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Abstract
The processing power of modern many core hardware such
as graphics processing units (GPUs) or coprocessors is in-
creasingly available for general-purpose computation. The
seamless way of actor systems to addresses concurrent and
distributed programming makes it an attractive approach to
integrate these novel architectures. In this work, we intro-
duce OpenCL-enabled actors to the C++ Actor Framework
(CAF). This offers a high level interface for accessing any
OpenCL device without leaving the actor paradigm. The new
type of actor is integrated into the runtime environment of
CAF and gives rise to transparent message passing in dis-
tributed systems on heterogeneous hardware. New actors are
instantiated by the function spawn cl, while the runtime en-
vironment handles the discovery and setup of OpenCL de-
vices in the background. Our evaluations on a commodity
GPU, an Nvidia TESLA, and an Intel PHI reveal the ex-
pected linear scaling behavior when offloading larger work
items. For sub-second duties, the efficiency of offloading
was found to largely differ between devices. Moreover, our
findings indicate a negligible overhead over programming
the native OpenCL API.

Categories and Subject Descriptors C.1.3 [Other
Architecture Styles]: Heterogeneous (hybrid) systems;
C.2.4 [Distributed Systems]: Distributed applications;
D.1.3 [Programming Techniques]: Concurrent
programming; D.3.4 [Processors]: Run-time environments

Keywords Actor Model, C++, GPGPU Computing,
OpenCL, Coprocessor
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1. Introduction
The stagnating clock speed forced CPU manufacturers into
steadily increasing the number of cores on commodity hard-
ware to meet the ever-increasing demand for computational
power. Still, the number of parallel processing units on a
single GPU is higher by orders of magnitudes. This rich
source of computing power became available to general pur-
pose applications as GPUs moved away from single purpose
pipelines for graphics processing towards compact clusters
of data-parallel programmable units [26].

Algorithms that can be mapped to the data-parallel
architecture of GPUs can expect a massive boost in
performance. Combined with the widespread availability of
general-purpose GPU (GPGPU) devices on desktops,
laptops and even mobiles, GPGPU computing has been
widely recognized as an important optimization strategy. In
addition, accelerating coprocessors that better support code
branching established on the market.

Since not all tasks can benefit from such specialized de-
vices, developers need to distribute work on the various ar-
chitectural elements. Managing such a heterogeneous run-
time environment inherently increases the complexity. While
some loop-based computations can be offloaded to GPUs us-
ing OpenACC [7] or recent versions of OpenMP [9] with
relatively little programming effort, it has been shown that
a consistent task-oriented design exploits the available par-
allelism more efficiently. Corresponding results achieve bet-
ter performance [18] while they are also applicable to more
complex work loads. However, manually orchestrating tasks
between multiple devices is an error-prone and complex
task.

The actor model of computation describes applications in
terms of isolated software entities—actors—that communi-
cate by asynchronous message passing. Actors can be dis-
tributed across any number of processors or machines by the
runtime system as they are not allowed to share state and
thus can always be executed in parallel. The message-based
decoupling of software entities further enables actors to run
on different devices in a heterogeneous environment. Hence,
the actor model can simplify software development by hid-



ing the complexity of heterogeneous and distributed deploy-
ments.

In this work, we introduce actors programmed with
OpenCL—the Open Computing Language standardized by
the Khronos Group [29]. We integrate heterogeneous
programming into the C++ Actor Framework [8], and
thoroughly examine the runtime overhead introduced by
our abstraction layer. We aim at integrating heterogeneous
hardware to the existing benefits of CAF such as
network-transparency, memory-efficiency and high
performance.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the actor model as well as heterogeneous
computing in general and OpenCL in particular. Our design
goals and their realization are discussed in Section 3 as well
the limitations of our approach. In Section 4, we evaluate
the performances of our work with a focus on overhead and
scalability. Finally, Section 5 concludes and gives an outlook
to future work.

2. Background and Related Work
Before showing design details, we first discuss the actor
model of computation, heterogeneous computing in general,
and OpenCL.

2.1 The Actor Model
Actors are concurrent, isolated entities that interact via mes-
sage passing. They use unique identifiers to address each
other transparently in a distributed system. In reaction to a
received message, an actor can, (1) send messages to other
actors, (2) spawn new actors and (3) change its own behavior
to process future messages differently.

These characteristics lead to several advantages. Since ac-
tors can only interact via message passing, they never cor-
rupt each others state and thus avoid race conditions by de-
sign. Work can be distributed by spawning more actors in
a divide and conquer approach. Further, the actor model ad-
dresses fault-tolerance in distributed systems by allowing ac-
tors to monitor each other. If an actors dies unexpectedly, the
runtime system sends a message to each actor monitoring it.
This relation can be strengthened through bidirectional mon-
itors called links. By providing network-transparent messag-
ing and fault propagation, the actor model offers a high level
of abstraction for application design and development tar-
geted at concurrent and distributed systems.

Hewitt et al. [13] proposed the actor model in 1973 as part
of their work on artificial intelligence. Later, Agha formal-
ized the model in his dissertation [1] and introduced mail-
boxing for processing actor messages. He created the foun-
dation of an open, external communication [2]. At the same
time, Armstrong took a more practical approach by develop-
ing Erlang [5].

Erlang is a concurrent, dynamically typed programming
language developed for programming large-scale,

fault-tolerant systems [4]. Although Erlang was not build
with the actor model in mind, it satisfies its characteristics.
New actors, called processes in Erlang, are created by a
function called spawn. Their communication is based on
asynchronous message passing. Processes use pattern
matching to identify incoming messages.

