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1 Introduction

1.1 Motivation

Multimedia conferences are traditionally build on a centralized model in which a single entity
maintains the signaling relations to all participants [1]. In a multimedia conference using the
Session Initiation Protocol (SIP) [2] for signaling, the central entity is called focus. A conference
focus must be uniquely identified by a SIP URI and SIP requests to this URI are exclusively
routed to that focus [1]. A common deployment of this scenario meeting the latter require-
ment is a dedicated server infrastructure that provides a reliable conferencing service to its
clients. A conference URI can be requested from a dedicated focus that may further invite
user agent clients to a new ad-hoc conference [3]. The distribution of the conference media is
often handled by the provider of the conference service using a dedicated multimedia server
that is designed to guarantee an appropriate media quality. The maintenance of a dedicated
conferencing infrastructure is expensive and typically provided by a third party hosting its par-
ticipants. A conferencing solution for P2P scenarios that scales up to the size of conferences
supported by a dedicated infrastructure is missing.

An alternative approach for multimedia conferencing is introduced by the RELOAD Usage for
Distributed Conferencing (DisCQO) [4]. A single multiparty conference is hosted by multiple
independent entities called focus peers that use a common SIP URI as their identifier. The
conference URI is registered at a REsource Location And Discovery (RELOAD) [5] overlay.
RELOAD is designed as a distributed alternative to the SIP proxy/registrar infrastructure [2], in
which SIP records can be stored in a trustworthy P2P overlay using a central authority only for
peer authentication.

To implement a conferencing environment using the DisCo protocol scheme, it is a precondition
to have an advanced RELOAD implementation. In previous works we [6] presented an analysis
and the design to enhance the MP2PSIP RELOAD stack. This document is dedicated to the
implementation of the concept and evaluation of the RELOAD stack by measuring the temporal
behavior of the main overlay functionalities.

1.2 Objectives

The original implementation of the MP2PSIP RELOAD stack was designed as a demonstrator
for a RELOAD overlay that serves as a mobile VoIP application. The result was a RELOAD im-
plementation that was limited to the SIP Usage for RELOAD [7] to enable storage and retrieval
of SIP records. The data storage protocol of RELOAD, however, specifies a meta-model pro-
viding all necessary headers and attributes to process any message body. The rest of the PDU
is reserved for the application specific data called RELOAD Kinds. The initial implementation
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of the data storage of the MP2PSIP RELOAD stack has tied the meta-model of RELOAD to the
data model of the SIP registration Kind. Consequentially, the MP2PSIP implementation was
not enabled to serve any other application data as a storage service, since the required meta-
data structures were inseparable bound to the SIP registration. The concept for extending the
MP2PSIP projects proposed the re-implementation of data storage compliant to the RELOAD
specifications. Additionally, the architecture of the stack will be extended by a new interface to
the upper applications allowing seamless implementation of new RELOAD Usages. A further
re-implementation of the RELOAD access control model will enable us to enforce standard
access control policies, as well as access policies specified by other Usages. All extensions
are improving the compatibility with the RELOAD protocol and create an advanced basis for
implementing the DisCo approach [4] and its associated Usage for Shared Resources (ShaRe)

[8].

The reminder of this document is structured as follows. Section 2 constitutes the principle part
of this document by starting with an overview 2.1 and the new proposed architecture in section
2.2. Section 2.3 presents a detailed description of the implementation of the new components
and section 3 evaluates the achieved results. This document concludes and gives an outlook
into future work in 4.

2 Implementation of MP2PSIP Extensions

2.1 Overview

The previous analysis [6] of the MP2PSIP project has shown that the stack implementation
lacks components that are specified in the RELOAD base draft. This analysis further pre-
sented a concept for enhancing the MP2PSIP project and proposed the re-implementation of
several components that are indispensable for a implementation of the RELOAD Usage for
DisCo [4]. The following components were identified as insufficient or missing and require re-
implementation meet the MP2PSIP RELOAD stack to meet the requirements of the RELOAD
Usage for DisCo:

Message Transport: The previous implementation of the message transport component was
limited to operations for storage and lookup of SIP registrations [7]. The meta-model
of the RELOAD storage protocol is bound to the data structures of the SIP registration
Kind.

