
1 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Structured Peer-to-Peer Networks

The P2P Scaling Problem
Unstructured P2P Revisited
Distributed Indexing
Fundamentals of Distributed Hash
Tables

DHT Algorithms
Chord
Pastry
Can

Programming a DHT
Graphics repeatedly taken from:
R.Steinmetz, K. Wehrle: Peer-to-Peer Systems and Applications, Springer LNCS 3485, 2005

2 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Instant Deployment
Independent of infrastructural provisions

Flexibility
Seamless adaptation to changing member
requirements

Reliability
Robustness against node or infrastructure failures

Scalability
Resources per node do not (significantly) increase
as the P2P network grows

Demands of P2P Systems

3 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

The Challenge in Peer-to-Peer Systems

Location of resources (data items) distributed among systems
Where shall the item be stored by the provider?

How does a requester find the actual location of an item?

Scalability: limit the complexity for communication and storage

Robustness and resilience in case of faults and frequent changes

D

?

Data item

„D“

distributed system

7.31.10.25

peer-to-peer.info

12.5.7.31

95.7.6.10

86.8.10.18

planet-lab.orgberkeley.edu 89.11.20.15

?

I have item „D“.
Where to place „D“?

?

I want item „D“.
Where can I find „D“?

4 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Unstructured P2P Revisited

Basically two approaches:

Centralized

Simple, flexible searches at server (O(1))

Single point of failure, O(N) node states at server

Decentralized Flooding

Fault tolerant, O(1) node states

Communication overhead ≥ O(N2), search may fail

But:

No reference structure between nodes imposed

5 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Unstructured P2P: Complexities
C

om
m

un
ic

at
io

n
O

ve
rh

ea
d

Flooding

Central
Server

O(N)

O(N)O(1)

O(1)

O(log N)

O(log N)

Bottleneck:
•Communication

Overhead

•False negatives
Bottlenecks:
•Memory, CPU, Network
•Availability?

Scalable

solution
between

both
extremes?

6 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Idea: Distributed Indexing

Initial ideas from distributed shared memories (1987 ff.)

Nodes are structured according to some address space

Data is mapped into the same address space

Intermediate nodes maintain routing information to
target nodes

Efficient forwarding to „destination“ (content – not location)

Definitive statement about existence of content

H(„my data“)
= 3107

2207

2906
3485

201116221008
709

611

?

H(„my data“)
= 3107

2207

2906
3485

201116221008
709

611

?

7 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Scalability of Distributed Indexing
Communication effort: O(log(N)) hops

Node state: O(log(N)) routing entries

H(„my data“)
= 3107

2207

7.31.10.25

peer-to-peer.info

12.5.7.31

95.7.6.10

86.8.10.18

planet-lab.orgberkeley.edu

2906
3485

201116221008
709

611

89.11.20.15

?

Routing in O(log(N))
steps to the node
storing the data

Nodes store O(log(N))
routing information to

other nodes

8 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Distributed Indexing: Complexities
C

om
m

un
ic

at
io

n
O

ve
rh

ea
d

Node State

Flooding

Central
Server

O(N)

O(N)O(1)

O(1)

O(log N)

O(log N)

Bottleneck:
•Communication

Overhead

•False negatives
Bottlenecks:
•Memory, CPU, Network
•AvailabilityDistributed

Hash Table

Scalability: O(log N)

No false negatives

Resistant against changes

Failures, Attacks

Short time users

9 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Fundamentals of Distributed Hash Tables

Desired Characteristics:
Flexibility, Reliability, Scalability

Challenges for designing DHTs

Equal distribution of content among nodes
Crucial for efficient lookup of content

Permanent adaptation to faults, joins, exits of nodes
Assignment of responsibilities to new nodes

Re-assignment and re-distribution of responsibilities
in case of node failure or departure

Maintenance of routing information

10 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Distributed Management of Data

1.

Mapping of nodes and data into same address space

Peers and content are addressed using flat identifiers (IDs)

Nodes are responsible for data in certain parts of the address
space

Association of data to nodes may change since nodes may
disappear

2.

