
Design of TDMA-based In-Car Networks: Applying Multiprocessor
Scheduling Strategies on Time-triggered Switched Ethernet Communication

Jan Kamieth, Till Steinbach, Franz Korf, Thomas C. Schmidt
Department of Computer Science

Hamburg University of Applied Sciences, Germany
{jan.kamieth, till.steinbach, korf, schmidt}@informatik.haw-hamburg.de

Abstract

Real-time Ethernet variants gain importance for com-
munication infrastructure of various time-critical do-
mains, such as in-car networks. Synchronous time-
triggered traffic guarantees strict timing but requires a
detailed schedule for all participants. Designing these
schedules by hand is extensive work and with increasing
network size almost impossible.

In this paper, we contribute a mapping of the time-
triggered network scheduling problem into the domain
of multiprocessor scheduling. This set of transforma-
tion rules allows us to apply established scheduling algo-
rithms as well as new strategies to organise time-triggered
switched networks. Experimental results from a prototype
implementation of a scheduling framework based on this
mapping show the feasibility of our concept. The frame-
work demonstrates a multiple solver approach that uses
algorithms with different optimality criteria in parallel.

1 Introduction

Modern automobiles are distributed and highly inter-
connected systems with up to 100 electronic control units
(ECU) and more than 2000 signals [1]. Due to new Ad-
vanced Driver Assistance Systems (ADAS), upcoming X-
by-Wire systems, enter- and infotainment applications, the
amount of communication is growing. Today, the ECUs
exchange data via several fieldbus technologies, which
were designed according to specific requirements of dif-
ferent application domains like infotainment or engine
control. Main technologies are Controller Area Network
(CAN) [16], Media Oriented Systems Transport (MOST)
[20] and FlexRay [10]. Gateways between different do-
main specific busses allow messages to traverse the bor-
ders of these sub-networks for domain overlapping func-
tionality.

New applications that require camera or laser scanner
based sensors introduce bandwidth demands that exceed
the capacity of todays fieldbus technologies used in cars.
Currently, expensive wiring like Low Voltage Differential

Signaling (LVDS) is used for bandwidth demanding ap-
plications. To satisfy the bandwidth requirements, to re-
duce costs, and to simplify the complex communication
structures at the same time, the industry shows a growing
interest towards Ethernet as an in-vehicle network infras-
tructure [5]. Recently, research focused on how Ethernet
technology can provide benefits to the different functional
domains. Investigated technologies were Ethernet/IP [17],
Ethernet AVB [22] and time-triggered Ethernet [26].

Time-triggered Ethernet Protocols are promising can-
didates to fulfil the strict temporal requirements of auto-
motive and other application areas. Therefore, the IEEE
Time-Sensitive Networking (TSN) Task Group recently
started the standardization of scheduled (time-triggered)
traffic (IEEE 802.1Qbv [15]) as an extension to the Au-
dio/Video Bridging (AVB) protocol suite.

The major challenge when using time-triggered Eth-
ernet protocols is the correct and efficient scheduling of
applications on ECUs and time-triggered messages in
the network. Since time-triggered fieldbusses such as
FlexRay operate on a single shared medium, only one
message schedule for the whole topology is required. In
contrast, switched Ethernet is a point-to-point technology,
limiting the congestion domain to the link between two
participants. For each of these links a schedule for time-
triggered messages must be defined. This set of sched-
ules must be coordinated to satisfy the specified end-to-
end real-time requirements of all applications.

Due to the nature of time-triggered traffic, a time win-
dow, which is defined by the schedule to transfer a spe-
cific time-triggered message over a link, is allocated ex-
clusively for this message. Since this limits the transmis-
sion of non time-triggered traffic, gaps must be placed be-
tween the time-triggered windows, to allow for non time-
triggered traffic to be sent. To handle this requirement dur-
ing the design process, a framework supporting different
scheduling algorithms and heuristics within an incremen-
tal work flow is required.

With this paper, we introduce a system model that maps
the network scheduling problem to the well known prob-
lem of real-time multi processor scheduling. This map-
ping allows us to apply existing scheduling strategies like

Earliest Deadline First (EDF), new algorithms, and man-
ual modifications in an incremental design flow in order
to achieve fast and reliable results. We demonstrate a
framework based on the provided mapping rules, for the
scheduling of time-triggered traffic in switched networks.
It enables us to implement different scheduling algorithms
with little effort and to consider a multiple solver ap-
proach. A network can be scheduled by several algorithms
in parallel while the best result can be selected. Our exper-
imental evaluation uses an example network taken from
the communication patterns of a real-world series car.

The paper is organised as follows. Section 2 elaborates
the details of the time-triggered Ethernet protocol, multi-
processor scheduling and scheduling algorithms. More-
over previous and related work are shown. Section 3 de-
scribes the network model, the system transformation and
the scheduling specifics. In section 4 the details of the im-
plementation of the framework are explained. Section 5
presents scheduling examples and results of a real-world
use-case. In section 6 the conclusion and outlook is given.