Application Layer: The previous MP2PSIP RELOAD stack did not provide any kind of inter-
face to implement new RELOAD Usages. The entire stack design is exclusively confined
to the on a SIP usage.
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Storage: The previous implementation of the MP2PSIP RELOAD stack just allows the data
storage of SIP records. There exists no generic mechanism for other data types nor an
implementation of RELOAD Resource/Kind model.

Access Control: The previous implementation of the MP2PSIP RELOAD stack did not im-
plement the access control model of RELOAD. Peers were allowed to storage values at
every overlay locations.

DHT Routing: The previous RELOAD stack does not implement a proper Chord routing ta-
ble based on a finger table. Even though a finger table structure exists, its fingers are
never initialized with addresses of the corresponding overlay peers and thus not used for
routing.

Even though the MP2PSIP project is extended by several new functionalities as presented
along this document, it is not a full RELOAD implementation. The following protocol specifica-
tions of RELOAD are out of scope of this implementation:

ICE Implementation: RELOAD specifies the usage of the Interactive Connectivity Establish-
ment (ICE) protocol for NAT traversal. A full implementation of ICE would be well beyond
scope.

TURN and Certificate Usage: RELOAD specifies the implementation of the two default Us-
ages for TURN and certificate storage. Both are not required to implement the DisCO or
ShaRe Usages and hence left out of scope.

Config Update Message: RELOAD specifies a ConfigUpdate message used to reconfigure
the RELOAD overlay configuration document if a peer detects an out dated configura-
tion of another peer. In the deployment scenarios for this RELOAD stack, there will be
probably no case in which the overlay peers have different versions of the configuration
document and hence an implementation of the ConfigUpdate request is not necessary.

2.2 Extended Architecture

A major challenge while extending the MP2PSIP project pose the integration of the new
functionalities in the stack architecture without exchanging the entire business logic. This is
achieved by the Usage Manager component added on top of the RELOAD stack and below
the applications calling it. The resulting stack architecture is shown in figure 1. Applications
using the RELOAD stack are on the top layer of the software architecture. Currently, there are
application invoking the stack. The RELOAD MDI management console that enables the em-
ulation of multiple RELOAD peers through graphical user interface and the RELOAD console
client. The latter is an extension explicitly designed for an automated execution by a script
language like bash-script or python. It can be used for measurement and evaluation processes
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Figure 1: Extended architecture of the RELOAD stack

that need to be repeated for multiple iterations. The RELOAD stack can be initialized from the
console with several arguments to instantiate RELOAD peers or clients with different execution
behaviors.

Applications can inquire on the supported RELOAD Usages through the lower Usage manager
component. For example, a graphical user interface could render several menu items to pro-
vide services belonging to a specific RELOAD Usage. To use the RELOAD messaging and
storage service, each application must have a reference to the Machine component which is
the background worker waiting for user commands. Commands are passed to the stack as a
list of string arguments with a preceding Usage identifier. The identifier is not proposed in the
RELOAD specification, but facilitates the interpretation of the user commands. On incoming
commands, the machine then utilizes the Usage manager to instantiate a concrete Usage ob-
ject with the given arguments. Another reference exists between the message transport and
the Usage manager. On receiving a store request, the message transport passes the received
byte stream to the Usage manager that will unmarshal the stream to a specific Usage object
representing the application data.

Furthermore a new Storage module is added to the RELOAD stack. In the previous stack
design, the storage component was integrated into the topology plugin and was just enabled
to store SIPRegistration objects. The Storage module is now separated and is invoked by the
message transport. It maintains StoredData objects which are container for Usage objects
including their meta data.
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2.3 Re-implementation of MP2PSIP Components
2.3.1 Reload.Machine

The Reload.Machine class is the central component to interconnect the applications with the
RELOAD stack logic. The Machine class got adapted while implementing the MP2PSIP exten-
sions to provide the new functionalities to the upper application.