To combine the benefits of a high level of abstraction
and native program execution, we have developed the C++
Actor Framework (CAF) [8]. Actors are implemented as
sub-thread entities and run in a cooperative scheduler using
work-stealing. As a result, the creation and destruction of
actors is a lightweight operation. Uncooperative actors that
require access to blocking function calls can be bound to
separate threads by the programmer to avoid starvation. Fur-
thermore, CAF includes a runtime inspection tool to help
debugging distributed actor systems.

In CAF, actors are created using the function spawn. It
creates actors from either functions or classes and returns a
network-transparent actor handle. Communication is based
on message passing, using send or sync_send. Note that
the latter function only suspends an actor until the response
arrives but does not block any system resources.

CAF offers dynamically as well as statically typed actors.
While the dynamic approach is closer to the original actor
model, the static approach allows programmers to define a
message passing interface which is checked by the compiler
for both incoming and outgoing messages.

Messages are buffered at the receiver in order of arrival
before they are processed. The behavior of an actor specifies
its response to messages it receives. CAF uses partial func-
tions as message handlers, which are implemented using an
internal domain-specific language (DSL) for pattern match-
ing. Messages that cannot be matched stay in the buffer until
they are discarded manually or handled by another behavior.
The behavior can be changed dynamically during message
processing.

In previous work [8], we compared CAF to other ac-
tor implementations. Namely Erlang, the Java frameworks
SALSA Lite [10] and ActorFoundry (based on Kilim [28]),
the Scala toolkit and runtime Akka [30] and Charm++ [15].
We measured (1) actor creation overhead, (2) sending and
processing time of message passing implementations, (3)
memory consumption for several use cases and (4) picked
up a benchmark from the Computer Language Benchmarks
Game. The results showed that CAF displays consistent scal-
ing behavior, minimal memory overhead and very high per-
formance.

2.2 Heterogeneous Computing
Graphic processing units (GPUs) were originally developed
to calculate high resolution graphic effects in real-time [23].
High frame rates are achieved by executing a single rou-
tine concurrently on many pixels at once. While this is still
the dominant use-case, frameworks like OpenCL [27] or
CUDA (Compute Unified Device Architecture) [16] offer



an API to use the available hardware for non-graphical ap-
plications. This approach is called general purpose GPU
(GPGPU) computing.

The first graphics cards were build around a pipeline,
where each stage offered a different fixed operation with
configurable parameters [20]. Soon, the capabilities sup-
ported by the pipeline were neither complex nor general
enough to keep up with the developing capabilities of shad-
ing and lighting effects. To adapt to the challenges, each
pipeline stage evolved to allow individual programability
and include an enhanced instruction set [6]. Although this
was a major step towards the architecture in use today, the
design still lacked mechanisms for load balancing. If one
stage required more time than others, the other stages were
left idle. Further, the capacities of a stage were fixed and
could not be shifted depending on the algorithm. Eventu-
ally, the pipelines were replaced by data-parallel program-
able units to achieve an overall better workload and more
flexibility [26]. All units share a memory area for synchro-
nization, while in addition each unit has a local memory area
only accessible by its own processing elements. A single unit
only supports data parallelism, but a cluster of them can pro-
cess task parallel algorithms as well.

By now, this architecture can be found in non-GPU hard-
ware as well. Accelerators with the sole purpose of data-
parallel computing are available on the market. While some
have a more similar architecture to GPUs, for example the
Nvidia Tesla devices [24], others are build closer to x86
machines, most prominently the Intel Xeon Phi coproces-
sors [14]. Both have many more cores than available CPUs
and require special programming models to make optimal
use of their processing power.

Naturally, algorithms that perform similar work on inde-
pendent data benefit greatly from the parallelism offered by
these architectures. Since most problems cannot be mapped
solely to this category, calculations on accelerators are often
combined with calculations on the CPU. This combination
of several hardware architectures in a single application is
called heterogenous computing.

2.3 OpenCL
The two major frameworks for GPGPU computing are
CUDA (Compute Unified Device Architecture) [16]—a
proprietary API by Nvidia—and OpenCL [27]—a
standardized API. In our work, we focus on OpenCL, as it
is vendor-independent and allows us to integrate a broad
range of hardware. The OpenCL standard is developed by
the OpenCL Working Group, a subgroup of the non-profit
organization Khronos Group [29]. Universality is the key
feature of OpenCL, but has the downside that it is not
possible to exploit all hardware-dependent feature. The
OpenCL framework includes an API and a cross-platform
programming language called “OpenCL C” [22].

A study by Fang et al. [11] examines the performance
differences between OpenCL and CUDA. Their benchmarks
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Figure 1. The OpenCL view on a computation device.

are divided into two categories. The first category consists
of synthetic benchmarks, which measure peak performance
and show similar results for OpenCL and CUDA. The sec-
ond category includes real-world applications and shows a
better overall performance for CUDA. However, the author
explain the gap with differences in the programming model,
optimizations, architecture and compiler. They continue to
define a fair comparison that includes several steps such
as individual optimizations and multiple kernel compilation
steps.

Figure 1 depicts a computing device from the perspective
of OpenCL. Each device is divided into compute units (CU),
which are further divided into processing elements (PE) that
perform the actual calculations. OpenCL defines four dif-
ferent memory regions, which may differ from the physical
memory layout. The global memory is accessible by all PEs
and has a constant memory region with read-only access.
Each local memory region is shared by the PEs of a single
CU. In addition, each PE has a private memory region which
cannot be accessed by others.