2 Background & Related Work

2.1 Time-triggered Ethernet
TTEthernet (AS6802) [24] is an extension of the IEEE

802.3 standard and one of a variety of time-triggered Eth-
ernet protocols such as Profinet, or the upcoming IEEE
802.1Qbv [15] standard. TTEthernet adds real-time capa-
bilities to the standard switched Ethernet protocol. It was
standardised as AS6802 by the Society of Automotive En-
gineers (SAE) for the utilisation in control systems of air-
planes, automobiles and industrial applications. TTEther-
net supports three traffic classes and adds a clock synchro-
nisation protocol to enable time-triggered transmission.

Time-Triggered (TT) traffic class: Time-triggered
frames operate according to a coordinated Time Division
Multiple Access (TDMA). A TT frame has a cyclic be-
haviour and is transmitted during its statically defined
transmission window in its period. A TT frame can be
sent as multicast message over several links on a fixed
route through the network. Hence, an exclusive transmis-
sion window will be defined for each TT frame and each
link. To define transmission windows for different frames
with different periods a schedule as well as a synchroni-
sation among all participants is required. This ensures a
fully deterministic transmission with low latency and min-
imum jitter. Due to the reserved transmission windows for
TT messages, the TT traffic has the highest priority.

Rate-Constrained (RC) traffic class: Similar to TT traf-
fic, rate-constrained traffic is sent as multicast through the
network. But instead of defining a timed transmission
window for every RC message through a schedule, a cer-
tain amount of bandwidth is defined, which can be used
for transmission. The traffic shaping is organised using
so called Bandwidth Allocation Gaps (BAGs), that define
a minimum distance between two consecutive frames of
the same stream. This allows to guarantee the bandwidth

for an application, which does not require strict timing but
highly reliable transmission. Rate-constrained messages
are compatible with the ARINC 664 (AFDX) standard [2].

Best-Effort (BE) traffic class: Best-Effort messages
have the lowest priority and use the remaining bandwidth.
They can be used for tasks without temporal requirements.

This paper focuses on the scheduling of time-triggered
messages. Nevertheless, the bandwidth required by RC
and BE traffic will be reserved by scheduling additional
time slots for these traffic classes. Although the schedul-
ing concepts are currently implemented for TTEthernet
the framework and the results presented in this paper are
easy transferable to other time-triggered protocols.

2.2 Multiprocessor Scheduling Problem
The scheduling problem which occurs in a multipro-

cessor environment belongs to the class of combinatorial
optimisation problems. It is known as a NP-hard prob-
lem [12]. Multiprocessor scheduling has to solve two
questions: ”On which processor has a task to be executed
?” (allocation problem) and ”In which order multiple tasks
have to be executed?” (scheduling problem). These prob-
lems can be solved by different approaches such as an-
nealing [18], particle swarm optimisation [8], neural net-
works [3] or heuristic algorithms, e.g. Earliest Deadline
First or Rate Monotonic scheduling policies [30].

Such a scheduling problem will be described as a di-
rected acyclic graph (DAG) G = (V,E) – also known
as a task graph. It depicts the task dependencies of the
set of parallel tasks / processes. The vertices V represent
the tasks and the directed edges E the order of execution.
The task graph has two dummy vertices, the entry and exit
vertices. The entry vertex represents the start point of the
program, whereas the exit vertex represents the end of the
program. Further parameters like deadlines or execution
times can be attached to the DAG.

2.3 Scheduling Heuristics
To reduce complexity, we start by using heuristics out

of the domain of uniprocessor scheduling. It has been
shown, that these heuristics provide mixed results when
used in a multiprocessor environment. The quality of the
results depend on the given task graph and the used pri-
ority parameters [19]. Nevertheless, these heuristics pro-
duce feasible schedules with little computation time and
can be used as starting point for future improvements. The
compared heuristics are:

First Come First Served The processes are executed in
the order of their arrival time.

Earliest Deadline First The processes are executed in
ascending order of their deadline.

Shortest Job First The processes are executed in as-
cending order of their execution time.

Longest Job First The processes are executed in de-
scending order of their execution time.

S1

N4

N1

N2

N3L1

L2 L5

L6

L3
L4

L7

L8

(a) Network with 4 nodes, 1 switch and 4 connections (8 links)

S1

A4

A1

A3

A2M1 M2

M2 M1, M2

(b) Applications and messages mapped to nodes and links

Figure 1: Model of simple network example

2.4 Related Work
In the specific field of scheduling problems in time-

triggered Ethernet, only few research results were pre-
sented in the past. Steiner proposes [28] the use of a
Satisfiability Modulo Theory (SMT)-solver to create the
TT traffic schedule. One step further go Tamas-Selicean
et al. [29] by solving the problem with a Tabu Search to
schedule TT messages and also optimise the RC traffic.