In the previous stack design, user commands were passed to the RELOAD stack via a void
SendCommand(cmd: String) method of the Machine class. The string argument contains the
desired RELOAD operation (e.g., "Fetch", "Store") in plain text and a whitespace separated
argument thus the resource name of a SIP registration being stored. The commands were
added into a command queue which was continuously read out by the Machine. This design
has two deficits, first, it just allows transport of single Kind data per Store or Fetch request and,
secondly, just allows a single argument for the Kind to be created.

The enhanced Machine component separates the enqueue of user commands from their in-
vocation by the RELOAD stack. To remain compatible to the previous stack design, the Send-
Command() method changed to another functionality. Instead to enqueue a single user com-
mand, it pushes previously gathered user commands into the command queue. User com-
mands are now gathered through a new GatherCommand() method whose header is shown in
listing 1.

// Gathers user commands

public void GatherCommands(string cmd, UsageCodePoint ucp, int type, <
params

object[] args)

Listing 1: GatherCommand() method header

Its command string identifies the desired RELOAD operation, a unique code point selects the
desired Usage, an integer that indicates a specific type of a Usage. The last argument is a
var arg object whose elements carry the Usage specific data. To send a RELOAD operation,
a developer passes the RELOAD Kind data by calling the GatherCommand() method for each
Kind needed by a Usage and calls the SendCommand() to enqueue these commands.

2.3.2 Message Transport

A major task while extending the MP2PSIP project was the re-implementation of the Mes-
sage Transport component. The focus was to re-implemented the message struct definitions
of RELOAD. Simple data definitions like DataValue or ArrayEntry are implemented as public
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C# structs. Meta data structures like StoredData, StoredDataSpecifier, StoreKindData and
StoredDataValue are implemented as classes with several public constructors and member
properties. For example, the StoredData class has a property for each data field defined in
the RELOAD base document (cf. [5]-15 p. 81) and two constructors. One used by the cre-
ator of a StoredData object and another used by the receiver of a byte stream containing a
StoredData.

As proposed in the extension concept [6], the re-implementation of the Store and Fetch op-
erations split each message into a request and an answer message. Furthermore, the mes-
sage content does now follow the definitions in the RELOAD base protocol. This redesign
caused a full re-implementation of the message transport component. However, to keep the
new StoreReg/Ans and FetchReqg/Ans classes complaint to the remaining stack implementa-
tion, both messages still implement the abstract RELOAD_MessageBody class that obliges
to realize the Dump() and FromBytes() methods. As an example, the implementation of the
StoreReq.Dump() method is given in listing 2. It shows how a store request is serialized to a
byte stream in network byte order.

public override UInt32 Dump(BinaryWriter writer) {
UInt32 length = 0;
writer.Write(HostToNetworkOrder ((short)Store_Request));
writer.Write(HostToNetworkOrder ((int)length));
length += WriteOpaqueValue(writer, resourceld.Data, OXFF) ;
writer.Write((Byte)replica number) ;
length += 1;
foreach (StoreKindData kind in store_kind data) ({
writer.Write(HostToNetworkOrder ((int)kind.kind));

length += 4;
writer.Write(HostToNetworkOrder ((long)kind.generation_counter)) ;
length += 8;

foreach (StoredData storedData in kind.values) ({
writer.Write(HostToNetworkOrder ((int)storedData.Length));
length += 4;
writer.Write(HostToNetworkOrder((long)storedData.StoreageTime)) ;
writer.Write(HostToNetworkOrder((int)storedData.LifeTime));
storedData.Value.Dump(writer) ;
storedData.Value.GetUsageValue.dump(writer) ;
length += storedData.length;

}

return length;

}

Listing 2: Example: Implementation of StoreReq.Dump()
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The argument of Dump() is a BinaryWriter that contains the entire byte stream of the serialized
RELOAD message. Lines 3, 5 and 6 show how the message type, the Resource Id and the
replica number are set. The instruction in line 4 just reserves space to further set the length of
the entire message body after its serialization. The serialization of all StoreKindData objects
commences at line 8. Each StoreKindData is representing a single RELOAD Kind that will
be sent within this request. A StoreKindData can contain several data values to be stored.
Those are represented by StoredData objects whose serialization is shown beginning at line
13. Line 18 and 19 show the generic part of the Dump() implementation. A store request
does not care about the data model nor the type of Usage been stored. The value contained
in a StoredData has its own storedData.Value.Dump() method (line 18) that is aware how to
serialize itself. Likely in line 19, the Usage object contained within a StoredDataValue is aware
how to serialize the concrete Usage object to bytes. Finally, the Dump() method returns its own
length to the instance that invoked it and the serialization of the store request message within
the BinaryWriter object.