Each OpenCL program consists of two parts. One part
runs on the host, normally a CPU, and is called host pro-
gram. The other part consists of any number of kernels that
run on an OpenCL device. A kernel is a function written in
an OpenCL-specific C dialect. OpenCL does not require a
binary interface, as kernels can be compiled at runtime by
the host program for a specific GPGPU device.

A kernel is executed in an N -dimensional index space
called “NDRange”. Derived from three dimensional graphic
calculations, N can be either one, two or three. Each tuple
(n

x

, n
y

, n
z

) in the index space identifies a single kernel exe-
cution, called work-item. These tuples are called global IDs
and allow the identification of work-items during the kernel
execution. Further organization is achieved through work-
groups. The number of work-items per work-group cannot
exceed the number of processing elements in a compute unit.
Similar to the global index space, work-items can be ar-
ranged in up to three dimensions inside a work-group. All
items in a work-group run in parallel on a single CU. De-



pending on the available hardware, work-groups may run
sequentially or in parallel.

The host program initializes data on the device, compiles
kernels, and manages their execution. This requires a se-
ries of steps before running a kernel on an OpenCL device.
Available device drivers offer an entry point in form of dif-
ferent platforms. These can be queried through the OpenCL
API. Once a platform is chosen, all associated device IDs
can be acquired. The next step is to create a context object
for managing devices of the platform in use.

Communication with a device requires a command
queue. The number of command queues per context or
device is not limited, though a queue is associated with a
single device. Multiple commands can be organized with
events. Each command can generate an event which can
than be passed to another command to define a dependency
between them. Alternatively, OpenCL allows associating an
event with a callback. In this way, an asynchronous
workflow can be implemented.

Before a kernel—usually stored as source code in the host
application—can run on a device, it needs to be compiled
using the API of OpenCL. The compilation is then wrapped
in a program object. Each program can compile multiple
kernels at once and allows their retrieval by name. Running a
kernel requires the transfer of its input argument to the target
device, as the memory regions of host and GPGPU device
are usually disjoint. OpenCL organizes chunks of memory
as memory buffer objects that can be created independently
and set as read-write, read-only or write-only. Once each
argument is assigned to a buffer and the programmer has
specified all dimensions in the index space, the kernel can
be scheduled. The last step in this process is copying any
produced results from the GPGPU device back to the host.

OpenCL offers reference counted handles for its com-
ponents using the cl_ prefix, e.g., a kernel is stored as a
cl_kernel. The internal reference count needs to be man-
aged manually. In a similar manner, functions are prefixed
with cl, e.g., clGetPlaformIDs. Most API calls can be
executed blocking as well as non-blocking.

The Khronos Group is actively working on advancing
OpenCL. The next version of the specification is available
as a provisional document since January 2015. In addition to
OpenCL itself, the group supports projects that build upon or
support OpenCL. SYCL (C++ Single-source Heterogeneous
Programming for OpenCL) [19] aims to provide the same
source code for the CPU and device part, compared to a
separate code base for the OpenCL kernels. Since the code
for all targets is written with C++ templates, it can be shared
across platforms. However, the specification keeps to the
familiar execution model from OpenCL and imposes the
same restrictions to the SYCL device code as to OpenCL C.

2.4 Approaches to Heterogeneous Computing
As with multi-core machines, accelerators can be
programmed through many different frameworks. The

above-mentioned frameworks OpenCL and CUDA are the
main stream solutions. They offer a lot of control at the
price of an extensive API. Many libraries have emerged that
use OpenCL or CUDA as a backend to offer a higher level
API and implementations of often-used algorithms.
Examples are Boost.Compute 1 or VexCL 2.

The projects Aparapi [3] and PyOpenCL [17] provide
interfaces to write OpenCL kernels in their respective lan-
guage, Java and Python. By avoiding the use of OpenCL C
they ease the entrance to heterogeneous computing for de-
velopers not familiar with OpenCL. Having this level of ab-
straction further allows the execution of code on CPUs in
case no suitable OpenCL devices is available. While Aparapi
provides an interface similar to Java Threads, PyOpenCL re-
lies on annotations to define which functions are offloaded.
In contrast, OCCA [21] has the goal to provide portabil-
ity and flexibility to developers. They contribute a uniform
interface for programming OpenMP, CUDA and OpenCL.
Writing the offloaded code in macros allows translation de-
pending on the target platform at runtime. An extensible ap-
proach allows the addition of new languages in the future.

A pragma-based approach uses code annotations to spec-
ify which code should be parallelized by the compiler. A
major advantage is the portability of existing code by adding
the annotations to the offloaded code blocks. At the same
time the developer has much less control over the execution
and less potential for optimization. OpenACC [25] is a such
standard. It supports data parallel computations distributed
on many cores as well as vector operations. A comparison
between OpenCL and OpenACC can be found in the work
of Wienke et al. [31]. Although OpenCL showed much bet-
ter performance in their test, the authors conclude that Ope-
nACC opens the field to more programmers and will im-
prove in performance over time.