In the past, there were many proposed solutions [23]
[14] to schedule periodic tasks in distributed real-time
systems, but they do not regard aperiodic tasks, which is
necessary to handle event-triggered messages like the RC
traffic in the TTE networks. Furthermore, the approaches
are often optimising their schedules towards only one tim-
ing metric like the response time [21], which is not appli-
cable to our problem. Instead, we have to optimise to-
wards multiple timing objectives to regard event-triggered
traffic. To fulfil these objectives, a new metric is needed.

Fohler [11] describes a solution to schedule preemptive
periodic and aperiodic tasks in statically scheduled dis-
tributed real-time systems, which uses TDMA based pro-
cessing and communication nodes to model the system.
The static schedule is used to calculate spare capacities.
These capacities are used by an online scheduler to de-
termine if a periodic or aperiodic task should be executed
next. After every execution, the spare capacities are cal-
culated again. Although the problem is similar to ours, the
proposed solution is not applicable. In a TTE network the
schedule has to be completly static. Once a TT message
is scheduled, it can not be altered. To achieve a fair exe-
cution of the aperiodic tasks, all periodic tasks have to be
scheduled in such manner that every interval has enough
spare capacities in advance.

Our approach transforms the problem of scheduling
TTEthernet networks into the domain of multiproces-
sor scheduling. It reduces the complexity of the system
to only one type of processing nodes and removes the
communication between the nodes. This allows us to
use a wide range of scheduling algorithms to optimise
the schedule towards different timing metrics, network
topologies and task graph complexities. Furthermore, we
are analysing the impact of different gap sizes between
two TT messages onto the other traffic classes.

3 System Description

3.1 System & Network Model
The system consists of a set of nodes N , which are

interconnected using switched Ethernet. It consists of a
set of switches S and a set of directed links L allowing
simultaneous transmission and reception via a connection.
Figure 1a depicts a simple network with 4 nodes, 1 switch
and 4 connections resulting in 8 (directed) links.

The nodes are executing a set of applications A, which
communicate using a set of messages M . In the example
of figure 1 the application A1 runs on node N1 and gener-
ates a message M1. M1 is transmitted via link L1, switch
S1 and link L7 to N4. Finally, application A2 running on
N4 consumes message M1.

Furthermore, a message can be sent to multiple re-
ceivers. In figure 1, the message M2 is generated by an
application A3 and sent to A4 and A5. This functionality
corresponds to Ethernet multicast and enables the compo-
sition of complex control systems. The applications run
periodically and feature real-time characteristics. In par-
ticular, the consuming application has to finish its execu-
tion before a specified deadline. To meet this deadline, the
preceding applications and messages have to fulfil corre-
sponding timing constraints.

3.2 System Transformation
For applying scheduling algorithms to the previously

defined systems, a system will be mapped to a task graph
and a set of processors as follows: The applications and
messages of the system are represented by tasks, which
are executed by processors. Each node and each directed
link are mapped to a separate processor. A processor exe-
cutes one task at a time. Like an application, which blocks
a node for a certain amount of time, a message blocks a
link for the time of its transmission. Given that a message
has to be transmitted over more than one link, the message
has to be split in multiple tasks – one task for each link on
the path. In this model a switch acts like a special type
of processor. It forwards an incoming message to the cor-
responding outgoing links. This delays the message for
a constant amount of time to regard forwarding delays. A
switch can forward multiple messages from different ports
at the same time, assuming enough hardware resources in

Transmission

Consuming
Application

Producing
Application

M1 M2

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

Entry Node

Exit Node

N1

N4

L1

L7

N3

L5

L4 L7

N2 N4

Figure 2: Task graph of two control loops

the switch for the forwarding decision. Usually switches
are able to process forwarding decisions at linespeed.

After this transformation, two different sets are left in
the model. A set of processors P and a set of tasks T .

P = N [L [S (1)
T = A [M (2)

3.3 Task Model
A subset of interacting applications and messages de-

fine a logical control loop of the system, e.g.: An appli-
cation produces a message, which is transmitted to one or
more receiver nodes and gets consumed by other applica-
tions. Considering the example of figure 1, the first control
loop consists of 4 tasks: T1, which represents the produc-
ing application A1, T2, which represents the transmission
of the message M1 over the first link, T3, which represents
the transmission of M1 over the second link and T4, which
is the consuming application A2. The left side of figure 2
represents this control loop. As given on the right side of
this figure, the second control loop generates 6 tasks re-
spectively. The subgraphs of all control loops of a system
form the task graph.