The transaction handling of RELOAD messages is realized within the Reload.MessageTransport
class. To implement the abstract transport concepts, several members of this class were mod-
ified or re-implemented. Accordingly, the methods for store, inbound store, fetch, inbound
fetch and the procedure for key handover got adapted. Figure 2 shows the transition from
the previous to current method headers. The Store, Fetch and OnFetchedData are taking
the new classes StoreKindData, StoredDataSpecifier and FetchKindResponse as arguments.
The boolean remove flag of the previous Store method is replaced by an exists flag. This
semantical change enables to store non-existent values whose Kind data is empty but explicitly
signed by its owner. The OnFetchData method of the previous stack version had performed
the application procedure of the SIP Usage to obtain the contact of the called party. The
re-implemented OnFetchData is just a single instruction calling the UsageManager class and
passes the FetchKindResponse argument to the manager. The latter is enabled to select the
corresponding application procedure depending on the received Kind data. A more detailed
description of the UsageManager component is presented in following section 2.3.3.

Headers of inbound operations
are equal to preview version

MessageTransport (previews) MessageTransport (current)
+Store(sipUrl: string, destUrl: string, remove: bool) +Store(resName: string, kindData: List<StoreKindData>)
+Fetch(sipUrl: string) +Fetch(resName: string, specifiers: List<StoredDataSpecifiers>)

+OnFetchedData(resld: Resourceld, sr: SipRegistration) +OnFetchedData(resld: Resourceld, fetchKindResp: FetchKindResponse)

Figure 2: Adaption of Store and Fetch transactions
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2.3.3 Usages

The extension of the MP2PSIP RELOAD stack allows a variety of different applications to use
this stack as a messaging and storage service. A developer intending to use RELOAD just
needs to implement the abstract Usage layer on top of the stack architecture. As proposed
in the concept document [6], the Usage layer consists of the UsageManager class and the
implementation of a Usage interface. The implementation of the Usage manager is kept mostly
very simple since the application specific procedures must be known by classes realizing a
RELOAD Usage. Two code snippets 3 of the Usage manager show the simplicity of the Usage
manager. It is designed as a factory pattern where new Usages can registered and afterwards
created.

public void RegisterUsage(Usage usage) {
if (usage == null)
throw new ArgumentNullException("Usage reference is null");
usages.Add(usage.CodePoint, usage);
}
public Usage CreateUsage(UInt32 usageCode, int? type,
params string[] arguments) {
if (type == null && arguments == null) {
return usages|[usageCode];
1
return usages[usageCode].Create(type, arguments) ;

}

Listing 3: Examples: Implementation of UsageManager

Lines 1 to 5 show the registration functionality. First, a simple check if Usage argument is not
a null reference and then the new Usage got added into the dictionary of registered Usages.
The registered Usage object is an empty instantiation of a concrete Usage implementation and
serves as prototype for the manager component.

Lines 6 to 12 show how an already registered Usage can be instantiated using the Crea-
teUsage() method. The if statement in line 8 checks if there are enough arguments and, if
not, returns a empty instance of the concrete Usage demanded. Otherwise, the manager re-
turns a new instance containing the passed arguments by using the concrete Usages’ Create()
method.

The objective using a factory pattern design is to enable a seamless implementation of further
RELOAD Usages without the need to adapt the RELOAD core implementation. Hence, the
Usage interface that must be implemented by further applications using RELOAD demands a
lot of functionalities as presented in the concept document [6]. A condition that is not covered by
the Usage interface is the demand that a Usage class must have at least a public constructor
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taking a reference to the usage manager as argument. It is used only for registration of a
concrete Usage at the manager component. Currently, the RELOAD stack has three classes
implementing the Usage interface, the SipRegistration, the Usage for Shared Resources [8]
and the DisCoRegistration class.

