out-of-order delivery.

Figure 5 depicts the time required to handle themessage se-
quence. Delivering all messages in order naturally performs
best and shows a constant runtime. As soon as a message ar-
rives late the handling time increases and no longer remains
constant. Subsequent messages are buffered until the miss-
ing message is received. Since the copy operation depends
on the size of the received payload we can see an increase in
handling time. This behavior is more prominent when more
messages need buffering. When a single message is dropped,
others are buffered until the pending message buffer runs
full. This behavior is hard to avoid as the bytes have to be
copied from the receive buffer for later delivery. The error
bars are negligible for all measurements.

6.3 Network Performance
Having implemented a composable network stack for CAF,
we took the opportunity to implement a reliability layer for
UDP. A virtual network built withMininet [14] allows testing
its behavior over links with configurable loss and delay. In
contrast to the previous benchmarks, these measurements
now include network operations.

Two brokers bounce a message back and forth 4000 times
over a lossy link until each broker sent and received the
message 2000 times. TheMininet topology for the benchmark
consists of two hosts connected directly via a link with no
delay. Our retransmit timeout for UDP is configured to be
40ms and the minimum retransmit timeout for TCP on the
routes is configured to the same value. The measurements
are performed for different transport and layer combinations:
TCP, reliable UDP, and reliable, ordered UDP.

Figure 6 displays the total runtime as a function of the con-
figured packet loss percentage with error bars for the 5 and
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Figure 6. Two actors sequentially exchange messages over
a lossy link without delay.

95 percentile. The linear increase in runtime for both UDP
implementations is expected. It shows that our reliability
layer performs retransmits and the program works despite
the loss. Since only one message is sent at a time, every lost
packet adds the retransmit timeout to the runtime. Adding
the ordering layer does not impact performance as messages
should not arrive out of order.

Below 3% loss TCP shows similar performance to our sim-
ple reliability layer. Thereafter, TCP is increasingly slower
than UDP. A key difference here is that TCP adjusts its con-
gestion windows and retransmit timeouts continuously in
reaction to individual losses of the specific run. This is also
reflected by the large error bars for TCP.
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Figure 7. Two actors sequentially exchange messages over
a lossy link with 10ms delay.

We repeated the benchmark in the same setup with a link
delay of 10ms. Figure 7 shows the results. Note that the y-axis
has a different scale. The results for UDP look similar with
an offset of about 40 s. This matches the expected increase,
a total of 4000 messages with 10ms for each transmission.
In contrast, the delay impacts the performance of TCP to
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a greater extent. Here, the mean runtime increase is larger
than for UDP.
Both protocols show larger error bars. While this can be

seen for UDP especially for 0% and 9% loss, TCP shows much
more variation overall and has largely increased error bars.
Once again, the individual loss pattern in each run has a
greater impact on TCP due to its adaptability. TCP interprets
loss as network overload and re-adjusts its congestion control
algorithm.
The benchmarks validate that a working retransmit pro-

tocol can be implemented as a layer in our network stack. In
addition to optimizing the reliability layer for a more gen-
eral use including adaptive retransmit timeouts, we want to
ship a slicing layer to make it easy for users to configure the
network layer for their needs.

7 Conclusion and Outlook
The characteristics of actor communication lack a common
design and often change with context and implementation.
Most notably guarantees often change when moving from
local to remote contexts.

This work examined reliable delivery and ordering in the
context of actor communication and found three notable
delivery guarantees. First, a “fire and forget” approach that
bares little overhead. It allows developers to build more com-
plex systems on top but requires explicit error handling as
part of the application. Second, guaranteed delivery to the
mailbox of the receiving actor. This aligns the guarantees
between local and remote contexts thus increasing the trans-
parency of distribution. Third and last, guaranteed process-
ing feedback bares great value when considering end-to-end
communication. However, it induces overhead and might
not be required in all cases.
With regard to ordering, the discrepancy between local

and remote contexts weakens guarantees from causal order-
ing to FIFO or none. While algorithms exist to establish a
causal order in distributed systems, these come at significant
cost. Ensuring FIFO ordering already provides valuable in-
formation, helps developers to reason about their code, and
comes at comparably little cost.

Many implementations inherit their guarantees for remote
messaging from TCP. This is problematic as transport proto-
cols offer more than guarantees and can adjust applications
to specific environments. To enhance transport bindings in
CAF we implemented a composable network stack that al-
lows bundling a transport protocol with additional layers to
add new functionality. An evaluation shows that our layer
design introduces minimal overhead. Additionally a reliabil-
ity layer was implemented and tested with a varying degree
of packet loss to showcase a more complex layer.
Examining existing actor systems and laying out the im-

plementation space for reliable delivery and ordering is a
first step towards a more detailed discussion on the message

passing guarantees for actors. While our implementation
shows that a lightweight implementation is possible, gen-
eralization is required to make our results translatable to a
wide range of frameworks.

There are several directions for future work. As a first
step, the system broker and SSL module should be ported to
the new design and thoroughly benchmarked against their
previous implementations. Next, we want to examine the
possibility to integrate the streaming capabilities of CAF
into the new brokers. Streaming adds a backchannel to actor
communication to avoid overburdening actors and with this
addition could take the network behavior into account. Split-
ting the monolithic system broker into smaller light-weight
brokers is a first step towards a multi-threaded network back-
end. Finally, there are aspects that were disregarded in this
work and are left for future work such as reachability and
security.

A Note on Reproducibility
We explicitly support reproducible research [1, 23]. Our ex-
periments have been conducted in a transparent standard
environment. The source code of our implementations (in-
cluding scripts to setup the experiments, CAF measurement
apps etc.) are available on GitHub at https://github.com/
inetrg/agere-2018.
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