Integrating GPU computing into the actor model is also
explored by other scientists. For example, Harvey et al. [12]
showed actors running OpenCL code as part of the actor
based programming language Ensemble. By adding an ad-
ditional compiler step, they allow the device code to be writ-
ten in the same language as the rest of their code. This ap-
proach simplifies the development as it allows the use of
language features such as multi-dimensional arrays. Further
optimizations allow the language to keep messages sent be-
tween OpenCL actors on the device instead of copying it
back and forth. The code used as the actors behavior still
must be written to address the parallel nature of OpenCL de-
vices. Their benchmarks compare OpenACC, Ensemble and
native OpenCL. In most cases Ensemble performs close to
OpenCL while OpenACC lacks behind in performance.

1
https://github.com/boostorg/compute (August 2015)

2
https://github.com/ddemidov/vexcl (August 2015)

https://github.com/boostorg/compute
https://github.com/ddemidov/vexcl


3. The Design of OpenCL Actors
We are now ready to introduce our approach in detail, dis-
cuss its rationales and implementation challenges along with
its benefits as well as its limitations

3.1 Design Goals and Rationales
OpenCL is a widely deployed standard containing a
programming language (OpenCL C) and a management
API. Unlike other approaches such as OCCA [21], CAF
does neither attempt to build a new language unifying CPU
and GPGPU programming nor to abstract over multiple
GPGPU frameworks. Instead, our approach allows
programmers to implement actors using data-parallel
kernels written in OpenCL C without contributing any
boilerplate code. Hence, CAF is hiding the management
complexity of OpenCL. We want to keep CAF easy to use
in practice and confine tools to a standard-compliant C++
compiler with available OpenCL drivers. In particular, we
do not require a code generator or compiler extensions.

A possible design option would be to specify a domain-
specific language (DSL) for GPGPU programming in C++
based on template expressions. Such a DSL essentially al-
lows a framework to traverse the abstract syntax tree (AST)
generated by C++ in order to enable lazy evaluation or to
generate output in a different language such as OpenCL C.
However, programmers would need to learn this DSL in the
same way they need to learn OpenCL C. Further, we assume
GPGPU programmers to have some familiarity or experi-
ence with OpenCL or CUDA. Introducing a new language
would thus increase the entry barrier instead of lowering it.
Also, this would force users to re-write existing OpenCL
kernels. For this reason, we chose to support OpenCL C di-
rectly.

Our central goals for the design of OpenCL actors are (1)
hiding complexity of OpenCL management and (2) seamless
integration into CAF with respect to access transparency as
well as location transparency.

Hiding Complexity The OpenCL API is a low-level inter-
face written in C with a style that does not integrate well with
modern C++. Although OpenCL does offer a C++ header
that wraps the C API, it shows inconsistencies when han-
dling errors and requires repetitive manual steps. The ini-
tialization of OpenCL devices, the compilation and manage-
ment of kernels as well as the asynchronous events generated
by OpenCL can and should be handled by the framework
rather than by the programmer. Only relevant decisions shall
be left to the user and remain on a much higher level of ab-
straction than is offered by OpenCL.

Seamless Integration OpenCL actors must use the same
handle type as actors running on the CPU and implement
the same semantics. This is required to make both kinds
of actors interchangeable and hide the physical deployment
at runtime. Further, using the same handle type enables the

runtime to use existing abstraction mechanism for network-
transparency, monitoring, and error propagation. Addition-
ally, the API for creating OpenCL actors should follow a
conformal design, i.e., the OpenCL abstraction should pro-
vide a function that is similar to spawn.

3.2 Core Approach to the Integration of OpenCL
The asynchronous API of OpenCL maps well to the asyn-
chronous message passing found in actor systems. For start-
ing a computation, programmers enqueue a task to the com-
mand queue of OpenCL and register a callback function that
is invoked once the result has been produced. This naturally
fits actor messaging, whereas the queue management is done
implicitly and a response message is generated instead of re-
lying on user-provided callbacks.

metainfo
+ kernel_name: string
+ input_mapping: function
+ output_mapping: function

actor_facade

+ ctx: cl_context
context

+ queue: cl_command_queue
+ id: cl_device_id

device

+ kernels: map<string,
                          cl_kernel>

program
command 1

*

1

1

1 *
1

*

1

*

Figure 2. Class diagram for the OpenCL integration.

OpenCL actors introduce easy access to heterogeneous
computing within the context of CAF actors. Our main
building block is the class actor_facade which is shown
in Figure 2. The facade wraps the kernel execution on
OpenCL devices and provides a message passing interface
in form of an actor. For this purpose, the class implements
all required interfaces to communicate with other
components of CAF (omitted in the diagram for brevity).
Whenever a facade receives a message, it creates a
command which preserves the original context of a
message, schedules execution of the kernel and finally
produces a result message. The remaining classes
implement the bookkeeping required by OpenCL.
•
metainfo is a singleton that performs device discovery
lazily on first access, creates one command queue per
device, and provides the global OpenCL context;

•
context wraps a cl_context which stores OpenCL-
internal management data;

•
device describes an OpenCL device and provides access
to its command queue;

•
program stores compiled OpenCL kernels and provides
a mapping from kernel names to objects.
CAF handles all steps of the OpenCL workflow automati-

cally, but allows for fine-tuning of key aspects. For example,
developers can simply provide source code and names for
kernels and have CAF create a program automatically by
selecting a device and compiling the sources. Particularly on



host systems with multiple co-processors, programmers may
wish to query the metainfo object for accessible devices
manually and explicitly create a program object by provid-
ing a device ID, source code, kernel names, and compiler
options.

3.3 Use Case for OpenCL Actors
We illustrate our concepts and give source code examples
referring to the use case of multiplying square matrices. This
problem is a very good fit and a common use case for this
programming model as each index of the result matrix can
be calculated independently.

