
Ausarbeitung Projekt 1 - WiSe
2010/11

Alexander Knauf

Problem Analysis and Concept for Extending the
MP2PSIP RELOAD Stack

Fakultät Technik und Informatik Faculty of Engineering and Computer Science
Department Informatik Department of Computer Science

Contents i

Contents

1 Introduction 1

2 Analysis of MP2PSIP Stack concerning an Implementation of DisCo 2
2.1 Objective of the Analysis . 2
2.2 The MP2PSIP Project . 2
2.3 Analysis of the RELOAD stack Implementation 6
2.4 Summary . 10

3 Design to Enhance the MP2PSIP RELOAD Stack 12
3.1 Overview . 12
3.2 Message Component . 13
3.3 Generic Usage Interface . 16
3.4 Abstract Storage . 17
3.5 Access Control Policies . 17

4 Conclusion and Outlook 19

References 20

List of Figures 22

Listings 22

1 Introduction 1

1 Introduction

SIP session management is generally built upon a dedicated server infrastructure of SIP prox-
ies and registrars that are used to locate and interconnected the end user devices. The system
performance of the latter and the ubiquitous availability of broadband Internet on flat rates
enabled P2P solutions for several centrally managed services, such as voice and video confer-
encing. This development was recognized by the standardization organization IETF by char-
tering the P2PSIP working group to develop protocols that manage SIP session establishment
in a decentralized P2P fashion. To elaborate and adopt a baseline protocol for P2P storage
and messaging service, the working group is developing the RELOAD base [1] protocol.

Today, a very limited set of implementations of the RELOAD base protocol are available and
are often out of date or incomplete. An advanced implementation of RELOAD is available from
the MP2PSIP Project. The stack is written in the C# programming language and was devel-
oped for a feasibility study by a large German Internet provider. It is designed to demonstrate
how the RELOAD protocol can be used at ISPs to deploy a decentralized SIP session man-
agement infrastructure utilized by mobile devices also running RELOAD as client. The stack
implementation covers most of the RELOAD concepts, but has several protocol incompatibili-
ties compared to the standard.

In this document, the current status, architecture and programming techniques of the MP2PSIP
RELOAD stack will be analyzed and a concept to enhance the stack functionalities is pre-
sented. The analysis will show how the RELOAD base specification is realized with the 3rd
generation programming language C#, using several benefits of the large .Net framework.
Furthermore, this document will reveal some erroneously implemented specifications and pro-
poses several refinements within an enhanced concept. The improved MP2PSIP RELOAD
stack should serve as base for the approach of a distributed conferencing (DisCo) scheme with
SIP [2] that provides ad-hoc multiparty conferences managed by its participating peers.

The remainder of this document is structured as follows. Section 2 provides a detailed analysis
of the MP2PSIP project, while section 2.2 gives an overview of the entire stack implementa-
tion. Section 2.3 shows details of the implementation and section 2.4 summarizes the stack
properties including a list of further missing features. In section 3, a concept to enhance the
MP2PSIP project is presented. This document concludes and gives a look on future work in
section 4.

2 Analysis of MP2PSIP Stack concerning an Implementation of DisCo 2

2 Analysis of MP2PSIP Stack concerning an Implementation of
DisCo

2.1 Objective of the Analysis

An alternative approach for centrally manged multimedia conferences is presented by the pro-
tocol scheme for Distributed Conferencing (DisCo) [2]. It distributes the traditional central man-
ager of a multiparty conversation on several independent endpoints that use a common SIP
URI as conference identifier. The DisCo approach is built upon a P2PSIP overlay for REsource
Location And Discovery (RELOAD) [1] used to register the common conference ID. An ad-
vanced implementation of the RELOAD base specification is the MP2PSIP RELOAD Project.
It was designed as a demonstrator by a large German ISP 1 to evaluate the capacities of the
RELOAD base protocol. The objective of this work is to determine whether the MP2PSIP
project could serve as the RELOAD base implementation to implement the DisCo approach
and, if necessary, to present concepts to extend its design. Furthermore, the analysis will
figure out whether MP2PSIP RELOAD is compliant to protocol standards for guaranteeing in-
teroperability to other RELOAD implementations.

2.2 The MP2PSIP Project

Project Overview

The MP2PSIP project is composed of several modules that are build upon the RELOAD pro-
tocol core implementation. Figure 1 shows the main components of the MP2PSIP project and
their dependencies or interactions between them. The RELOAD Class module is the core
component of the project. It implements the RELOAD base [1] protocol and the specification
of the SIP Usage [3] which serves also as test application for the MP2PSIP stack. RELOAD
class is used by the RELOAD MDI and RELOAD Service components. The RELOAD MDI is
a graphical user interface created with the Windows.Forms API [4]. It provides mechanisms
to crate a new RELOAD peers or clients by just clicking a button. It further allows to execute
several RELOAD operations, e.g., join, leave or store and fetch operations. The RELOAD Ser-
vice component can be used as daemon to execute a single RELOAD peer persistently on a
Windows OS. It does not have user interface and is designed to run as a bootstrap node for a
RELOAD overlay instance.

The Chord Monitor tool is an ASP.NET web project and is used to visualize a running RELOAD
overlay. It renders all RELOAD peers and clients on top of a Google map [5] and displays each

1For reasons of confidentiality, the industrial partner will not be named publicly.