2.3.4 Storage Module

The implementation of the new Storage Module is designed to handle StoreKindData object
from inbound store requests and StoreDataSpecifier on inbound fetch requests. This simplifies
its invocation from the message transport component since it just passes the retrieved mes-
sage payload to the storage component. Internally, for each retrieved data that have a common
overlay address a new Resource object will be created and stored. Each StoreKindData is dis-
assembled into a RELOAD Kind-Id, the data to be stored itself and the generation counter for
this RELOAD Kind. In this way, the storage module provides all necessary meta data about a
stored data value for maintenance, e.g., a periodical check whether the life tome of a stored
data is expired.

2.3.5 Access Control Policies

A RELOAD concept called access control policies (ACP) was out of scope in the previous
MP2PSIP project. ACPs specify a set of rules that control whether retrieved data values from
an incoming store request are permitted to be stored at an overlay location. As proposed in
the concept paper [6], a factory pattern implements the access control policies in the extended
MP2PSIP project. The implementation access control policies slightly differs from the proposed
design. The verification of origin of an entire inbound message is implemented as part of the
AccessController class and not within a concrete instance of an AccessControlPolicy interface.
The operation to verify an entire RELOAD message is independent of the internal object it
carries. A recipient of a RELOAD message must verify a signature and the authorization
certificates contained within the message. The signature over the message is computed over
the overlay name, transaction ID of the message, the message payload and the Signeridentity
structure. Each certificate retrieved from inbound messages is stored as opaque string in a
dictionary using hash of the signer identify value as key.

The four default access control policies specified in the RELOAD base document [5] which are
NODE-MATCH, USER-MATCH, USER-NODE-MATCH and NODE-MULTIPLE are realized as
a native C# implementation of an AccessControlPolicy interface. As an entire store request
is parsed and verified, the internal StoreKindData objects are forwarded the AccessController
class. Depended on the carried RELOAD Kind and its defined ACP, the controller chooses the
corresponding AccessControlPolicy class to verify whether the requester is allowed to store
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data at this peer. The verification is performed by using a Signature class that represents
the corresponding Signature structure defined in RELOAD ([5], p.53). A Signature indicates
the algorithm used to sign a stored data object, contains the Signerldentity object used to
identify the certificate of the creator of a stored data object and, finally, a Signature object that
contains the value of signature. The latter is computed using the resource ID, the Kind ID,
the storage time, the StoredDataValue object and the Signerldentify object both represented
a opaque string. To enforce an ACP, e.g., the USER-MATCH policy, the representing ACP
class requests the AccessController class for the certificate that corresponds to the signer
identity value of the stored data object. The certificate is returned as TEIX509Certificate object
that is the representation of the Secure BlackBox library [9] for a X.509 certificate [10]. If the
rfc822Name attribute of the certificate carrying the username of a RELOAD participant hashes
to the requested resource ID, the verification of the USER-MATCH ACP returns true and the
data object will be stored.

Access control policies that are defined by further RELOAD Usages, e.g., USER-CHAIN-ACL
of ShaRe [8] or NODE-ID-MATCH of ReDir [11], can be loaded at runtime into AccessController
class while parsing the XML overlay configuration document. This approach follows the draft
on Access Control Codes by M. Petit-Huguenin [12] to announce new access control policies
as ECMAScript [13] code. ECMAScript embedded into configuration document contains the
source codes for non-standard ACPs and shall be executed if RELOAD implementations are
not aware of the ACP of a incoming RELOAD Kind.

public void Square(string arg) {
JintEngine engine = new JintEngine() ;
string script = (

@"function square(x) {"+ \\

" return x *x x;"+ \\ JavaScript

O \\
engine.Run(script) ;"

engine.SetParameter("x", arg);
Console.Write(engine.Run("square(x)"));

}

Listing 4: Example: Using Jint lib

The implementation of Access Control Codes in the current MP2PSIP RELOAD stack uses
the Jint library [14]. It provides a light-wight script engine that executes JavaScript source
code on a .Net runtime environment. The sample code snippet in listing 4 shows the general
mode of processing JavaScript in C#. A JintEngine object instantiated in line 2 will be used
to interpret the JavaScript that is defined in lines 3 to 6 as a '+-concatenated string. The
script just calculates the square and is referred to the engine as shown in line 7. By using the
SetParameter() method, the method argument arg is passed as value x to the script interpreter.
Finally, the result will be printed onto the console as shown in line 9.
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To process Access Control Codes, a small EcmaScript library is implemented in an external
JavaScript file. The library realizes those EcmaScripts objects that are specified in [12] and
needed to process the access control codes.