Listing 1. OpenCL kernel to multiply two square matrices.
1 constexpr const char

*

name = "m_mult";

2 constexpr const char

*

source = R"__(

3 __kernel void

4 m_mult(__global float

*

matrix1,

5 __global float

*

matrix2,

6 __global float

*

output) {

7 size_t size = get_global_size(0);

8 size_t x = get_global_id(0);

9 size_t y = get_global_id(1);

10 float result = 0;

11 for (size_t idx=0; idx<size; ++idx) {

12 result += matrix1[idx + y

*

size]

13
*

matrix2[x + idx

*

size];

14 }

15 output[x+y

*

size] = result;

16 })__";

Listing 1 shows an OpenCL kernel for multiplying two
square matrices stored as string in the variable source. Ad-
ditionally, the variable name stores the in-source name of the
function implementing the kernel. OpenCL requires all ker-
nels to return void and use the prefix __kernel. The first
two arguments to the function m_mult are two input ma-
trices and the last argument is the result. All matrices are
placed in the global memory region to be accessible by all
work-items (GPU cores). Since OpenCL does not support
multi-dimensional arrays, the matrices are represented as
one-dimensional arrays and the position is calculated from
the x and y coordinate. At runtime, each instruction will run
in parallel on multiple GPU cores but use different mem-
ory segments (single instruction, multiple data) identified
by the function get_global_id. In this example, we use
two dimensions, which can be queried as index 0 for the x

axis and 1 for the y axis. Since we multiply square matrices
get_global_size returns the same value for both axes.

3.4 Programming Interface
While the OpenCL interface can be translated to actor-like
communication in a straightforward way, generating the be-
havior of the actor is more complex. Since OpenCL source
code is compiled at runtime from strings, the C++ com-
piler needs additional information regarding input and out-
put types.

OpenCL actors are created using a variant of spawn,
specifically the function spawn_cl. The execution of a ker-
nel requires configuration parameters like the number of
work-items to execute it. Listing 2 illustrates how to create
an actor for the kernel shown in Listing 1.

Listing 2. Spawning OpenCL actors.
1 using fvec = std::vector<float>;

2 constexpr size_t mx_dim = 1024;

3 auto worker = spawn_cl(

4 source, name,

5 spawn_config{dim_vec{mx_dim, mx_dim}},

6 in<fvec>{}, in<fvec>{}, out<fvec>{});

7 auto m = create_matrix(mx_dim

*

mx_dim);

8 scoped_actor self;

9 self->sync_send(worker, m, m).await(

10 [](const fvec& result) {

11 print_as_matrix(result);

12 });

The first two arguments to spawn_cl are strings
containing source code and kernel name. CAF will
automatically create a program object from this source
code. For more configuration options, programmers can
also create a program manually and pass it as the first
argument instead. The third argument—the spawn
configuration—describes the distribution of work-items in
three dimensions. A spawn configuration always contains
the global dimensions and optionally offset for the global
IDs and local dimensions (to override defaults and fine-tune
work-groups in OpenCL). The dimensions are passed as
instances of dim_vec, which is a tuple consisting of either
one, two, or three integers. Our example creates one
work-item for each index, i.e., matrix size · matrix size

items, meaning that one GPU core computes one element of
the result matrix at a time.

The remaining arguments must represent the kernel sig-
nature as list of in, out and in_out declarations. This type
information allows CAF to automatically generate a pattern
for extracting data from messages and to manage OpenCL
buffers. While input arguments are provided by the user,
storage for output buffers must be allocated by CAF. By de-
fault, CAF assumes output buffers to have a size equal to the
number of work-items. This default can be overridden by
passing a user-defined function to an out declaration which
calculates the output size depending on the inputs at runtime.

In our example, the kernel expects two input arguments
and one output argument, all represented by
one-dimensional dynamic arrays of floating point
numbers—in C++ named std::vector<float>. In line
11 of Listing 2, we send two input matrices to the OpenCL
actor using sync_send. The message handler for the result
in line 12 awaits the resulting matrix and prints it.

Optionally, programmers can pass two conversion func-
tion following the spawn_config argument as shown in
Listing 3. The first function is then responsible for extracting



data from a message while the second function converts the
output generated by the kernel to a response message. This
mapping gives users full control over the message passing
interface of the resulting actor. Per default, these functions
are generated by CAF. A message is then matched against
all in and in_out kernel arguments, while the output mes-
sage is generated from all in_out and out arguments.

Listing 3. Pre- and post-processing in OpenCL actors.
1 template <size_t Size>

2 class square_matrix { /* ... */ };

3 using fvec = vector<float>;

4 constexpr size_t mx_dim = 1024;

5 using mx = square_matrix<mx_dim>;

6 auto preprocess = [](message& msg)

7 -> optional<message> {

8 return msg.apply([](mx& x, mx& y) {

9 return make_message(move(x.data()),

10 move(y.data()));

11 });};

12 auto postprocess = [] (fvec& res)

13 -> message {

14 return make_message(mx{move(res)});

15 };

16 auto worker = spawn_cl(

17 kernel_source, kernel_name,

18 spawn_config{dim_vec{mx_dim, mx_dim}},

19 preprocess, postprocess,

20 in<fvec>{}, in<fvec>{}, out<fvec>{});

The example in Listing 3 introduces the class
square_matrix, which is used for message passing. Since
OpenCL does not allow custom data types, the OpenCL
actor needs to convert the matrix to a one-dimensional
float array before copying data to the GPU and do the
opposite after receiving the result from OpenCL. This
pattern matching step is modeled by the two functions
preprocess, which converts two input matrices to arrays,
and postprocess, which maps a computed array to a
matrix. It is worth mentioning that the postprocess

function can also be used to send messages to other actors
using the computed result. Further, automatically sending a
response message can be suppressed by returning a
default-constructed message.