Following timing properties exist for a task T

i

:

Release Time r

i

: is the time at which T

i

becomes ready
for execution

Start Time s

i

: is the time at which T

i

starts its execution

Computation Time c

i

: is the duration of execution of T
i

Finishing Time f

i

: is the time at which T

i

finishes its
execution

f

i

= s

i

+ c

i

(3)

Deadline d

i

: is the time before T

i

has to finish its execu-
tion. A feasible schedule must guarantee

f

i

 d

i

(4)

Lateness l

i

: is the delay of completion of T
i

with respect
to its deadline

l

i

= f

i

� d

i

(5)

l

i

is negative if a task completes before its deadline

Response Time R

i

: is the amount of time, which elapses
between release - and start time of a T

i

R

i

= s

i

� r

i

(6)

Typical deadlines refer to the arrival time of messages
at applications and not to the arrival time at components
within the network. Hence only tasks belonging to con-
suming applications feature a deadline. A deadline must
be added to the other tasks to apply a scheduling on the
task set. These deadlines can be derived from the con-
suming task: If T

j

is the sole direct successor of task T

i

(T
i

! T

j

), then the deadline d

i

can be calculated by:

d

i

= d

j

� c

j

(7)

If a task T

i

has a set of direct successors T

succ

, then d

i

will be calculated as follows

d

i

= min({d
k

� c

k

| T
k

2 T

succ

}) (8)

This step is repeated until every task has a deadline.

3.4 Task To Processor Mapping (Allocation Problem)
The allocation of the applications to the processors is

system specific and depends on additional resource con-
straints. In the majority of cases of automotive designs,
an application will be assigned to a specific ECU due to
external resources like sensors and actors. Thus, we de-
termine that an application will be mapped to one specific
processor within our system transformation.

The tasks of the links are mapped by the used routing
algorithm. In the example we use a minimum hop algo-
rithm to define the path from one ECU to another. Since
this is a static routing algorithm, the path of a message
does not change and the processor for every message task
can be defined in advance. This strategy can even be ap-
plied to real-time networks that support redundancy. In
this case the scheduling must be applied for each path be-
tween sender and receiver.

Not all applications depend on external resources. Ac-
cording to the AUTOSAR architecture it would be possi-
ble to assign the application to different nodes. To reduce
the complexity, we start by assuming that every applica-
tion has a designated node. Due to this task to proces-
sor mapping, the allocation problem of the multiprocessor
scheduling approach is solved.

3.5 Scheduling Model
We can describe our system as a static multiprocessor

scheduling of periodic non-preemptive tasks with prece-
dence and timing constraints. The tasks of the control
loops correspond to the job model in scheduling theory.

Since we have a fixed task to processor mapping, the
scheduling of jobs complies with the flow job sequencing
problem [6]. Most of the algorithms, which solve the flow
job problem try to minimise the overall makespan of the
jobs [9]. This optimisation criterion and the correspond-
ing scheduling algorithms do not fit to our model due to
the fact that our makespan is defined by the length of the
periods of the jobs. But the length of the period is de-
termined by the application and should not be changed.
Regarding feasibility and optimality, it does not make a
difference if a task is scheduled at the beginning or the
end of its period as long as the deadline is met.

With respect to automotive applications the scheduling
has to consider the impact on the other traffic classes sent
over the same physical layer. RC traffic is event-based and
can occur at any time in the period. To minimise the delay
of this traffic, transmission gaps must be placed between
successive time-triggered messages. For example, if all
TT messages would be scheduled at the beginning of a
period, an incoming RC message at the beginning of the
period would be substantially delayed. Another problem
occurs if all gaps between TT messages are too small to
transmit a full size RC message. In this scenario a full size
RC message can never be transmitted.

To implement these gaps dummy tasks are added to the
scheduling, which simulate possible RC frames and their
bandwidth. These tasks can be added by different strate-
gies. A strict strategy, which adds a dummy task after
every real task and a range based strategy, which adds a
minimal number of dummy tasks in a defined timespan.

We propose an optimality criterion which is based on
the lateness of a task to respect the deadline constraints.
The lateness criterion can be reflected by the maximum
lateness

L

max

= max

i

(l
i

) (9)

An additional criterion is the maximum flow response
time. The Flow Response Time is the sum of all delays
on the path F between sending and receiving node, that
are caused by the scheduling. If F = {F1, F2, . . . , Fj

}
is the set of paths defined by F

j

= {T1, T2, . . . , Tk

}, the
maximum flow response time of these tasks holds to

R

max

= max

i

0

@
|Fi|X

n=0

R

n

(F
i

)

1

A (10)

The maximum lateness and flow response time should be
minimised.

In scheduling theory, the problems are noted and clas-
sified with the ↵|�|� schema [13]. The characteristics of
our scheduling problem holds to the following class

F |prec, r
j

, d

j

|L
max

, R

max

(11)

4 Framework & Implementation

The presented framework consists of three layers: in-
put layer, processing layer and output layer. The input
layer supports two options to provide a system description
to the framework. The first is a graphical user interface
(GUI), implemented as browser application. The second
is an import for Field Bus Data Exchange Format (FIBEX)
files. FIBEX [4] is a XML-based format to exchange net-
work data and has been extended to support time-triggered
Ethernet protocols in previous work. The processing layer
can use a FIBEX file as direct input to schedule the net-
work.