2 Analysis of MP2PSIP Stack concerning an Implementation of DisCo 3

RELOAD
Class

RELO
AD

 ServiceRE
LO

AD
 M

D
I

RELOAD Mobile

PJSIP NGA Mobile

Enum
Server

Microsoft
CCR

Secure
BlackBox

Chord Monitor

DNSHTTP

<<uses>> <<uses>>

IPC

Figure 1: Project Overview

predecessor/successor relations and each established transport connection. The resulting
graph arranges all participants of a RELOAD overlay according to the their overlay addresses
in Chord [6] overlay typical ring topology. The monitoring tool obtains its rendering informa-
tion from JSON objects sent from the RELOAD class component at every time a node state
changes or a RELOAD message has been sent.

The RELOAD Mobile component is the mobile variant of the RELOAD core classes. It has sev-
eral modifications and preprocessor directives in the source code that enables the compilation
of the RELOAD stack on Windows Mobile 6.X devices. The mobile RELOAD variant is used
by the PJSIP NGA mobile application. It is a full VoIP application written in C using the open
source PJSIP stack [7] providing a SIP signaling and media library. In contrast to the RELOAD
base protocol that foresees a username/password authentication does the mobile application
use the International Mobile Subscriber Identity (IMSI) to uniquely identify a mobile RELOAD
participant. IMSIs are used in GSM and UMTS networks as unique identifier for a participant
in a mobile network. Mobile clients utilize the telephone number to establish SIP sessions.
Because there exists no protocol standard to use mobile telephone numbers in a RELOAD
overlay, the MP2PSIP uses an ENUM server that maps a telephone number to a SIP URI that
can be registered in the overlay by the SIP Usage [3].

Stack Architecture

The RELOAD specification [1] defines a layered architecture that divides the network stack into
several independent components. The MP2PSIP stack implementation follows this proposition,

2 Analysis of MP2PSIP Stack concerning an Implementation of DisCo 4

Mobile RELOAD Application

PJSIP

Stack

OS

.Net Framework

Network

RELOAD

Message

Transport

Link-Management

Forwarding
MS

CRR

IMSI

SBB -

TLS

PJSIP NGA

Machine

Topology-Plugin

Storage

RELOAD MDI

Figure 2: Architecture of the MP2PSIP RELOAD Stack

but skips the recommendation to separate the storage and Usage modules from the rest of the
protocol stack.

An overview of the stack architecture is given in Figure 2. The implementation is divided into
the mobile application and the desktop variant. Both are using the RELOAD stack including the
SIP Usage. The mobile SIP client and RELOAD MDI applications utilize the RELOAD stack
as abstract storage and messaging service. They communicate with the lower layers through
the Machine component - a background worker that handles user requests asynchronously.
The RELOAD stack itself is composed of a message transport, topology-plugin, storage, for-
warding and link-management components as described in the RELOAD specification [1]. An
additional IMSI module is utilized by the SIP Usage and resolves a mobile subscriber identity
into SIP URIs. The stack uses two external components. The Microsoft Robotics Concur-
rency and Coordination Runtime (MS CCR) [8] library for asynchronous communication and
the SecureBlack Box [9] library to enable a secure communication via TLS.

The MP2PSIP RELOAD project is running on top of the .Net framework, while the mobile SIP
application is natively written in C. Both programs are simply communicating via the Windows
registry for inter process communication. The mobile RELOAD variant listens via a change
event handler whether the mobile SIP client is sending commands using the registry. If it is a
fetch, the RELOAD stack tries to resolve the SIP URI engaging the RELOAD lookup abilities

2 Analysis of MP2PSIP Stack concerning an Implementation of DisCo 5

to retrieve the IP address and port of the called party. The contact information is then stored
as another Windows registry entry, that will be used by the SIP application to create a SIP and
media session. The RELOAD MDI user interface is communicating directly to the RELOAD
stack by reference to the Machine background worker. User commands are queued and will
be processed periodically by the RELOAD stack.

The next lower layer provides the message transport and the topology components. The mes-
sage transport is responsible for creating message bodies and is invoked by the Machine com-
ponent. The topology-plugin provides a generic interface for the key-based routing layer. The
lowest layer of the RELOAD stack provides the forwarding & link-management components.
The former implements the packet forwarding service, while the latter maintains the transport
connections for the routing table. The RELOAD base protocol is designed to be independent
from a concrete overlay algorithm. The enrichment and maintenance of the routing table is
controlled by the upper topology-plugin that is aware of used overlay algorithm. The stack
design allows a seamless exchangeability of the topology-plugin to switch to another routing
algorithm.

Traffic between the overlay peers is transported by the link management module. It frames
the overlay messages within a secure transport protocol. The actual stack implementation can
run over TLS [10] as required by the RELOAD base specification [1], but can also use TCP
for testing and evaluation scenarios. For TLS transport, the RELOAD stack uses the SBB [9]
library to generate and maintain TLS connections.

The message transport, forwarding and link management components are communicating via
the Microsoft CCR [8] that deals with asynchronous operations that are characteristic in a
transactional protocol as RELOAD. Using CRR has the advantage that the forwarding and link
components can be kept loosely coupled, and the stack implementation need not care about
concurrency constraints.

A more detailed description about the implementation and analysis of the MP2PSIP stack
follows in the next section 2.3.