Storing / Looking up data in the DHT

Search for data = routing to the responsible node
Responsible node not necessarily known in advance

Deterministic statement about availability of data

11 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Addressing in Distributed Hash Tables
Step 1:

Mapping of content/nodes into linear space

Usually: 0, …, 2m-1 à number of objects to be stored

Mapping of data and nodes into an address space (with hash
function)

E.g., Hash(String) mod 2m: H(„my data“) 2313

Association of parts of address space to DHT nodes

H(Node

Y)=3485

3485 -

610

1622 -

2010

611 -

709

2011 -

2206

2207-

2905

(3485 -

610)

2906 -

3484

1008 -

1621

Y

X

2m-1 0

Often, the address
space is viewed as
a circle.

Data item “D”:
H(“D”)=3107 H(Node

X)=2906

12 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Mapping Address Space to Nodes
Each node is responsible for part of the value range

Often with redundancy (overlapping of parts)

Continuous adaptation

Real (underlay) and logical (overlay)
topology so far uncorrelated

Logical view of the
Distributed Hash Table

Mapping on the
real topology

2207

29063485

201116221008
709

611

Node 3485 is responsible
for data items in range
2907 to 3485
(in case of a Chord-DHT)

13 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Routing to a Data Item

Step 2:

Locating the data (content-based routing)

Goal: Small and scalable effort
O(1) with centralized hash table

Minimum overhead with distributed hash tables
O(log N): DHT hops to locate object

O(log N): number of keys and routing information per
node (N = # nodes)

14 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Routing to a Data Item (2)
Routing to a Key-Value-pair

Start lookup at arbitrary node of DHT

Routing to requested data item (key)
recursively according to node tables

(3107, (ip, port))

Value = pointer to location of data

Key = H(“my data”)

Node 3485 manages
keys 2907-3485,

Initial node

 (arbitrary)

H(„my

data“)
= 3107

2207

2906
3485

2011
16221008

709

611

?

15 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Routing to a Data Item (3)

Getting the content
K/V-pair is delivered to requester

Requester analyzes K/V-tuple
(and downloads data from actual location – in case of indirect storage)

H(„my

data“)
= 3107

2207

2906
3485

2011
16221008

709

611
?

Get_Data(ip, port)

Node 3485 sends
(3107, (ip/port)) to requester

In case of indirect storage:
After knowing the actual

Location, data is requested

16 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Data Storage

Direct storage

Content is stored in responsible node for H(“my data”)

Inflexible for large content – o.k. for small data (<1KB)

Indirect storage

Nodes in a DHT store tuples like (key,value)
Key = Hash(„my data”) 2313

Value is often real storage address of content:
(IP, Port) = (134.2.11.140, 4711)

More flexible, but one step more to reach content

17 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Dynamic of a DHT: Node Arrival

Bootstrapping/Joining of a new node
1.

Calculation of node ID

2.

New node contacts DHT via arbitrary node

3.

Assignment of a particular hash range

4.

Copying of K/V-pairs of hash range (usually with
redundancy)

5.

Binding into routing
 environment

 (of overlay)

2207

29063485

201116221008709

611

ID: 3485

134.2.11.68

18 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Node Failure / Departure

Failure of a node
Use of redundant K/V pairs (if a node fails)

Use of redundant / alternative routing paths

Key-value usually still retrievable if at least one copy
remains

Departure of a node
Partitioning of hash range to neighbor nodes

Copying of K/V pairs to corresponding nodes

Unbinding from routing environment

19 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

DHT Algorithms

Lookup algorithm for nearby objects (Plaxton et al 1997)

Before P2P … later used in Tapestry

Chord (Stoica et al 2001)

Straight forward 1-dim. DHT

Pastry (Rowstron & Druschel 2001)

Proximity neighbour selection

CAN (Ratnasamy et al 2001)

Route optimisation in a multidimensional identifier space

Kademlia (Maymounkov & Mazières 2002) …

20 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Chord: Overview

Early and successful algorithm

Simple & elegant
easy to understand and implement

many improvements and optimizations exist

Main responsibilities:
Routing

Flat logical address space: l-bit identifiers instead of IPs

Efficient routing in large systems: log(N) hops, with N
number of total nodes

Self-organization
Handle node arrival, departure, and failure

21 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Chord: Topology

Hash-table storage
put (key, value) inserts data into Chord

Value = get (key) retrieves data from Chord

Identifiers from consistent hashing
Uses monotonic, load balancing hash function

E.g. SHA-1, 160-bit output → 0 <= identifier < 2160

Key associated with data item
E.g. key = sha-1(value)