The core unit is the processing layer, which is imple-
mented in Java and consists of four subcomponents. These
are the data, routing, algorithm and scheduling compo-
nents. The data component, reads from the GUI or a
FIBEX file to an internal data structure and serves as base
for the other components. The routing component mod-
els the network topology as a graph. This provides the
opportunity to apply graph algorithms to the network for
generating the routes of messages. Currently the Dijkstra
algorithm is used to find the shortest path between two
nodes. Since the network is modelled as a graph, other
routing algorithms can be plugged in.

The algorithm component provides an interface to im-
plement the underlying scheduling algorithms. With this
consistent interface it is possible to add a new algorithm
to the framework with low effort and to realise a multi-
ple solver approach. Further, an interface to implement
different strategies to add the transmission gaps between
time-triggered frames is available. The algorithm compo-
nent implements a search tree [7], which captures every
scheduling decision. This search tree is used to add back-
tracking strategies to the algorithms.

The scheduling component uses the data, routing and
algorithm components to perform the calculation of the
schedule. It uses the data component to model the nodes,
links and switches into processors and the applications
and messages into tasks. The routing component is used
to generate the path of every message, and the mapping
of the message tasks to the link processors. After the task
set is determined and the paths are set, the task graph is
built to resolve the dependencies. Finally, the algorithm
component is used to calculate all start times of the tasks.

The output layer transforms the scheduling result into
a machine or human readable result. Either it is sent back
to the browser and rendered as a scheduling table or trans-
formed back into the FIBEX format. The input and output
layer, especially the FIBEX interface, allows to integrate
the scheduling framework into other toolchains. E.g., to
integrate it into a simulation framework [25] to schedule
and simulate a network in one automated step. Further it
allows to read and write partly scheduled configurations
to enable an incremental scheduling approach.

Gap Scheduling Metrics excluding Tasks Scheduling Metrics including Tasks
min Lateness Flow Response Time Lateness Flow Response Time

Algorithm [Byte] avg [%] max [µs] avg [µs] max [µs] avg [%] max [µs] avg [µs] max [µs]
First Come First Served 0 �4.11 �4113 307 930 �5.08 �3873 475 1160

1538 �9.87 �2903 1187 4029 �10.18 �2813 1196 4029
Shortest Job First 0 �4.43 �4183 230 860 �6.01 �3793 392 1340

1538 �11.06 �1938 1135 2785 �11.63 �1838 1144 2795
Longest Job First 0 �3.33 �4143 317 930 �4.39 �3833 737 1856

1538 �7.98 �3163 1362 4299 �7.86 �3123 1361 3124
Earliest Deadline First 0 �3.08 �4593 305 860 �3.76 �4460 623 1703

1538 �6.20 �4460 1305 3459 �6.11 �4370 1369 3619

Table 1: Scheduling Results for the Example In-Car Network with the different Algorithms. Scheduling Metrics are given
including and excluding the reception tasks.

S1 S2 S3

S4

N4

N15 N14 N13

N12

N11N10N9N8N7N6N5

N1N2N3

Figure 3: Evaluated In-Car Network

5 Experimental Evaluation

In this section the scheduling framework is evaluated
using a realistic network example. Different scheduling
algorithms and gap strategies are applied to the network.
Afterwards the results are compared and evaluated.

5.1 Example Network & Use-Case
The example network is based on traffic-patterns ob-

tained from a current series car applied to a star based net-
work topology in accordance with todays domain based
partitioning [27] (see Figure 3). The network size is re-
duced to only contain nodes and messages from the net-
work core. Private communication on dedicated networks
is neglected. The example consists of 4 switches, 15 nodes
and 18 links. The nodes execute 148 time-triggered ap-
plications with execution time between 10 µs and 100 µs
from which 41 are traffic sources and 107 are traffic
sinks. There are 41 time-triggered minimum size mes-
sages (64B) which are transmitted from the producing to
the consuming applications. This number corresponds to
approx. 5% of signals with cyclic time-critical data and is
observed from the traffic model of the chosen car. Appli-
cations which rely on rate-constrained or best-effort traffic
are not included in the scheduling process and therefore
neglected. Their metrics can be obtained from analytical
or simulative evaluations after the schedule was generated.

5.2 Parameters
All applications are executed periodically. The cluster

period has a length of 1 second, meaning that every appli-
cation has been executed at least once in this period. In
detail every set of producing and consuming applications
has its own period. These periods differ from 500ms to
5ms, meaning that the applications are executed 2 times
to 200 times per cluster period (1 s).

After the transformation there are 55 processors (1 for
each switch and node and 2 for each link) and 379 tasks.
148 tasks represent applications, the remaining 231 tasks
represent the transmission of messages over the links.

5.3 Results
The schedules were generated on a common desk-

top computer and took only a couple of seconds. Ta-
ble 1 shows results of the schedule of the given network.
The metrics are exemplarily given for a schedule without
gaps for event-triggered traffic (0B) and a schedule with
gaps for at least one fullsize message with all overheads
(1538B) after each TT frame. On the left side of the ta-
ble the schedule metrics are given without the receiving
application, on the right, these tasks are included. The
data without the receiving tasks offer a better look on the
timing characteristics of the transmission tasks, because
the execution times of the network tasks are much shorter
than those of the application tasks. This results in long
queues on the receiving nodes, which induces a greater
average lateness for all tasks.