2.3 Analysis of the RELOAD stack Implementation

Initializing the RELOAD Stack

The MP2PSIP RELOAD stack can be initialized by creating a new instance of the
RELOAD.MACHINE class as shown in listing 1. The minimal configuration to run the stack
is a delegate that has a RELOADGLOBALS.TRACEFLAGS enum and string as parameter
and has no return values. The delegate must be set after stack instantiation by setting its
ReloadConfig.Logger property (see line 8 in 1). The delegate implements a trace logger

2 Analysis of MP2PSIP Stack concerning an Implementation of DisCo 6

using the TRACEFLAGS to categorize the logging output, e.g., TRACEFLAGS.T_ERROR
to indicate an internal error or exception. A minimally initialized RELOAD stack will use the
default configuration that instantiates a RELOAD client application that tries to contact the
default enrollment server and bootstrap peer. A detailed stack configuration can be done
through the RELOADCONFIG member variable of the MACHINE class or the RELOADGLOBALS

class that contains static variables.

1 using Lib .RELOAD ;
2 namespace ReloadTest {
3 class Program {
4 s t a t i c void Main(str ing [] args) {
5 Machine machine = new Machine () ;
6 / / Set Logger delegate
7 machine .ReloadConfig .Logger = new ReloadConfig .LogHandler(Logger) ;
8 }
9 void Logger(ReloadGlobals .TRACEFLAGS traces, str ing s) {

10 /∗ Implementat ion o f Logger ∗ /
11 }
12 }

Listing 1: RELOAD machine init

While the former configuration focuses on user dependent properties (e.g., IMSI, SIP URI,
isClient, isPeer) does the Globals class adjust the stack properties, e.g., retransmission timer
or enrollment server address. Those values are partially settings for a specific RELOAD overlay
instance and will be adjusted automatically through an overlay configuration document that is
retrieved at enrollment.

Message Transport

The message transport component is composed of two main modules – the
RELOAD.MESSAGES file and the RELOAD.TRANSPORT class. The Reload.Messages file is
a container for multiple C# classes and structs that represent the messages definitions of the
RELOAD base [1] protocol and the SIP Usage [3] specification. Multiple public classes and
structs within within a single file is in contrast to the C# coding style [11], but an option to
group related classes by their remit. A RELOAD message is represented by RELOADMES-
SAGE class and is a composition of the ForwardingHeader struct, a RELOAD_MessageBody
class and the SecurityBlock struct. It is implemented as abstract class that contains a sin-
gle instance member variable representing the message code and the two virtual member
methods Dump() and FromReader(). It is a generalization for several classes implementing a
RELOAD_MessageBody. The class hierarchy is shown in figure 3.

2 Analysis of MP2PSIP Stack concerning an Implementation of DisCo 7

+sip_registration: SipRegistration

StoreReqAns

+Dump(writer: BinaryWriter): UInt32

+FromReader(...): RELOAD_Message

+RELOAD_MsgCode: RELOAD_MessageCode

RELOAD_MessageBody

+sip_registration: SipRegistration

FetchReqAns

+m_errmsg: string

+m_errcode: RELOAD_ErrorCode

ErrorResponse

+m_ID: NodeId

JoinReqAns

+m_Id: NodeId

LeaveAnsReq

+m_response_id: UInt64

+m_response_time: UInt64

PingReqAns

+ufrag: Byte[]

+password: Byte[]

+role: Byte[]

+ice_candidates: List<iceCandidate>

+fSendUpdate: Boolean

AttachReqAns

+ufrag: Byte[]

+password: Byte[]

+role: Byte[]

+ice_candidates: List<iceCandidate>

AppAttachReqAns

+m_type: ChordUpdateType
+m_UpTime: DateTime
+m_successors: List<NodeId>
+m_predessors: List<NodeId>
-m_result: RELOAD_ErrorCode

UpdateReqAns

Figure 3: Class hierarchy of RELOAD message body implementations

Implementations of Dump() realize the serialization of the message content in network byte
order and returns the length of the serialized message in bytes. The FromReader implementa-
tion is the corresponding deserialization functionality that returns a new instance of a concrete
reload message body.

By comparing the message body implementations with the RELOAD base specification it can
be recognized that the attributes of STOREREQANS, the FETCHREQANS and PINGREQANS

differ from the proposed standard in the RELOAD base specification [1]. While the ping request
definition is just following a previous draft version, the store and fetch request only contain a
SipRegistration member field. The base specification [1] defines a more generic payload in for
request and corresponding answer messages. As the result, the current implementation does
not implement the RELOAD meta-model and is not capable of creating storing and fetching
requests for other Usages than the SIP registration Usage.

The MESSAGE.TRANSPORT class implements the message transaction model for several pro-
tocol procedures, e.g., flows for joining the overlay or the RELOAD App/Attach procedures. An
interesting programming technique facilitates the interconnection of the message transport with
forwarding and link-management components. The Microsoft Concurrency and Coordination
Runtime (CCR) library [8] provides the handling of the RELOAD messaging protocol. RELOAD
is an asynchronous protocol in a transactional model in which each request get acknowledged

2 Analysis of MP2PSIP Stack concerning an Implementation of DisCo 8

with a corresponding response message. If there are several outgoing requests waiting for
answer that may arrive in another order it can be difficult to handle those concurrencies. The
RELOAD stack leaves this issue to the CCR library. A DISPATCHER class manages OS threads
and balances the dequeue of classes implementing an ITASK interface that are queued within
DISPATCHERQUEUE instance. Tasks can be enqueued using an ARBITER class as shown in
listing 2.