ID associated with host
E.g. id = sha-1 (IP address, port)

22 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Chord: Topology

Keys and IDs on ring, i.e., all arithmetic modulo 2160

(key, value) pairs managed by clockwise next node:
successor 6

1

2

6

0

4

26

5

1

3

7

2
Chord
Ring

Identifier
Node

X Key

successor(1) = 1

successor(2) = 3successor(6) = 0

23 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Chord: Topology

Topology determined by links between nodes

Link: knowledge about another node

Stored in routing table on each node

Simplest topology: circular linked list

Each node has link to clockwise
next node

0

4

26

5

1

3

7

24 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Routing on Ring ?

Primitive routing:
Forward query for key x until successor(x) is found

Return result to source of query

Pros:
Simple

Little node state

Cons:
Poor lookup efficiency:
O(1/2 * N) hops on average
(with N nodes)

Node failure breaks circle

0

4

26

5

1

3

7

1

2

6

Key 6?

Node 0

25 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Improved Routing on Ring?

Improved routing:
Store links to z next neighbors, Forward queries for k to
farthest known predecessor of k

For z = N: fully meshed routing system
Lookup efficiency: O(1)

Per-node state: O(N)

Still poor scalability in linear routing progress

Scalable routing:
Mix of short- and long-distance links required:

Accurate routing in node’s vicinity

Fast routing progress over large distances

Bounded number of links per node

26 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Chord: Routing
Chord’s routing table: finger table

Stores log(N) links per node

Covers exponentially increasing distances:
Node n: entry i points to successor(n + 2i) (i-th finger)

0

4

26

5

1

3

7

finger table
i succ.

keys
1

0
1
2

3
3
0

start
2
3
5

finger table
i succ.

keys
2

0
1
2

0
0
0

start
4
5
7

1
2
4

1
3
0

finger table
start succ.

keys
6

0
1
2

i

27 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Chord: Routing
Chord’s

routing algorithm:

Each node n forwards query for key k clockwise
To farthest finger preceding k

Until n = predecessor(k) and successor(n) = successor(k)

Return successor(n) to source of query
63

4

7

16

14
13

19

23

26
3033

37
39

42

45

49

52

54
56

60

i 2 î Target Link
0 1 53 54
1 2 54 54
2 4 56 56
3 8 60 60
4 16 4 4
5 32 20 23

i 2^i Target Link
0 1 24 26
1 2 25 26
2 4 27 30
3 8 31 33
4 16 39 39
5 32 55 56

i 2^i Target Link
0 1 40 42
1 2 41 42
2 4 43 45
3 8 47 49
4 16 55 56
5 32 7 7

45

42

49

i 2^i Target Link
0 1 43 45
1 2 44 45
2 4 46 49
3 8 50 52
4 16 58 60
5 32 10 13 44

lookup (44)lookup (44) = 45

28 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Chord: Self-Organization

Handle changing network environment
Failure of nodes

Network failures

Arrival of new nodes

Departure of participating nodes

Maintain consistent system state for routing
Keep routing information up to date

Routing correctness depends on correct successor information

Routing efficiency depends on correct finger tables

Failure tolerance required for all operations

29 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Chord: Failure Tolerance in Storage

Layered design
Chord DHT mainly responsible for routing

Data storage managed by application
persistence

consistency

Chord soft-state approach:
Nodes delete (key, value) pairs after timeout

Applications need to refresh (key, value) pairs periodically

Worst case: data unavailable for refresh interval after node
failure

30 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Chord: Failure Tolerance in Routing
Finger failures during routing

query cannot be forwarded to finger

forward to previous finger (do not overshoot
destination node)

trigger repair mechanism: replace
finger with its successor

Active finger maintenance
periodically check fingers
“fix_fingers”

replace with correct nodes on
failures

trade-off: maintenance traffic
vs. correctness & timeliness

63
4

7

16

14
13

19

23

26
3033

37
39

42

45

49

52

54
56

60

45

42

49

44

31 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Chord: Failure Tolerance in Routing
Successor failure during routing