In addition to making use of a postprocess function,
programmers can also use a client-sided approach for redi-
recting messages using send_as. This function allows pro-
grammers to send an asynchronous message and specify
which actor should receive the response. Transparent redi-
rection of messages is a feature of CAF and not limited to
OpenCL actors.

3.5 Design Discussion
CAF achieves a very high-level of abstraction in comparison
to the management API provided by OpenCL. Only key
decisions such as the work-item distribution is required by
the user. The OpenCL device binding for a kernel defaults

to the first discovered device, but can be set by the user
optionally.

The OpenCL actors presented in this section introduce
data-parallel intra-actor concurrency to CAF. The behav-
ior of an OpenCL actor consists of three parts: (1) a pre-
processing function that pattern-matches input messages and
forwards extracted data to OpenCL, (2) a data-parallel ker-
nel that runs on an OpenCL device, and (3) a post-processing
function that finalizes the message processing step and per
default converts data produced by the kernel to a response
message. Since the data-parallel kernel is running in a sepa-
rate address space and can only use the limited instruction
set provided by OpenCL C, sending messages or spawn-
ing new actors from OpenCL C directly cannot be achieved.
However, the pre- and post-processing functions run on the
CPU and allow programmers to spawn more actors and send
additional messages in the common way. These two func-
tions can be automatically generated for convenience by de-
riving all message types from the signature of a kernel.

Transparent message passing and error handling are
achieved in our design by mapping the mailbox of an actor
to a command queue of OpenCL. From the perspective of
the runtime system of CAF, an OpenCL actor is not
distinguishable from any other actor since it implements the
same interfaces as actors running on the CPU. With the
spawn_cl function, we provide an interface for the
creation process of actors that hides most complexity while
still granting access to all performance-relevant
configuration options via optional parameters.

Once created, the actor handle can be used and addressed
independent of its location. The creation process itself has
its limitations, though. OpenCL is available for GPUs and
dedicated accelerators as well as CPUs. This suggests to
run OpenCL actors on the CPU if no other devices are
available. While this is conceptually possible, device drivers
commonly deployed do not support code compilation for the
CPU. Another problem to consider is the workload caused
by an OpenCL actor running on the CPU. It is not scheduled
with other actors, but competes for the same resources. Al-
ternatively, a single actor could have two implementations,
one in OpenCL and one in regular C++. CAF could then
choose the implementation that promises the best perfor-
mance.

Dynamic behavior of OpenCL actors could be emulated
by allocating state on the GPU, which is then passed to each
kernel invocation. This would require a per-actor schedul-
ing to guarantee sequential kernel invocations in order to
avoid race conditions on the state. Per default, OpenCL tries
to execute multiple executions of the same kernel in paral-
lel on supported devices for optimizing performance. Also,
OpenCL devices have very limited RAM resources com-
pared to the host system. Hence, the number of stateful
OpenCL actors must remain small. Exploring this design
space is part of ongoing and future work.



An advanced aspect is scheduling kernels across multi-
ple similar devices. To enqueue kernels for concurrent exe-
cution, a scheduler needs to keep track of the available re-
sources, such as processing elements and memory, as these
informations are not offered by OpenCL at runtime. Another
aspect is scheduling kernels across different hardware. De-
pending on the target device, a kernel must be configured
differently to reach optimal performance.

4. Evaluation
We have implemented four benchmark programs to system-
atically measure runtime characteristics and overhead intro-
duced by our OpenCL wrapper.

The first benchmark compares the creation time of
OpenCL actors to the event-based actors of CAF. Our next
two benchmarks examine the overhead we induce compared
to manually using the OpenCL API. Here, we take a look at
single calculation before comparing our implementation
against an optimized scenario. Our final benchmark
examines the scalability in heterogeneous setups by
stepwise transferring workload to a GPU and a coprocessor.

The first benchmarks were performed on a Late 2013
iMac with a 3.5 GHz Intel Core i7 running OS X and
OpenCL version 1.2. The GPU is a NVIDIA GeForce GTX
780M GPU with 4096 MB memory. The last benchmarks
on scalability use a machine with two twelve-core Intel
Xeon CPUs clocked at 2.5 GHz equipped with a Tesla
C2075 GPU as well as a Xeon Phi 5110P coprocessor. The
server runs Linux and uses the graphics drivers provided by
Nvidia and the Intel OpenCL Runtime 14.2.

4.1 Spawn Time
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Figure 3. Comparison of the wall-clock time required to
spawn OpenCL and event-based actors.

Our first benchmark focuses on the time to instantiate
OpenCL actors. The creation of actors is traditionally a
lightweight operation. We expect the creation of OpenCL
actors to be more heavy weight than the creation of other

actors in CAF. Still, we want to examine if the OpenCL
actor can be created for short calculations as well as for
longer ones.

We compare the creation time of OpenCL actors to that of
event-based actors. Both benchmarks consist of a loop that
spawns one actor per iteration. Afterwards we ensure that
all actors are active by sending a message to the last created
actor and waiting for its response.