1 reloadSendMsg = create_store_req(new Destination(res_id) , data) ;
2 reloadDialog = new ReloadDialog(m_ReloadConfig, m_flm, node) ;
3 /∗ m_DispatcherQueue i n i t i a l i z e d inc ludes Dispatcher ∗ /
4 Arbiter .Activate(m_DispatcherQueue,
5 new IterativeTask<ReloadMessage, ReloadMessageFilter, int >(
6 reloadSendMsg,
7 new ReloadMessageFilter(reloadSendMsg .TransactionID) ,
8 RetransmissionTime,
9 reloadDialog .Execute)) ;

10 . . .
11 yield return Arbiter .Receive(false , reloadDialog .Done, done => { }) ;

Listing 2: Store request using CCR

The displayed code snippet shows the Store() method of the message transport. The first two
lines just show the initialization of the reload message body (the store request) and a RELOAD
dialog object that allows the stack to follow the message transaction. The Arbiter.Activate()
method in line 4, queues a new instance of an ITERATIVETASK (lines 5 to 9) that obtains the
RELOAD message and a message filter as arguments for the reloadDialog.Execute() method.
An iterative task can be initiated with multiple generic parameters followed by a delegate to a
method that can be invoked by the dispatcher - here reloadDialog.Execute(). The Execute()
method invokes any implementation of the forward and link-management component (e.g.,
TCP or TLS module) to encapsulate the RELOAD message in a transport protocol.

After arbiter activation, the dispatcher will execute the queued iterative task asynchronous to
the invoking thread. Hence, the store method thread shown in listing 2 is not blocked be-
tween the enqueue of the iterative task and its execution by the dispatcher. If the store request
was send and the corresponding answer is received, the ARBITER.RECEIVE() will be activated
through the reloadDialog.done() method. The third argument of the Arbiter.Receive() display
in line 11, could be a delegate or the definition of an anonymous method that is executed af-
ter receive. In this example, it is implemented as an anonymous method that has no further
instructions. Using this programming technique, the implementor need not care about concur-
rent invocations of the lower send methods and an asynchronous message passing can be
implemented just as a call of a static method.

2 Analysis of MP2PSIP Stack concerning an Implementation of DisCo 9

Topology and Storage

The topology-plugin is a concept of the RELOAD base specification that decouples the mes-
saging and storage service from the specific overlay algorithm. The MP2PSIP project fol-
lows the recommendation to maintains routing information in a separate module. The realiza-
tion is implemented within RELOAD.TOPOLOGY.ROUTINGTABLE class that is a nested class of
RELOAD.TOPOLOGY class. It contains several member methods that provide the key-based
routing information, e.g., SetFingerTable() or GetSuccessor(), but also provides methods that
actively manage connections engaging the forwarding & link-management module, e.g., to
populate its routing table if it detects a change in the routing topology. Routing table entries are
implemented as another nested class of RoutingTable. This RTABLEENTRY class contains four
member variables:

icecandidates: This field is a list of ICE candidates that can be used to connect to the remote
party. In contrast to other DHTs that store contact address to an endpoint (IP:Port)
does RELOAD use the ICE protocol [12] for connection establishment. ICE " Provide a
means for two peers to determine the set of transport addresses that can be used for
communication." ([12] p.100).

dt: This field is a DateTime object to save the time of first attach to the remote host.

nodestate: This enum provides the information of remote host if it is unknown, attaching,
attached or if the local host received update messages from the remote endpoint.

pinging: The last member is a boolean flag that indicates whether the remote host is still
pinging – the keep-alive procedure of RELOAD.

The architecture of the MP2PSIP RELOAD stack combines the topology-plugin with the stor-
age into a single component as indicated in figure 2. Data storage is performed by the topology
component by providing each a member method for Store() and Fetch(). They are implemented
as Setter and Getter for the Topology member variable called m_StoredValue that is a dictio-
nary of SipRegistration instances with strings as their keys. Hence, the MP2PSIP RELOAD
stack is only designed to store and fetch values for the SIP registration Usage. A more generic
storage implementation that can handle various types of data including their meta-information
is needed.

Forward and Link-management

The lowest layer seen from the RELOAD architecture are the forwarding and link-management
components. Forwarding is implemented in the RELOAD.FORWARDINGLAYER class. It pro-
vides only the member method ProcessMsg() returning a boolean that indicates if true, that a

2 Analysis of MP2PSIP Stack concerning an Implementation of DisCo 10

received message must be forwarded or, if false, that a received message must be processed
at this peer.

The link-management is more complex. Actually, the MP2PSIP project implements two link-
management variants, the RELOAD.OVERLAYLINK.SIMPLEFLM that works with TCP and the
RELOAD.OVERLAYLINK.RELOADFLM that runs on TLS using the Secure BlackBox [9]. Both
implement the RELOAD.IFORWARDLINKMANAGEMENT interface that is displayed in listing 3.

1 public inter face IForwardLinkManagement {
2 bool Init () ;
3 void Send(Node NextHopNode, ReloadMessage reloadMessage) ;
4 void ShutDown () ;
5 event ReloadFLMEvent ReloadFLMEventHandler ;
6 bool NextHopInConnectionTable(NodeId dest_node_id) ;
7 List<ReloadConnectionTableInfoElement> ConnectionTable { get ; }
8 }

Listing 3: Link-management interface

Apart from the obligatory Init() and ShutDown() functionalities, a forward and link manager
needs to implement a method for Send(), a RELOADFLMEVENTHANDLER to announce incom-
ing message to the upper layers and the CONNECTIONTABLE property. The NextHopInCon-
nectionTable() method seems to be dead source since no other class has any reference to
it. Nevertheless, this interface is highly generic to the upper layers and its implementations
seem to have no obvious bugs. Hence, this analysis will not go deeper into the details of this
component.