Last step of routing can return node failure to source
of query
-> all queries for successor fail

Store n successors in successor list
successor[0] fails -> use successor[1] etc.

routing fails only if n consecutive nodes fail
simultaneously

Active maintenance of successor list
periodic checks similar to finger table maintenance
“stabilize” uses predecessor pointer

crucial for correct routing

32 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Chord: Node Arrival
New node picks ID

Contact existing node

Construct finger table via standard routing/lookup()

Retrieve (key, value) pairs from successor

0

4

26

5

1

3

7

finger table
i succ.

keys
1

0
1
2

3
3
0

start
2
3
5

finger table
i succ.

keys
2

0
1
2

0
0
0

start
4
5
7

1
2
4

1
3
0

finger table
start succ.

keys
6

0
1
2

i

7
0
2

0
0
3

finger table
start succ.

keys

0
1
2

i

33 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Chord: Node Arrival

Examples for choosing new node IDs
random ID: equal distribution assumed but not
guaranteed

hash IP address & port

external observables

Retrieval of existing node IDs
Controlled flooding

DNS aliases

Published through web

etc.

0

4

26

5

1

3

7

ID = ?ID = rand() = 6

DNS

entrypoint.chord.org?

182.84.10.23

34 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Chord: Node Arrival

Construction of finger table
iterate over finger table rows

for each row: query entry point for successor

standard Chord routing on entry point

Construction of successor list
add immediate successor from finger table

request successor list from successor
0

4

26

5

1

3

7

7
0
2

0
0
3

finger table
start succ.

keys

0
1
2

i
succ(7)?
succ(0)?
succ(2)?

succ(7) = 0
succ(0) = 0
succ(2) = 3

successor list

0 1

successor list

1 3

35 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Chord: Node Departure

Deliberate node departure
clean shutdown instead of failure

For simplicity: treat as failure
system already failure tolerant

soft state: automatic state restoration

state is lost briefly

invalid finger table entries: reduced routing efficiency

For efficiency: handle explicitly
notification by departing node to

successor, predecessor, nodes at finger distances

copy (key, value) pairs before shutdown

36 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Chord: Performance

Impact of node failures on lookup failure rate
lookup failure rate roughly equivalent to node failure
rate

37 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Chord: Performance

Moderate impact of
number of nodes on

lookup latency

Consistent average
path length

38 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Chord: Performance

Lookup latency (number of hops/messages):
~ 1/2 log2(N)

Confirms theoretical
estimation

Number of Nodes

Lo
ok

up
 P

at
h

Le
ng

th

39 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Chord: Summary

Complexity
Messages per lookup: O(log N)

Memory per node: O(log N)

Messages per management action (join/leave/fail): O(log² N)

Advantages
Theoretical models and proofs about complexity

Simple & flexible

Disadvantages
No notion of node proximity and proximity-based routing optimizations

Chord rings may become disjoint in realistic settings

Many improvements published
e.g. proximity, bi-directional links, load balancing, etc.

40 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Pastry: Overview

Similar to Chord: Organises nodes & keys in a ring of
flat hash IDs 0 ≤ ID ≤ 2128 -1

Uses prefix-based routing:
Interprets identifiers as digit strings of base 2b, b ≈ 4

Routing according to “longer prefix match”

Result: routing down a tree

Routing table built according to proximity selection

enhanced routing efficiency due to locality

41 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Pastry: Identifier Mapping

Pastry views l-bit identifiers as digit strings of base 2b

Example: l = 4, b = 2

Keys (K..) are stored at
closest node (N..)
according to prefix metric

In case of equal distance
key is stored on both
neighbouring nodes (K22)

42 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Pastry Routing Table

Contains l/b rows (“the range of string lenths”)

2b -1 columns (“the digits”, one represents the node)

Cell position approximates pastry node v within overlay,
using the index transformation (“·” concatenates):

Cell value maps to corresponding network address

As there are several nodes with same prefix match:
topologically closest selected for routing table

Proximity Neighbour Selection (PSN)

43 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Prefix-Match Routing Table

