
Content-centric User Networks:
WebRTC as a Path to Name-based Publishing

Christian Vogt, Max Jonas Werner, Thomas C. Schmidt
Department of Computer Science

Hamburg University of Applied Sciences, Hamburg, Germany
christian.vogt@haw-hamburg.de, maxjonas.werner@haw-hamburg.de, t.schmidt@ieee.org

Abstract—Users eager to publish content on the Web need to
either set up a server or use third-party infrastructure. However,
the increasing desire to use the Web as a sharing platform
for content demands solutions that counter disadvantages of
centralized or restricted platforms. Recent efforts are underway
at the IETF and W3C to standardize WebRTC for direct browser-
to-browser communication. This paper introduces BOPlish, an
infrastructure-independent naming and content access architec-
ture for sharing information in User Networks. We demonstrate
how BOPlish leverages WebRTC for an easy to use, secure content
publishing solution. A custom URI scheme serves as a location-
independent addressing mechanism to separate publishing and
content retrieval from the underlying infrastructure.

I. INTRODUCTION

The Web Real-Time Communication (WebRTC) specifica-
tion [1] jointly defined by the World Wide Web Consortium
(W3C) and the Internet Engineering Task Force (IETF) enables
Web applications to establish direct connections between two
browsers. The protocol and API allow for transferring au-
dio/video data via Secure Real-time Transport Protocol (SRTP)
as well as generic binary and textual data via Stream Control
Transmission Protocol (SCTP) over Datagram Transport Layer
Security (DTLS). Major browser vendors such as Mozilla and
Google already ship working implementations of the current
specification status and a further deployment of WebRTC-
enabled browsers from other vendors can be expected shortly.
This enables use cases that were not possible in the past.

With the uprise of Web 2.0 technologies over the past ten
years, Web platforms have shifted from pure content silos to
services for publishing user-generated content. Today, users
also see the Web as a platform to share media, documents
and exchange individual information among each other. Cur-
rently, perceiving user-generated content on the Web follows
a centralized, host-based approach. Examples for such central
content sharing community platforms are Facebook, Flickr and
Youtube.

Information-centric Networking (ICN) describes the idea
of moving from a host-centric to a data-centric network-
ing paradigm. It abstracts publishing and accessing content
from the underlying infrastructure facilitated by a defined
location-independent naming scheme. ICN potentially fosters
the decoupling of user-generated publishing from a dedicated
distribution system.

In this paper, we introduce a decentralized, name-based
publishing architecture called Browser-based Open Publishing

(BOPlish) that pursues a similar objective. A BOPlish appli-
cation runs in the Web browser and connects all participating
browsers directly via WebRTC Data Channels. These browsers
form a virtual content-centric infrastructure where each user
can publish and retrieve content. None of the browsers rely
on a server or a central service. Similar to ICN, the accessed
content is addressed employing a user-centric naming scheme
decoupled from the delivering host. WebRTC acts as an enabler
for BOPlish. Any device that has a WebRTC-enabled browser
installed can join the overlay without requiring additional
software. Additionally, BOPlish benefits from the inclusion of
the native identity certification mechanism in WebRTC. Our
approach uses this mechanism to secure content and authenti-
cate peers. Encryption and a secure transport of arbitrary data
is directly provided by WebRTC.

In the remainder, we work out the problem along with
related work (Section II) and present the BOPlish approach
(Section III). We conclude with an outlook in Section IV.

II. PROBLEM STATEMENT AND RELATED WORK

Currently, publishing content on the Web requires access
to infrastructure such as Web servers and name resolution
services like DNS. ICN approaches this problem and elevates
the meaning of content by assigning explicit identifiers to
data rather than referring to the location of content, e.g.
by using an HTTP URL. Content can be stored directly in
the network which inherently provides functionality to store,
cache and search for it. The ICN approach, however, suffers
from conceptual shortcomings as Wählisch et al. [2] have
pointed out. Besides unresolved security issues, control over
the infrastructure is shifted towards end users. This paradigm
opens up the control plane and requires modification of routing
states at every user-generated publishing act.

BOPlish focuses on distributing user-generated content
within interest groups that we call User Networks. Contrary to
ICN, our approach is not supposed to operate on Internet-scale.
It provides an infrastructure-independent name and content ac-
cess architecture. Web application providers could potentially
benefit from such a system by reducing the server’s bandwidth
consumption and transfer delay. The clients, on the other hand,
are not required to rely on a server for sharing content with
other users. As the browser is the natural application platform
for the Web, we want to leverage its broad deployment and
OS independence. WebRTC provides the required transport
mechanism by offering the Data Channel protocol that is used
to transfer generic data directly between two browsers.

978-1-4799-1270-4/13/$31.00 c©2013 IEEE

Various approaches to ICN have been proposed that provide
efficient user-centric publishing mechanisms [3]. For address-
ing content, there exist two major techniques: Using either a
flat identifier or a naming hierarchy. The Data-oriented Net-
work Architecture (DONA) [3] is an example of an architecture
that uses flat identifiers. The DONA approach assures self-
certifying names. Hierarchical identifiers on the other hand,
that are used e.g. in Content-Centric Networking (CCN) [3]
allow for content aggregation on intermediate routers. Addi-
tionally, such namespaces allow for wildcard searches.