2.4 Summary

The MP2PSIP RELOAD project provides several utilities for demonstration purposes like the
Chord Monitor view (see figure 4) or the RELOAD MDI overlay management console. The
RELOAD stack itself implements most of the base protocol specifications [1] to demonstrate
a SIP registration scenario in RELOAD. The possibility to deploy the RELOAD stack onto a
mobile device with a proper SIP client application is a useful feature. Using the Microsft CCR
library to provide the messaging service is an elegant way to handle asynchronous send a
receive processes.

Apart from the missing features described in the stack analysis 2.3 the following RELOAD
properties were out out scope in MP2PSIP project.

2 Analysis of MP2PSIP Stack concerning an Implementation of DisCo 11

Figure 4: Chord monitoring tool

ICE: Although the MP2PSIP RELOAD stack provides several components ready to run Inter-
active Connectivity Establishment (ICE) [12] for NAT traversal an concrete implementa-
tion of ICE is not present. The reason for this is the enormous complexity of the ICE
protocol. A full ICE implementation would have exceeded the time and scope of the
MP2PSIP project.

Certificate & TURN Usages: The base specification [1] defines the two mandatory Usages
for Certification storage and TURN Usage. The certificate Usage stores a user’s cer-
tificate in the overlay thus to avoid the need to send the certificate at each message.
The TURN Usage specifies that a RELOAD peer should advertise itself in the overlay if
its prepared to work as a TURN Server [13]. Because the MP2PSIP RELOAD stack is
limited to store and fetch SIP Registrations, it is consequentially not able to support the
Certificate and TURN Usages.

Access Control Policies: The overlay locations where a RELOAD peer is allows to store data
values is limited by a small set of Access Control Policies. Those policies are most
often bound to a user certificate that permit the storage of data at the Resource Id that
corresponds to the hash over a username or its node ID. The MP2PSIP RELOAD stack
is a good-natured overlay and allows the storage at a peer if the request is addressed
with a resource Id that is in its range.

ConfigUpdate, Stat and Find Messages: The MP2PSIP RELOAD stack does not implement
the ConfigUpdate, Stat and Find messages. ConfigUpdate is used if a peer detects that
another peer’s configuration document is out of date. It then sends a configuration up-
date to that peer. Because the MP2PSIP project is not designed as a productive system
and overlay peers will never run with an out of data configuration the lack of ConfigUp-

3 Design to Enhance the MP2PSIP RELOAD Stack 12

date is not critical. The Stat request is used to retrieve the meta informations (stored
Kinds, lifetime, etc.) at a specific resource Id. Although the RELOAD specification
obliges the Stat request message it is not a critical for demonstration proposes. That
also applies on the lack of a Find request. It is used to discover the resource Ids for
Kinds the requester is interested in.

Although the MP2PSIP project does not implement the entire RELOAD protocol it is a good
candidate for further implementations. By extending the stack with with additional features it
could be the base further implementation of other Usages like the DisCo and Share [2, 14]. In
the following sections, this document will propose several concepts for extending and fixing the
MP2PSIP project.

3 Design to Enhance the MP2PSIP RELOAD Stack

3.1 Overview

The design objective for enhancing the functionalities of the MP2PSIP RELOAD stack is to
enable a seamless implementation of further Usage requirements. This can be achieved by
setting an abstract Usage layer on top of the stack architecture and a re-implementation of the
components that were exclusively designed for a SIP usage. An adapted message component
must be able to create, store, and fetch requests that contain any kind of application data. A on
top Usage interface must enable a seamless implementation of new Usages without the need
to adapt the lower protocol logic. The storage of data values must be migrated into a separate
module and has to be enabled for the storage of data from various applications. By looking
onto future implementations of the Usages for Shared Resources [14] and Distributed Con-
ferencing [2] that use a non-standard access control policy the enhanced MP2PSIP RELOAD
stack should be enabled to load and enforce Usage-defined access control rules.

3.2 Message Component

A fundamental problem of the MP2PSIP RELOAD stack to enable the implementation of fur-
ther RELOAD Usages is the realization of the message transport component. The classes
that represent the store and fetch operation just allow the transport of SIPREGISTRATION in-
stances. Hence, new request definitions must be enabled to transport data of further RELOAD
Usages and should be conform to the RELOAD base protocol [1]. The re-implementation will
entail a complete re-implementation of all components that are related the RELOAD message
transportation and the Machine component.

3 Design to Enhance the MP2PSIP RELOAD Stack 13

<Usage data>

Usage

<<interface>>

+length: uint32

+storage_time: uint64

+lifetime: uint32

+value: StoredDataValue

+/signature: Signature

StoredData

StoredDataValue

1..*

0..*

+exists: Boolean

+value: opaque[0..2^32-]

DataValue

+index: uint32

+value: DataValue

ArrayEntry
1 1

+key: DictionaryKey

+value: DataValue

DictionaryEntry
1 1

1

1 1

1

1

1
XOR

1

1

Figure 5: StoredData and StoredDataValue

StoredData structure

The new stack design needs to support the data structures that are defined in the RELOAD
base specification [1]. In RELOAD an overlay resource is a container for several RELOAD
Kinds stored under a common resource id. Each Kind belongs to one or more RELOAD Us-
ages that provide an interface for the upper application using RELOAD. The key to realize this
data hierarchy is the implementation of the STOREDDATA structure and its sub-structures as
displayed in figure 5. It carries meta informations like storage time and lifetime of the stored
value, but also contains the more concrete STOREDDATAVALUE structure. As proposed in the
RELOAD specification, each stored data contains a signature element that enables a storing
peer to validate the integrity and provenance of the data. To support all specified data models
a stored data value can be either a dictionary entry, an array entry or just a data value object.
Note, that the former two are also including a data value object but extend it with the either an
index or a dictionary key value.