Node ID v = 103220, l= 12, b = 2

0 1 2 3

0 031120 1 201303 312201

1 0 110003 120132 132012

2 100221 101203 102303 3

3 103031 103112 2 103302

4 103200 103210 2 103233

5 0 103221 103222 103223

44 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Routing & Lookup Tables

Three tables:

Routing –
Prefix Match

Leaf Set –
Closest Nodes
in Overlay

Neighbourhood
Set –
Closest Nodes
in phys. Network
according to given metric: RTT, Hops, …

45 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Pastry Routing

Step 1:

Check, if key k is within the range of the leaf set

Request forwarded to closest node in leaf set

Step 2:

For k not in the range of leaf set, lookup routing
table

Try to identify entry with longer common prefix

If not available, route to entry closer to key

Note: Routing is loop-free, as forwarding is strictly done
according to numerical closeness.

46 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Pastry Routing Examples

Node ID v = 103220Key k = 103200

Key k = 102022

Key k = 103000

47 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Pastry: Node Arrival

New node n picks Pastry ID and contacts a Pastry node k
nearby w.r.t the proximity metric

As k is nearby, its neighbourhood set is copied to n
The leaf set is copied from the numerically closest overlay
node c, which n reaches by a join message via k
The join message is forwarded along nodes with
increasingly longer prefixes common to n and will trigger
routing updates from intermediate nodes to n

Finally n sends its state to all nodes in its routing tables
(active route propagation incl. time stamps)

48 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Pastry: Node Failure

Node failure arrives at contact failures of tabulated nodes

Lazy failure detection

Pastry provides several redundancies:

Routing tables may include several equivalent entries

Forwarding may take place to an adjacent entry

Routing & neighbourhood table repair:

Query nodes neighbouring in table rows

If unsuccessful: query entries from previous rows

Lively routing tables are advertised from new nodes

49 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Pastry: Hop Performance

50 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Pastry: Delay Stretch

51 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Pastry: Summary

Complexity
Messages per lookup: O(N)

Messages per mgmt. action (join/leave/fail): O(N)/O(logb N)

Memory per node: O(b · N)

Advantages
Exploits proximity neighbouring

Robust & flexible

Disadvantages
Complex, theoretical modelling & analysis more difficult

Pastry admits constant delay stretch w.r.t. # of overlay nodes, but
depends on network topology – Chord’s delay stretch remains
independent of topology, but depends on overlay size

b2log

b2log
b2log

52 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

CAN: Overview

Maps node IDs to regions, which partition
d-dimensional space

Keys correspondingly are coordinate points in a d-
dim. torus: <k1, …, kd>

Routing from neighbour to neighbour –
neighbourhood enhanced in high dimensionality

d tuning parameter of the system

53 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

CAN: Space Partitioning

Keys mapped into [0,1]d (or other numerical interval)

Node’s regions always cover the entire torus

Data is placed on node, who owns zone of its key

Zone management is
done by splitting /
re-merging regions

Dimensional ordering
to retain
spatial coherence

54 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

CAN Routing

Each node maintains a coordinate neighbour set
(Neighbours overlap in (d-1) dim.
and abut in the remaining dim.)

Routing is done from neighbour to
neighbour along the straight line
path from source to destination:

Forwarding is done to that
neighbour with coordinate zone
closest to destination

55 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

CAN Node Arrival

The new node

1.

Picks a random coordinate

2.

Contacts any CAN node and
routes a join

to the owner of

the corresponding zone

3.

Splits zone to acquire region
of its picked point & learns
neighbours from previous owner

4.

Advertises its presence to
neighbours

56 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Node Failure / Departure

Node failure detected by missing update messages

Leaving gracefully, a node notifies neighbours and
copies its content

On node’s disappearance zone needs re-occupation in
a size-balancing approach:

Neighbours start timers invers. proportional to their
zone size

On timeout a neighbour requests ‘takeover’, responded
only by those nodes with smaller zone sizes

57 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

CAN Optimisations

Redundancy:
Multiple simultaneous coordinate spaces - Realities

Expedited Routing: Cartesian Distance weighted by
network-level measures

Path-length reduction: Overloading coordinate zones

Proximity neighbouring: Topologically sensitive
construction of overlay (landmarking)