The maximum lateness, representing the difference be-
tween a task scheduled on the receiving node and its dead-
line, is negative for all cases. Hence the shown con-
figuration always produces a feasible schedule, all dead-
lines are met. The best result in terms of maximum late-
ness is achieved with Earliest Deadline First Scheduling
(�4593 µs). This complies with the expectations as EDF
privileges the task with the first deadline. The maximum
lateness for the other algorithms varies insignificantly.
The schedule with the latest task in proportion to the dead-
line is given for Shortest Job First (�1938 µs). When cal-
culating the ratio between runtime and lateness, in aver-
age the tasks utilise not more than 3.08% to 11.06% of

Latency [us]

C
D

F

0 500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Shortest Job First
Longest Job First
First Come First Served
Earliest Deadline First

Figure 4: Cumulative Distribution Function (CDF) of
End-to-end Latency scheduled with different scheduling
algorithms

the available time.
The Flow Response Time is the sum of all delays on the

path between sending and receiving node that are caused
by the scheduling. The best results are achieved with the
Shortest Job First algorithm that schedules messages with
a short distance to its receiving node first (average 230 µs,
maximum 860 µs). Consequently, the worst average flow
response time is scheduled with Longest Job First (aver-
age 1362 µs, maximum 4299 µs).

When comparing the results without the reception tasks
(left) with the metrics for the scheduling including the
tasks, the algorithms perform almost equally. The worst-
case maximum lateness for schedules without gaps is now
observed for the Shortest Job First algorithm (�3793 µs)
instead of First Come First Served (�3873 µs). The worst-
case Flow Response Time is now given for the Earliest
Deadline First scheduling (1369 µs). Due to the com-
putation time at the receiving node the influence of the
scheduling gaps decreases. The proportion between the
schedule without gaps and the schedule with 1538B gap
is smaller for the scheduling including the tasks.

Figure 4 shows the (empirical) cumulative distribution
function (CDF) over the end-to-end latencies. The CDF
is a fingerprint of the scheduling algorithm, showing the
schedules performance in terms of communication de-
lay. For all algorithms approximately 35% of the mes-
sages have an end-to-end latency below 700 µs. Up to
this point all algorithms perform equally. For messages
between 700 µs and 1800 µs the algorithms differ in their
latency distribution. While Shortest Job First and Earliest
Deadline First have more messages with a lower latency,
Longest Job First and First Come First Served generate
messages with slightly higher delay in this range. Over all
messages, First Come First Served produces the smallest,
while Earliest Deadline First has the highest maximum
end-to-end latency. This corresponds to the expectation
as First Come First Served always picks the message that
was queued the longest time, neglecting other parameters

Gap Size [Byte]

M
ax

im
um

 L
at

en
es

s
[m

s]

Deadline

● ●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

0 2000 4000 6000 8000 10000 12000

−4
.5

−3
.5

−2
.5

−1
.5

−0
.5

0

●

Shortest Job First
Longest Job First
First Come First Served
Earliest Deadline First

Figure 5: Influence of different Gap Sizes on the Maxi-
mum Lateness

such as the tasks deadline.
Figure 5 shows the influence of different gap sizes

on the maximum lateness. The gaps are included in the
schedule to allow for event-triggered messages between
scheduled frames. The larger these gaps are, the more
event-triggered messages can be placed between time-
triggered traffic, resulting in lower delays.

In general there is a linear dependency between the gap
size and the maximum lateness. The special characteris-
tics of the network define the gradient. The Earliest Dead-
line First algorithm performs best when scheduling with
large gaps. With gaps of more than 8500B it becomes
more challenging to schedule the network resulting in a
higher slope. The example can be scheduled using EDF
with gaps of more than 12 000B. For the other algorithms
the schedules become infeasible with smaller gap sizes.
The second-best algorithm is Longest Job First, that privi-
leges messages with a long path. Consequently, the worst
result is for Shortest Job First using the opposite strategy.

An interesting aspect are the outliers, e.g. for EDF
at 1000B. These are caused by the artificially sched-
uled gaps. When these gaps become larger, the algorithm
queues up more tasks resulting in a larger selection and
therefore potentially better scheduling decisions.

5.4 Discussion
From the presented real-world example we can con-

clude, that a time-triggered switched network can easily
cope with the amount of synchronous communication in
current in-car network designs. The number of messages
allows to generate schedules even with simple heuristics.
Typically, the computation time of applications is multiple
orders of magnitude larger than the transmission. Though,
it is important to include all tasks of the system when gen-
erating the schedules.