The StoredData struct will be the new base for message transport as well as for data storage.
The data for each Usage will be encapsulated within the DATAVALUE. In RELOAD, the value
should be encoded as an opaque string. The new stack design will keep this prerequisite while
serializing a message body, but for an easier development, a DataValue object will carry an

3 Design to Enhance the MP2PSIP RELOAD Stack 14

+Dump(writer: BinaryWriter): UInt32

+FromReader(...): RELOAD_Message

+RELOAD_MsgCode: RELOAD_MessageCode

RELOAD_MessageBody

+resourceId: ResourceId

+replica_number: Byte

+store_kind_data: List<StoreKindData>

StoreReq

+kind_responses: List<StoreKindResponses>

StoreAns

+kind: UInt32

+generation_counter: UInt64

+values: List<StoredData>

StoreKindData

1

*

+kind: UInt32

+generation_counter: UInt64

+replicas: List<NodeId>

StoreKindResponse

1
*

Figure 6: Store request / answer messages

instance of a class that implements a USAGE interface. More details about the realization of
Usages are described in section 3.3.

New StoreReq/Ans

In the current design, the message definitions for the store request and the store answer are im-
plemented as a single class carrying a SipRegistration instance. By looking into details, it can
be seen that a store answer will be serialized as an empty message body. Just the RELOAD
message code is set to a StoreAns message. The new message definition for storage foresees
two classes instead of one in the current design as shown in figure 6. Both classes will fur-
ther be realizing the abstract RELOAD_MessageBody class to be compatible to the remaining
stack. The new StoreReq message will have the three attributes Resource ID, Replica_number
and a list over STOREKINDDATA objects. The latter attribute is a meta structure used to store
multiple STOREDDATA objects of a single RELOAD Kind. Hence, in the new design a single
store request can contain multiple data values of several RELOAD Kinds.

The corresponding StoreAns message will be more than just an empty message body. It
will contain a list of STOREKINDRESPONSE objects each acknowledging the corresponding
StoreKindData of the initial store request. It further notifies the requester where the replicas of
the data values have been stored in the overlay.

3 Design to Enhance the MP2PSIP RELOAD Stack 15

+Dump(writer: BinaryWriter): UInt32

+FromReader(...): RELOAD_Message

+RELOAD_MsgCode: RELOAD_MessageCode

RELOAD_MessageBody

+resourceId: ResourceId

+specifiers: List<StoredDataSpecifier>

FetchReq

+kind_responses: List<FetchKindResponse>

FetchAns

+kindId: UInt32

+generation: UInt64

+length; UInt16

+keys: List<string>

StoredDataSpecifier

+first: Int32

+last: Int32

ArrayRange

1

* 1

*

+kind: UInt32

+generation: UInt64

+values: List<StoredData>

FetchKindResponse

1

*

Figure 7: Fetch request and answer messages

New FetchReq/Ans

The design for the new FetchReq and corresponding answer message are also following the
RELOAD base specifications as shown in figure 7. A FetchReq contains the resource ID
been requested and a list of STOREDDATASPECIFIERS. Dependent on the data model of the
requested RELOAD Kind such data a specifier is a query for a list of specific dictionary keys
(or all), one or more ranges of an array or just for the Kind ID if the data model is single value.
The correspondingFetchAns message then contains a list of FETCHKINDRESPONSE objects for
each requested Kind. Each is carrying the result set in form of a list of stored data objects.

3.3 Generic Usage Interface

The objective while extending the RELOAD stack is to provide an abstract messaging and
storage service that can be used by a variety of applications. To enable the extensibility of
the MP2PSIP RELOAD stack for further Usage implementations, the new design adds a new
Usage layer on top of the stack architecture. It mainly consists of two components, the Usage
interface and the Usage manager as displayed in figure 8. The Usage interface specifies
several operations that are required by the stack to handle a concrete Usage. For example, a
Usage instance must know how to serialize and deserialize its Kind data or which application
procedure must be performed after successful retrieval of the stored data value. In addition to
the RELOAD specification, each instance of Usage must specify a USAGECODEPOINT value

3 Design to Enhance the MP2PSIP RELOAD Stack 16

+Init(machine: Machine): void

+RegisterUsage(usage: Usage): void

+CreateUsage(...): Usage

+FromReader(...): Usage

+AppProcedure(kindResponse: FetchKindResponse)

+localNode: Node

+transport: MessageTransport

+m_DispatcherQueue: DispatcherQueue

+arrayManager: ArrayManager

+usages: Dictionary<UsageCodePoint, Usage>

UsageManager

1

* Registers

+AppProcedure(kindResponse: FetchKindResponse, ...)
+Create(type: int, arguments: param string): Usage
+Dump(writer BinaryWriter): UInt32
+FromReader(...): Usage
+Encapsulate(kind: UInt32, exists Boolean): StoredDataValue
+Kinds(): UInt32
+DataModel(kind: UInt32): DataModel

+codePoint: UsageCodePoint

Usage

<<interface>>

ConcreteUsage

Implements

Figure 8: Usage manager- a factory pattern

that is unique within the stack implementation. It will be used by the USAGEMANAGER class to
identify each Usage. It is needed because an identification by the Kind Id might not be unique
at all times, since a RELOAD Kind can be reused by several Usages.