The time measured is the wall clock time required to
spawn an increasing number of actors. This includes the time
required to initialize the runtime environment. To provide
an equal setup, we spawn the event-based actors with the
lazy_init flag. It prevents them from being scheduled for
small initialization tasks unless they receive a message, as is
the case with OpenCL actors.

Figure 3 depicts the wall-clock runtime in seconds as a
function of the number of spawned actors. It plots the mean
of 50 runs with error bars showing the 95 % confidence in-
terval. In all cases the error bars are barely visible. Both im-
plementations show a linear dependency with minor growth.
However, event-based actors take less time than OpenCL ac-
tors and exhibit a smaller slope. The difference in slope indi-
cates a longer spawn time for each individual OpenCl actor.
Similar slopes with a constant distance would have indicated
a similar creation time with longer initialization time of the
runtime.

Compared to the time required for a simple calculation,
the creation time is reasonably small. It is worth mentioning
that OpenCL actors are parallelized internally by OpenCL.
They are not created as frequently as event-based actors.
Hence, creation time is usually less important.

4.2 Runtime Overhead of Actors Over Native OpenCL
Programming

Our second benchmark measures the overhead induced by
our actor approach compared to the native API of OpenCL.
While the OpenCL actor uses the OpenCL API internally, it
performs additional steps such as the setup of the OpenCL
environment and the actor creation. This benchmark quan-
tifies the overhead added by message passing and wrapping
the OpenCL API.

It implements a program that executes a simple task on a
GPU using an OpenCL actor. In this case, the benchmark
kernel calculates the product of two N · N matrices. We
sent the actor matrices with 1000, 4000, 8000 and 12000
as values for N . The increase in problem size should test for
a correlation between the message size and the overhead.

Two measurements are of interest in this case. First, the
duration required for the whole calculation, from sending the
message to receiving the answer. Second, the time between
enqueuing the kernel until OpenCL invokes the callback,
which includes data transfer as well as the kernel execution.
Ideally, both times should be nearly equal.

Figure 4(a) depicts the runtime in seconds as a function of
the problem size N . Each value is the mean of 50 runs, plot-
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(a) Time between sending and receiving messages in CAF compared to the
required by OpenCL.
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Figure 4. Matrix multiplication of N ·N matrices.

ted with the 95 % confidence interval. The total calculation
time ranges from 0.07 s up to 14.1 s. We have also plotted
the time difference separately in Figure 4(b) since the two
lines in Figure 4(a) are not distinguishable. The difference
between the measured values ranges between 5.7 ms and
8.6 ms. No discernible slope can be observed in the graph
and the measurements fluctuate independently of the prob-
lem size.

The results of this measurement clearly show a negligible
overhead that does not depend on the problem size. Hence,
our high level interface can be used at a very low cost.

4.3 Baseline Comparison
The previous benchmark examines the overhead for a single
calculation by comparing the runtime distribution between
CAF and OpenCL. In this benchmark we want to compare
the performance when calculating a sequence of indepen-
dent tasks. Two 1000 · 1000 matrices are multiplied with an
increasing number of iterations, starting at 1000 and increas-
ing by 1000 in each step up to 10000. The environment is
only initialized once and the calculations are preformed se-
quentially. For CAF, an actor sends a new message when it
receives the results of the last calculation. In comparison, the
native OpenCL implementation initiates the next calculation
as part of the callback. Both programs use the same kernel
for the multiplication. We avoid simultaneous kernel execu-
tions as we want to examine the overhead in our framework.

Figure 5 displays the wall-clock time as a function of the
iterations performed. We plotted the average of 10 measure-
ments as well as a 95% confidence interval. Since we use
the OpenCL API within CAF, it is not possible to achieve a
better performance than OpenCL itself. The OpenCL graph
is the baseline we aim for with our performance. Both im-
plementations exhibit linear growth. However, the native
OpenCL implementation has a smaller slope and the run-
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Figure 5. The runtime of multiple independent tasks in
CAF compared to native OpenCL.

time difference between the programs increases. This indi-
cates a consistent overhead required for the message passing
compared to the direct API usage. The relative performance
difference is 8.3 % for 1000 iterations and slightly decreases
to 7.4 % at 10000 iterations.

It is worth mentioning that this micro benchmark is look-
ing at a minimal baseline that is not a realistic application
scenario. A program using OpenCL will need to include
some synchronization to pass GPU-computed results to the
CPU and generate the next task for the GPU. Hence, a native
application will not meet the baseline simply because it uses
the OpenCL API directly.

4.4 Scaling Behavior in a Heterogeneous Setup
Our last benchmark focuses on the scalability of our hetero-
geneous computing approach by incrementally shifting work
from the CPU to an OpenCL device. OpenCL distinguishes
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(a) Mandelbrot on the Tesla.
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(b) Mandelbrot on the Xeon Phi.

Figure 6. Moving a small workload to OpenCL devices.

between CPU, GPU and accelerator devices. Our system in-
cludes the two mentioned device, an NVIDIA Tesla GPU
and an Intel Xeon Phi accelerator. The difference between a
GPU and an accelerator is that GPUs are traditionally used
for 3D APIs such as OpenGL or DirectX, while accelerators
are dedicated for offloading computations from the host. The
Xeon Phi features an architecture based on x86 processors,
although not a compatible one, and differs greatly from the
architecture of the Tesla GPU. It consists of 60 cores with
512 bit vector registers and 4 threads each, totaling to up to
240 threads.