As only part of the in-car network relies on syn-
chronous communication, it is not enough to just find
a feasible schedule. It is of great importance to in-

clude mechanisms in the scheduling algorithm that regard
bandwidth and transmission gaps for event-triggered mes-
sages. These gaps must be chosen in conformance with
the message size of concurrent event-triggered real-time
streams to minimise wasted bandwidth while achieving
low forwarding delays. With increasing size of these gaps,
scheduling becomes more challenging. Simple heuristics
may not be able to generate feasible schedules anymore.
In this case, more sophisticated algorithms, e.g. flow shop
scheduling strategies can be used.

The presented results underline the strengths and weak-
nesses of different scheduling algorithms. As each algo-
rithm typically optimises for a special scheduling metric,
there is not an optimum scheduling algorithm. With the
presented incremental multiple solver approach, the re-
sults of different algorithms can be merged to increase the
quality of the schedule.

6 Conclusion & Outlook

Future in-car networks must satisfy the increasing de-
mands of the upcoming advanced driver assistance appli-
cations – with high bandwidth sensors such as cameras
or laser scanners and the requirement for ultra low la-
tency and jitter – to enable (semi-) autonomous driving.
At the same time the demand for high-end multimedia
and infotainment, with enormous amounts of data to be
transferred, enters the automobile domain. In conjunction
with other traffic classes like AVB or RC, time-triggered
real-time Ethernet is a good candidate to satisfy all these
requirements, offering high bandwidth and deterministic
communication. The major challenge in time-triggered
Ethernet variants is the design of a suitable schedule. For
large networks a schedule cannot be designed by hand.

With this work we contribute an incremental multi
solver scheduling approach to automatically generate
schedules for time-triggered networks. By mapping the
network scheduling problem to the well known domain of
multiprocessor scheduling, algorithms and strategies can
be transferred and applied on real-time networks. Our
real-world example derived from a series car, shows how
different algorithms optimise for different scheduling met-
rics. As a conclusion a multi solver approach that uses
different algorithms in parallel can significantly improve
the results. Further, the impact of event-triggered traffic
on the scheduling is shown. To prevent event-triggered
frames from starvation, scheduling must consider trans-
mission gaps for unscheduled traffic. This additional re-
quirement significantly influences the scheduling perfor-
mance and can lead to infeasible results.

In future work we will attach the scheduling framework
to event-based network simulation [25] to analyse the be-
haviour of event-triggered streams in different schedules
under realistic traffic patterns. This will allow to improve
the gapping strategies and reduce potential transmission
delays for asynchronous applications. Further, we will
apply new algorithms for the routing, scheduling and the

event-triggered gaps. This will especially include algo-
rithms optimised for the flow shop problem. In relation to
the AUTOSAR architecture – that allows at design time to
relocate the execution of tasks that do not rely on specific
hardware from one processor to another – we dismiss the
fixed assignment between tasks and processors and add
the allocation problem to the scheduling framework. This
significantly increases the scheduling complexity but of-
fers the potential to optimise the network and ECU load.

Acknowledgements

This work is funded by the Federal Ministry of Ed-
ucation and Research of Germany (BMBF) within the
RECBAR project.

References

[1] U. Abelein, H. Lochner, D. Hahn, and S. Straube. Com-
plexity, quality and robustness - the challenges of tomor-
row’s automotive electronics. In Design, Automation Test
in Europe Conference Exhibition (DATE), 2012, pages
870–871, 2012.

[2] Aeronautical Radio Incorporated. Aircraft Data Network,
Part 7, Avionics Full-Duplex Switched Ethernet Network.
Standard ARINC Report 664P7-1, ARINC, 2009.

[3] A. H. Ali. Non-preemptive multi-constrain scheduling
for multiprocessor with hopfield neural network. In The
2013 International Joint Conference on Neural Networks
(IJCNN), pages 1–6, Aug. 2013.

[4] ASAM - Association for Standardisation of Automation
and Measuring Systems. Data Model for ECU Network
Systems (Field Bus Data Exchange Format). Specification
4.0.0, ASAM e.V., Sept. 2011.

[5] L. L. Bello. The case for ethernet in automotive commu-
nications. SIGBED Rev., 8(4):715, Dec. 2011.

[6] Blazewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., and
Weglarz, J. Flow shop scheduling. In Handbook on
Scheduling, International Handbook on Information Sys-
tems, pages 271–320. Springer Berlin Heidelberg, Jan.
2007.

[7] G. C. Buttazzo. Hard Real-Time Computing Sys-
tems: Predictable Scheduling Algorithms and Applica-
tions. Springer, 2011.

[8] T.-C. Chiang, P.-Y. Chang, and Y.-M. Huang. Multi-
processor tasks with resource and timing constraints using
particle swarm optimization. IJCSNS International Jour-
nal of Computer Science and Network Security, 6(4):7177,
2006.

[9] H. Emmons and G. Vairaktarakis. Flow Shop Schedul-
ing: Theoretical Results, Algorithms, and Applications.
Springer, Sept. 2012.

[10] FlexRay Consortium. Protocol Specification. Specifica-
tion 3.0.1, FlexRay Consortium, Stuttgart, Oct. 2010.