Research on leveraging native browser technologies for
content distribution has already been addressed by Zhang et al.
[4] introducing an implementation of a browser-based content
delivery network (CDN). The authors have researched on the
possibilities of building a CDN service that is based on a
centralized P2P network using the Flash plugin provided by
Adobe. Their implementation is centered around a coordinator
node that holds mappings between peers and the data stored
on these peers. Every distributed asset in the P2P network is
fetched using JavaScript from one of the participating peers.
Taking advantage of this solution requires the modification of
the site’s HTML code and the setup of the controller.

III. THE BOPLISH APPROACH

A. Overall Architecture

The BOPlish architecture consists of three components
that form the virtual infrastructure: A bootstrap server that
handles joining peers and WebRTC signaling, a distributed
hash table (DHT) to allow for an infrastructure-independent
lookup mechanism and the actual peers that expose a Content
API using the BOPlish application in their Web browsers.
These components operate as follows:

Name Resolver API

"user@identity.org"

goto XYZ1

3

2

DHT

"/beer.png"

4

010011...

Content API

Fig. 1. Nodes in BOPlish retrieve content by issuing a lookup of the content’s
user ID to the underlying DHT (1) which returns a pointer to the actual node
that holds the content (2). This pointer is then used to open a WebRTC Data
Channel to the peer, query for the content (3) and transfer it (4).

1) Bootstrap Server: The bootstrap server allows peers to
join the system using the WebRTC offer/answer mechanism.
Joining a BOPlish group is achieved by simply pointing the
users’ browser to the URL of the application. The application

then contacts the bootstrap server for signaling, requesting an
assertion from the identity provider and sending the offer to
the signaling server (see Section III-D). This offer is forwarded
to an arbitrary node connected to the server so that finally the
users’ browser is connected to arbitrary other browsers via a
Data Channel. This connection is then used to start the DHT
joining algorithm.

2) Name Resolver API: The lookup mechanism of the
BOPlish architecture is used to find a peer that holds the
data the lookup request is directed to. Figure 1 illustrates
the procedure. The initiating peer queries a DHT that is
distributed among the participating browsers (1). The hash
table maps user identities to host references that can be used
to initiate a P2P connection (2). The DHT thus acts as an
indirection mechanism from location-independent identifiers to
actual hosts. By adding redundancy to the DHT this indirection
becomes even more stable. We introduced the term User
Networks that describes a community of peers such as the
users of a specific Web site or service sharing an interest of
each other’s content. Limiting the scope to a User Network
simplifies the task of creating a decentralized host lookup
mechanism. Using a DHT that only holds references to hosts
allows for a small, highly churn-resistant and therefore stable
implementation.

3) Content API: The BOPlish architecture denotes a peer
as a user of the system. In order for a user to publish content,
we opted for a file system like identifier that, combined with
the user identifier, is unique in the scope of a User Network.
The retrieved host reference from the lookup mechanism is
then used to connect to the host and query for the desired
content as shown in Figure 1, step 3.

Both, the lookup mechanism and the content retrieval is
tightly coupled to a distinct naming schema that is further
elaborated on in Section III-B.

B. Content Naming

In the BOPlish architecture we have opted for hierarchical
names that are syntactically compatible with the Common
Multicast API [5] URI scheme:

bop://<user>@<identity-provider>/<path>?\
<sec-credentials>

The significant difference to HTTP URLs used on the Web
is that the authority part of the URI does not denote a host
to connect to. Rather it stands for the asserted identity of the
user that owns the content (see Section III-D). The URI thus
is location independent.

The user identity part of the URI serves as the key for
querying the underlying DHT as denoted in Section III-A2.
When a user wants to retrieve content, the BOPlish imple-
mentation feeds the URI’s authority part into the DHT lookup
mechanism which then returns a pointer to the host actually
taking hold of the content denoted by the user identity. path
is the actual contents’ path. In the simplest form it just
points to a file name but implementations may choose to
extend the semantics of the path to e.g. contain wildcards for
performing searches. The optional sec-credentials query string
may contain security credentials that are used to verify the

content by using a cryptographic hash. Examples of possible
BOPlish URIs look like this:

bop://alice@identityA.org/public/*.ogg
bop://bob@identityB.org/secret.doc?\

hash=urn:sha1:<hash>

C. Content Retrieval

The result from the lookup is used to open a WebRTC
Data Channel to a peer. Afterwards a query for the path is
issued against this peer, eventually resulting in retrieving the
desired content. If the URI contains a cryptographic hash in
the security credentials part, the receiver is able to apply the
specified algorithm to the received data and verify its integrity.

The semantics of the path part of a BOPlish URI depend
on the application. Since the retrieval of a path via the Content
API opens a Data Channel between two users, applications can
use this channel to establish a custom protocol.