…

58 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

CAN Path Length Evaluation

59 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

CAN Path Length Evaluation (2)

60 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

CAN: Summary

Complexity
Messages per lookup: O(N1/d)

Messages per mgmt. action (join/leave/fail): O(d/2 N1/d)/O(2 d)

Memory per node: O(d)

Advantages
Performance parametrisable through dimensionality

Simple basic principle, easy to analyse & improve

Disadvantages
Lookup complexity is not logarithmically bound

Due to its simple construction, CAN is open to many variants,
improvements and customisations

61 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

Implementations / Deployment

Many concepts & implementations …

Storage Systems Content Distribution

Indexing/Naming DB Query Processing, …

Real Deployment:

Public DHT-Service: OpenDHT

Filesharing: Overnet (eDonkey), BitTorrent (newer)

Media Conferencing: P2P-SIP

Music Indexing: freeDB

WebCaching: Coral

Problems: Overload + Starvation, Need Fairness Balance

http://opendht.org/
http://www.overnet.org/
http://www.freedb.org/
http://www.coralcdn.org/

62 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

References

• C.Plaxton, R. Rajaraman, A. Richa: Accessing Nearby Copies of Replicated Objects in a
Distributed Environment, Proc. of 9th ACM Sympos. on parallel Algor. and Arch. (SPAA),
pp.311-330, June 1997.

• I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan: Chord: A Scalable
Peer-to-Peer Lookup Service for Internet Applications. Proc. of the 2001 ACM
SigComm, pp. 149 – 160, ACM Press, 2001.

• A. Rowstron and P. Druschel: Pastry: Scalable, Distributed Object Location and Routing
for Large-Scale Peer-to-Peer Systems. IFIP/ACM Intern. Conference on Distrib.
Systems Platforms (Middleware), pp. 329-350, Springer, 2001.

• S. Ratnasamy, P. Francis, M. Handley, R. Karp: A Scalable Content-Addressable
Network. Proc. of the 2001 ACM SigComm, pp. 161 – 172, ACM Press, 2001.

• F. Dabek et al.: Towards a Common API for Structured Peer-to-Peer Overlays, IPTPS
2003, LNCS, Vol 2735, pp. 33-44, Springer, 2003

	Structured Peer-to-Peer Networks
	Demands of P2P Systems
	The Challenge in Peer-to-Peer Systems
	Unstructured P2P Revisited
	Unstructured P2P: Complexities
	Idea: Distributed Indexing
	Scalability of Distributed Indexing
	Distributed Indexing: Complexities
	Fundamentals of Distributed Hash Tables
	Distributed Management of Data
	Addressing in Distributed Hash Tables
	Mapping Address Space to Nodes
	Routing to a Data Item
	Routing to a Data Item (2)
	Routing to a Data Item (3)
	Data Storage
	Dynamic of a DHT: Node Arrival
	Node Failure / Departure
	DHT Algorithms
	Chord: Overview
	Chord: Topology
	Chord: Topology
	Chord: Topology
	Routing on Ring ?
	Improved Routing on Ring?
	Chord: Routing
	Chord: Routing
	Chord: Self-Organization
	Chord: Failure Tolerance in Storage
	Chord: Failure Tolerance in Routing
	Chord: Failure Tolerance in Routing
	Chord: Node Arrival
	Chord: Node Arrival
	Chord: Node Arrival
	Chord: Node Departure
	Chord: Performance
	Chord: Performance
	Chord: Performance
	Chord: Summary
	Pastry: Overview
	Pastry: Identifier Mapping
	Pastry Routing Table
	Prefix-Match Routing Table
	Routing & Lookup Tables
	Pastry Routing
	Pastry Routing Examples
	Pastry: Node Arrival
	Pastry: Node Failure
	Pastry: Hop Performance
	Pastry: Delay Stretch
	Pastry: Summary
	CAN: Overview
	CAN: Space Partitioning
	CAN Routing
	CAN Node Arrival
	Node Failure / Departure
	CAN Optimisations
	CAN Path Length Evaluation
	CAN Path Length Evaluation (2)
	CAN: Summary
	Implementations / Deployment
	References