We use the calculation of a Mandelbrot set in the bench-
mark, as the workload can be easily divided into many in-
dependent tasks. The problem is a cut from the inner part
of a Mandelbrot set that has a balanced processing com-
plexity for the entire image. The workload is offloaded in
11 steps, starting with 0 % on the coprocessor and increas-
ing by 10 % in each step up to 100 %. Each computed im-
age of the Mandelbrot set represents the area of [�0.5 �
0.7375i, 0.1� 0.1375i]. Our measurements include two dif-
ferent workloads, a resolution of 1920 · 1080 pixels in Fig-
ure 6 and a resolution of 16000 · 16000 in Figure 7, both
measured with 100 iterations. In addition, we increased the
number of iterations to 1000 for the larger workload to fur-
ther examine the scaling behavior.

Figure 6 depicts the runtimes in milliseconds as functions
of the problem fraction offloaded. The problem is offloaded
to the Tesla in Figure 6(a) and to the Xeon Phi in Figure 6(b).
Each graph depicts the runtime for the CPU and OpenCL
device calculations separately, i.e., the time between start-
ing all actors and their termination. Since calculations are
performed in parallel, the total runtime is not a sum of the
separate runtimes, but measured independently.

The problem plotted in Figure 6(a) exhibits excellent
scalability. The runtime declines until the workload is com-

pletely offloaded to the GPU. While the CPU runtime is
lower than the total runtime on average, it takes longer to
calculate 10 % of the problem on the CPU than is needed to
calculate 100 % on the GPU. As a result, the lower bound
is the time required to process the complete workload on the
GPU.

In contrast, Figure 6(b) reveals a measurable overhead.
While the CPU runtime declines steadily, the runtime mea-
sured for OpenCL fluctuates heavily and the total execu-
tion time doubles when offloading 10 % of work to the Phi.
Even when running 100 % of the problem size on the Phi,
the computation is still slower than the initially measured 60
milliseconds for the CPU-only setup. The initial cost of of-
floading computations to the Phi are not amortized by faster,
parallel computations on the accelerator device. It is worth
mentioning that we did not optimize the OpenCL kernel for
the Phi, which might result in suboptimal performance on
this device.

In summary, these experiments reveal excellent scalabil-
ity of programming GPUs with CAF actors. However, of-
floading work to the Xeon Phi is not worth it with regard
to this problem size. Since the performance of OpenCL ap-
plications largely depends on the driver implementation and
configuration, it is left to future work to examine the Phi re-
sults in more detail.

Figure 7 shows the runtime in milliseconds as a function
of the offloaded problem in % for a larger Mandelbrot image.
We have increased the number of pixels from 1920 · 1080
to 16000 · 16000. The larger image drastically increases the
computation time on the device to offset the initial cost of
offloading computations. We have run the benchmark using
100 iterations and 1000 iterations per pixel.

Figure 7(a) depicts the smaller measurements with 100 it-
erations for both the Tesla and the Xeon Phi. In difference to
the previous benchmark in Figure 6(a), the best performance
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(a) Calculation with a 100 iterations.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

Ti
m

e 
[s

]

Offloaded with OpenCL [%]

 Phi Total
 Phi CPU
 Phi OpenCL
 Tesla Total
 Tesla CPU
 Tesla OpenCL

(b) Calculation with a 1000 iterations.

Figure 7. Moving a large workload to OpenCL devices.

is achieved at around 80 % on the GPU and around 60 % on
the accelerator. Since the initial cost of offloading the com-
putation is smaller in comparison to the overall runtime, the
Xeon Phi achieves drastically better performance as shown
in Figure 6(b), but does not reach the performance of the
Tesla.

Finally, the measurements with 1000 iterations are
depicted in Figure 7(b). Here, the Phi and Tesla perform
equally well. Since this setup has the same data rate as
before but an increased runtime on the device, it becomes
evident that the data transport to the Phi did hinder better
results in the previous benchmarks. Hence, this accelerator
(with current drivers) is best suited for problems of small
data size but large computation demands.

In a naive approach, we simply transferred a problem
from the Tesla to the Phi. This proved to be inefficient for
small problems, but improved with an increase in problem
size. As should be noted again, optimizing kernels and con-
figurations for the Phi may improve its performance for
smaller problems.

5. Conclusions and Outlook
Integrating GPGPU computing into an application can in-
crease its performance by orders of magnitudes. This is true
on all scales from mobiles to server systems. The challenge
of integrating GPGPU devices into applications, though, is
left to a programmer, who is faced with an ever-growing
complexity of hardware architectures and APIs.

The actor model is an important concept for taming the
complexity of parallel and concurrent systems and the task-
oriented work flow of actors fits the work flow of GPGPU
computing very well. The present work on OpenCL actors
shows that an intelligent actor runtime can manage GPGPU
devices autonomously while inducing minimal performance
overhead. Supporting OpenCL as first-class implementation

option in CAF further broadens the scope of our native actor
system by introducing data-parallel intra-actor concurrency.

Our presented implementation of OpenCL actors is
based on OpenCL 1.1. This version is available across Intel,
NVIDIA, and AMD drivers. Our directions for future
development fall into three categories: (1) improve
performance of device-local actor-to-actor communication
by keeping data on the GPU in pipelining scenarios, (2)
explore how OpenCL actors can hold state without enabling
race conditions on the state, e.g., by developing a per-actor
scheduling ensuring sequential kernel execution, and (3)
improve scheduling by load balance across multiple
OpenCL devices both locally and in a network.
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