For a file-sharing system, the path denotes a file system like
structure. When a node is queried for content via the Content
API, it performs a local search in its content repository.
Implementations may differ in how the local retrieval of data is
actually performed. Since Web applications don’t have direct
access to the file system, a possible solution for publishing a
file may be to drag and drop it onto the browser. Then, the
application can e.g. store it in the persistent local storage space
that is exposed to every Web application. If the path contains
wildcards, an implementation returns a list of all files matching
the path. In a real-time chat application a path may lead to a
chat room that users join by querying it via the Content API.

D. Security Aspects

Two important aspects have to be taken care of in BOPlish:
Establishing a mechanism to authenticate user identities and
being able to sign/verify content. Furthermore, the WebRTC
DTLS layer ensures end-to-end encryption; communication to
the bootstrap/signaling server is encrypted using HTTPS and
encrypted WebSockets (WSS).

BOPlish leverages a WebRTC-native mechanism described
in [6] that provides a solution for confidentiality, source
authentication and integrity. In order to verify a user identity, a
BOPlish peer triggers a verification process using the identity
provider provided by the user identifier (see Section III-B).
BOPlish leverages this mechanism to verify the identity of a
particular node after resolving it through the lookup mecha-
nism. This procedure prevents attacks that manipulate the host
reference stored in the DHT. Additional countermeasures to
DHT attacks depend on the chosen implementation.

A Web application implementing BOPlish needs to be
able to encrypt and decrypt content stored on the peers as
well as verify its integrity. There are efforts underway at
the W3C to expose certain cryptography functions to Web
applications via a JavaScript API [7]. Those functions allow
a browser, amongst other things, for the generation of pub-
lic/private key pairs, signing of data or verifying signatures.
However, current browser versions only implement parts of
the specification. Thus, an application will have to rely on
cryptography functions implemented in JavaScript. Libraries
providing such functionality are already available.

IV. CONCLUSION AND FUTURE WORK

In this paper we have introduced an architecture for decen-
tralized content-publishing between browsers. It enables users
to share content without having to set up a Web server or
relying on third-party providers. By decoupling content-centric
addressing and an infrastructure-independent lookup mecha-
nism, BOPlish has the potential to improve user experience
over the current host-centric Web. Conceptually, applications
built on top of BOPlish are able to cooperate across servers
so that users of different applications can participate in one
User Network, provided they implement compatible proto-
cols. Leveraging the built-in mechanisms of WebRTC makes
BOPlish inherently secure. Recent development of browser
cryptography APIs add to its security.

Future work will be two-fold: We are currently working
on a proof-of-concept implementation of BOPlish [8]. It will
serve as the basis for conducting performance and user expe-
rience tests. In this way, we expect to evaluate the practical
implications of a browser-to-browser sharing architecture. The
usage of a DHT as distributed data structure is not crucial to
BOPlish’s design. Our future work may include evaluations of
possible alternatives such as a simple mesh. The implementa-
tion approach includes developing a Chord DHT in JavaScript
as well as defining and building the precise Content and Name
Resolver APIs. The resulting implementation shall be usable
as a JavaScript library that application developers harness to
provide a BOPlish content sharing facility to their users.

Additionally, we focus on use cases that we anticipate for
future enhancements of BOPlish. Such additions include the
possibility to offload content from one machine to another
which is eased by the content-centric nature of BOPlish ad-
dresses. Users could e.g., offload content from their stationary
PC to their mobile phone when they leave home or use
neighboring nodes to replicate content. Applications building
on BOPlish range from simple file sharing to collaborative
editing and real-time applications like audio/video or text
chats.

REFERENCES

[1] H. Alvestrand, “Overview: Real Time Protocols for Brower-based Ap-
plications,” IETF, Internet-Draft – work in progress 06, February 2013.

[2] M. Wählisch, T. C. Schmidt, and M. Vahlenkamp, “Backscatter from
the Data Plane – Threats to Stability and Security in Information-
Centric Network Infrastructure,” Computer Networks, 2013, accepted for
publication.

[3] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman,
“A Survey of Information-Centric Networking,” IEEE Communications
Magazine, vol. 50, no. 7, pp. 26–36, July 2012.

[4] L. Zhang, F. Zhou, A. Mislove, and R. Sundaram, “Maygh: building
a CDN from client web browsers,” in Proceedings of the 8th ACM
European Conference on Computer Systems, ser. EuroSys ’13. New
York, NY, USA: ACM, 2013, pp. 281–294.

[5] M. Waehlisch, T. Schmidt, and S. Venaas, “A Common API for Trans-
parent Hybrid Multicast,” IETF, Internet-Draft – work in progress 06,
August 2012.

[6] E. Rescorla, “RTCWEB Security Architecture,” IETF, Internet-Draft –
work in progress 06, January 2013.

[7] D. Dahl and R. Sleevi, “Web Cryptography API,” W3C, W3C Working
Draft, Jun. 2013.

[8] C. Vogt, M. J. Werner, and T. C. Schmidt, “Leveraging WebRTC for P2P
Content Distribution in Web Browsers,” in 21st IEEE Intern. Conf. on
Network Protocols (ICNP 2013), Demo Session. Piscataway, NJ, USA:
IEEEPress, Oct. 2013, accepted for publication.