The Usage manager class is designed as a factory pattern. It is a producer and consumer,
respectively, interpreter of instances implementing the Usage interface. Therefore, it provides
the two methods CreateUsage() and FromReader(). While the former one is used to create
new Usage instances from the upper application layer, does FromReader() select the correct
Usage.FromReader() method on incoming RELOAD requests. The lower message transport
component must not be aware of the concrete deserialization procedure for a incoming Us-
age data. Rather, it just delegates this problem to the Usage manger class. The concrete
implementations of Usage are registered at instantiation of the RELOAD stack. Therefore, its
RegisterUsage() method takes an instance of Usage as argument to obtain a prototype im-
plementation. Those are stored in a dictionary in which the key is the Usage code point. The
registration mechanism could also be used to re-register new Usages at runtime using dynamic
class loading functionalities of the .Net framework.

3.4 Abstract Storage

The storage of data values must be handled transparent to the concrete RELOAD Kind that
will be stored. As described in section 2.3 the current stack design is limited to the storage
of SipRegistration objects and is implemented within the topology-plugin. The new design
foresees a separate STORAGEMODULE that is a manager of multiple RESOURCE objects as
shown in figure 9. The storage module provides a dictionary of Resource object using the
resource id as dictionary keys. The storage module mainly provides the two base operations of

3 Design to Enhance the MP2PSIP RELOAD Stack 17

+Store(resId: ResourceId, kindData StoreKindData): void
+Fetch(resId: ResourceId, specifier: StoredDataSpecifier,
 out: FetchKindResponse): bool
+...

-resources: Dictionary<string, Resource>

StorageModule

+AddStoredData(kind: UInt32, storedData StoredData, generation: UInt64)
+GetStoredData(specifier: StoredDataSpecifier): List<StoredData>
+...

+resourceId: ResourceId

+storedSingleData: Dictionary<UInt32, StoredData>

+storedArrays: Dictionary<UInt32, List<StoredData>>

+storedDictionaries: Dictionary<UInt32, Dictionary<string, StoredData>>

+generation: Dictionary<UInt32, UInt64>

Resource

1 *

Figure 9: Storage module carrying Resource objects

of storing new resources by processing the incoming STOREKINDDATA objects and returning
the stored data on receiving a fetch request. The RELOAD storage concept foresees the
storage of multiple different Kinds at a single resource ID. This demand will be realized by
definition of the Resource class that provides a separate dictionary for each RELOAD data
model. The keys to these Resource objects values are UInt32 values representing the Kind ID.
The dictionaries that are storing values of the array data model are themselves carrying a lists
of STOREDDATA objects. For values that are stored as dictionary entries, the corresponding
container is storing a separate dictionary for each RELOAD Kind. To maintain the generation
counter for each stored RELOAD Kind each Resource object provides an additional dictionary
storing the generation counter.

3.5 Access Control Policies

The RELOAD base protocol [1] defines a set of rules that control the permission to write at a
specific overlay location called Access control policies. New Usages may define new access
control policies for their Kind definitions. Hence, the design for the implementation of those
policies should generic and expendable. Similar to the design for the Usages 8 will the pro-
posed access control component use a kind of a factory pattern as shown in figure 10. An
AccessController class maintains a set of classes implementing an AccessControlPolicy in-
terface. By contrast to the Usage manager does the corresponding ACCESSCONTROLLER not
create instances of ACCESSCONTROLPOLICY objects. Instead, it chooses which policy must
be applied and engages the concrete policy object on an inbound store request. It will just
return a boolean value indicating whether the requester is permitted to store at this peer and
whether the carried data values need to be stored by this peer.

The logic of Access control policy instance can be implemented in two variants. First, as C#
code or, second, as embedded ECMAScript. The former variant can be used to the four ac-
cess policies standardized in the base draft [1]. The latter one, for additional policies defined
by Usages. This approach is useful to implement the recommendation to distribute new access

3 Design to Enhance the MP2PSIP RELOAD Stack 18

+requestPermitted(message: ReloadMessage): boolean
+valuePermitted(resId: ResourceId, value: StoreKindData): boolean
+fromConfig(controlBlock: overlayAccessControlCode) AccessControlPolicy
+...

+name: string

AccessControlPolicy

<<interface>>

+RegisterPolicy(policy: AccessControlPolicy): void
+requestPermitted(message: ReloadMessage): boolean
+valuePermitted(resId: ResourceId, value: StoreKindData): boolean

-topology: Topology

+policies: Dictionary<string, AccessControlPolicy>

AccessController

*

1

ConcretePolicy

Figure 10: Access Control Policies and Controller

control policies within the overlay configuration document [15]. While parsing the XML docu-
ment the additional policies can be registered at the access controller. Several .Net wrapper
exists to execute ECMAScript code within a C# program and could be used for this purpose.