[11] G. Fohler. Joint scheduling of distributed complex peri-
odic and hard aperiodic tasks in statically scheduled sys-
tems. In , 16th IEEE Real-Time Systems Symposium, 1995.
Proceedings, pages 152–161, Dec. 1995.

[12] M. R. Garey and D. S. Johnson. Computers and In-
tractability; A Guide to the Theory of NP-Completeness.
W. H. Freeman & Co., New York, NY, USA, 1990.

[13] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H.
G. R. Kan. Optimization and approximation in determin-
istic sequencing and scheduling: a survey. In P. Hammer,
E. L. Johnson, and B. H. Korte, editors, Annals of Discrete
Mathematics, volume Volume 5 of Discrete Optimization
II Proceedings of the Advanced Research Institute on Dis-
crete Optimization and Systems Applications of the Sys-
tems Science Panel of NATO and of the Discrete Optimiza-
tion Symposium, pages 287–326. Elsevier, 1979.

[14] C.-J. Hou and K. Shin. Allocation of periodic task modules
with precedence and deadline constraints in distributed
real-time systems. IEEE Transactions on Computers,
46(12):1338–1356, Dec. 1997.

[15] Institute of Electrical and Electronics Engineers.
802.1Qbv - Bridges and Bridged Networks - Amendment:
Enhancements for Scheduled Traffic. Draft Standard
P802.1Qbv/D1.0, IEEE, Dec. 2013.

[16] International Organization for Standardization. Road vehi-
cles – Controller Area Network (CAN). ISO 11898, ISO,
Genf, 2003.

[17] A. Kern, H. Zhang, T. Streichert, and J. Teich. Testing
switched ethernet networks in automotive embedded sys-
tems. In 2011 6th IEEE International Symposium on In-
dustrial Embedded Systems (SIES), pages 150–155, June
2011.

[18] N. Lotfi and A. Acan. Solving multiprocessor schedul-
ing problem using multi-objective mean field annealing.
In 2013 IEEE 14th International Symposium on Compu-
tational Intelligence and Informatics (CINTI), pages 113–
118, 2013.

[19] C. McCreary, A. A. Khan, J. J. Thompson, and M. E.
McArdle. A comparison of heuristics for scheduling
DAGs on multiprocessors. In 8th Int. Parallel Processing
Symposium, pages 446–451, Apr. 1994.

[20] MOST Cooperation. Media Oriented Systems Transport.
[21] D.-T. Peng, K. Shin, and T. Abdelzaher. Assignment and

scheduling communicating periodic tasks in distributed
real-time systems. IEEE Transactions on Software Engi-
neering, 23(12):745–758, Dec. 1997.

[22] R. Queck. Analysis of ethernet AVB for automotive net-
works using network calculus. In 2012 IEEE International

Conference on Vehicular Electronics and Safety (ICVES),
pages 61–67, July 2012.

[23] K. Ramamritham. Allocation and scheduling of
precedence-related periodic tasks. IEEE Transactions
on Parallel and Distributed Systems, 6(4):412–420, Apr.
1995.

[24] Society of Automotive Engineers - AS-2D Time Triggered
Systems and Architecture Committee. Time-Triggered
Ethernet AS6802. SAE Aerospace, Nov. 2011.

[25] T. Steinbach, H. Dieumo Kenfack, F. Korf, and T. C.
Schmidt. An Extension of the OMNeT++ INET Frame-
work for Simulating Real-time Ethernet with High Accu-
racy. In SIMUTools 2011 – 4th International OMNeT++
Workshop, pages 375–382, New York, USA, March 21-25
2011. ACM DL.

[26] T. Steinbach, F. Korf, and T. Schmidt. Real-time ethernet
for automotive applications: A solution for future in-car
networks. In 2011 IEEE International Conference on Con-
sumer Electronics - Berlin (ICCE-Berlin), pages 216–220,
Sept. 2011.

[27] T. Steinbach, H.-T. Lim, F. Korf, T. C. Schmidt,
D. Herrscher, and A. Wolisz. Tomorrow’s In-Car Intercon-
nect? A Competitive Evaluation of IEEE 802.1 AVB and
Time-Triggered Ethernet (AS6802). In 2012 IEEE Vehic-
ular Technology Conference (VTC Fall), Piscataway, New
Jersey, Sept. 2012. IEEE Press.

[28] W. Steiner. An evaluation of SMT-Based schedule synthe-
sis for time-triggered multi-hop networks. In Real-Time
Systems Symposium (RTSS), 2010 IEEE 31st, pages 375–
384, Nov. 2010.

[29] D. Tamas-Selicean, P. Pop, and W. Steiner. Syn-
thesis of communication schedules for TTEthernet-
based mixed-criticality systems. In Proceedings of
the Eighth IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis,
CODES+ISSS ’12, page 473482, New York, NY, USA,
2012. ACM.

[30] O. U. P. Zapata and P. M. Alvarez. Edf and rm multi-
processor scheduling algorithms: Survey and performance
evaluation. Seccion de Computacion Av. IPN, 2508, 2005.