4 Conclusion and Outlook 19

4 Conclusion and Outlook

This document analyzed the implementation of a RELOAD stack that might be a candidate
for further implementations of the distributed conferencing scheme DisCo [2]. DisCo proposes
an alternative for central managed conferences where several participants are maintaining the
signaling relations for a multiparty conference. The analyzed MP2PSIP project is designed as
a demonstrator for a mobile VoIP application that uses the RELOAD specifications [1] for dis-
covering the contact address of the remote endpoint. The MP2PSIP stack implements many
aspects of the RELOAD protocol and provides a messaging and storage service. At second
glance, however, the RELOAD stack implementation has several deficits. In its current state,
it is not capable to serve any other applications than the SIP Usage [3]. This is caused by
the message transport component whose stack operations for storing and fetching are imple-
mented exclusively for a SIP registration usage. Additionally, the MP2PSIP project does not
provide a mechanism to implement further Usages.

This document proposed a concept to enhance the functionalities of the MP2PSIP RELOAD
stack. The extensions are designed to add an additional Usage layer on top of the stack archi-
tecture. A renewed message component will implement the message structures as defined in
the RELOAD base draft and allows the transportation of various Usage specific data values.
A new Usage interface and a Usage manager component designed as a factory pattern will
allow a straightforward implementation of new Usages. A new storage module is a container for
StoredData objects that carries any Usage specific data structures. Another RELOAD demand
in scope of the MP2PSIP extension is the implementation of the access control polices. A new
module will handle the provenance and integrity checks of incoming store requests.

The MP2PSIP RELOAD stack could be the base for further implementation of new Usages.
The focus is to implement the Usages for Shared Resource (ShaRe) [14] and the DisCo Usage
[2]. These Usages will be the base for a P2P conferencing application in a tightly coupled
model. It will demonstrate that a P2P conference managed by several independent peers
provides a better scalability and resilience than a central managed solution.

References 20

References

[1] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset, and H. Schulzrinne, “REsource LOca-
tion And Discovery (RELOAD) Base Protocol,” Internet-Draft – work in progress 13, IETF,
March 2011.

[2] A. Knauf, G. Hege, T. Schmidt, and M. Waehlisch, “A RELOAD Usage for Distributed
Conference Control (DisCo),” Internet-Draft – work in progress 02, IETF, March 2011.

[3] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset, and H. Schulzrinne, “A SIP Usage for
RELOAD,” Internet-Draft – work in progress 05, IETF, July 2010.

[4] “Windows Forms.” http://msdn.microsoft.com/de-de/library/dd30h2yb.aspx, 2011.

[5] “Google Maps API.” http://code.google.com/intl/de-DE/apis/maps/, 2011.

[6] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A scalable
peer-to-peer lookup service for internet applications,” in SIGCOMM ’01: Proceedings of
the 2001 conference on Applications, technologies, architectures, and protocols for com-
puter communications, (New York, NY, USA), pp. 149–160, ACM Press, 2001.

[7] “PJSIP Stack.” http://www.pjsip.org/, 2011.

[8] “Microsoft Robotics - Concurrency and Coordination Runtime (CCR).”
http://msdn.microsoft.com/en-us/library/bb905470.aspx, 2010.

[9] “SecureBlackbox Suite.” http://eldos.com/sbb/, 2011.

[10] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” RFC
5246, IETF, August 2008.

[11] “CSharp Coding Style Guide.” http://www.csharpfriends.com/articles/-
getarticle.aspx?articleid=336#2, 2005.

[12] J. Rosenberg, “Interactive Connectivity Establishment (ICE): A Protocol for Network Ad-
dress Translator (NAT) Traversal for Offer/Answer Protocols,” RFC 5245, IETF, April 2010.

[13] R. Mahy, P. Matthews, and J. Rosenberg, “Traversal Using Relays around NAT (TURN):
Relay Extensions to Session Traversal Utilities for NAT (STUN),” RFC 5766, IETF, April
2010.

[14] A. Knauf, G. Hege, T. Schmidt, and M. Waehlisch, “A Usage for Shared Resources in
RELOAD (ShaRe),” Internet-Draft – work in progress 00, IETF, March 2011.

[15] M. Petit-Huguenin, “Configuration of Access Control Policy in REsource LOcation And
Discovery (RELOAD) Base Protocol,” Internet-Draft – work in progress 01, IETF, March
2011.

References 21

[16] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Han-
dley, and E. Schooler, “SIP: Session Initiation Protocol,” RFC 3261, IETF, June 2002.

List of Figures 22

List of Figures

1 Project Overview . 3
2 Architecture of the MP2PSIP RELOAD Stack 4
3 Class hierarchy of RELOAD message body implementations 7
4 Chord monitoring tool . 11
5 StoredData and StoredDataValue . 13
6 Store request / answer messages . 14
7 Fetch request and answer messages . 15
8 Usage manager- a factory pattern . 16
9 Storage module carrying Resource objects 17
10 Access Control Policies and Controller . 18

Listings

1 RELOAD machine init . 6
2 Store request using CCR . 8
3 Link-management interface . 10

	1 Introduction
	2 Analysis of MP2PSIP Stack concerning an Implementation of DisCo
	2.1 Objective of the Analysis
	2.2 The MP2PSIP Project
	2.3 Analysis of the RELOAD stack Implementation
	2.4 Summary

	3 Design to Enhance the MP2PSIP RELOAD Stack
	3.1 Overview
	3.2 Message Component
	3.3 Generic Usage Interface
	3.4 Abstract Storage
	3.5 Access Control Policies

	4 Conclusion and Outlook
	References
	List of Figures
	Listings