2.3.6 Finger Table

Former implementation:

RELOAD is designed to be independent of the overlay routing algorithm but specifies a Chord
[15] overlay as default routing algorithm. The head developer of the MP2PSIP project car-
ried out a new RELOAD stack revision that included a Chord finger table for efficient overlay
routing.

The evaluation of the RELOAD stack figured out that the Chord routing algorithm was not well
implemented. Overlay messages did not reach their destination if the number of peers joining
a emulated RELOAD overlay was larger than 30 peers. Like in SIP, transmission errors were
caused by exceeding the maximum size of via header entries. RELOAD uses via headers to
enable a recursive routing for response messages following the entires in the via header. The
maximal size of the via header list was exceeded because overlay routing was implemented
as simple ring routing. Hence, if the hop distance between two nodes was greater than the
maximal size of the via header the request messages were dropped.

The primary reason for the inefficient routing was an incorrect use of the Chord finger table
for routing. The stack implements a finger table as a list of FTableEntry objects containing the
following attributes:

Finger: The resource ID of a Chord finger of a peer

Successor: The successor to the finger

dtLastSuccFinger: The time of the last known activity of the successor

pinging: A boolean indicated whether this peer received a ping message from the successor

valid: A boolean indicating whether this finger is still reliable

At instantiation of the RELOAD stack, the finger table is initialized correctly by setting the
FTableEntry.Finger i to localNode.Id + 22 'mod2'?3. Further, the valid finger table entries
were consulted if a peer needs to send/forward a RELOAD message. However, the finger
table entries were never assigned a corresponding successor and thus never used to route a
message. Another problem was the implementation of findSuccessor() method of Chord. The
corresponding FindNextHopTo(key: Nodeld) method of the MP2PSIP RELOAD stack always
returned the immediate predecessor if the destination peer is not in a peers successor or
predecessor list.
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Improved implementation:

The extended MP2PSIP RELOAD stack is now using the correct Chord finger table for routing.
Therefore, the extension add several new functions to the stack:

IsFinger(): This method determines whether the originator of an inbound message should be
listed in the local finger table.

AddFinger(): This method assigns a successor to the corresponding fingers of a peer.

AttachFinger() This procedure is added to the joining procedure of a RELOAD peer. As a
peer is attach to all its succeeding peers, it tries to attach to series of fingers to enrich its
finger table with corresponding successors. This procedure is further called to add new
peers into the routing table if it detects new fingers.

GetClosetPrecedingPeer() This method determines the closest preceding peer to a given
overlay ID. That peers successor will be the next hop to destination. The implementation
of GetClosestPrecedingPeer is shown in listing 5.

private Node GetClosestPrecedingNode(NodeId key) {
List<NodeId> nextHopList = new List<NodeId>();
/* insert all successors into list x/
nextHopList.AddRange (m_successors) ;
/x predecessor is appropriate only if it precedes the given id %/
if (m_predecessors.Count > 0)
foreach (NodeId pre in m predecessors)
if (key.ElementOfInterval (pre, m local _node.Id, false))
nextHopList.AddRange(m_predecessors) ;
/x determine closest preceding finger of finger table x/
Node closetPrecedingFinger = GetClosestPrecedingFinger(key) ;
nextHopList.Add(closetPrecedingFinger.Id) ;
Node closestNode = null;
nextHopList.Add(key) ;
nextHopList = removeDuplicates(nextHoplList);
int sizeOfList = nextHopList.Count;
if (sizeOfList > 1)
nextHopList.Sort() ;
/x Index < index of key is id of the closest predecessor or key. x/
int keyIndex = nextHopList.IndexOf(key) ;
/x Returns index of preceding peer x/
int index = (sizeOfList + (keyIndex — 1)) % sizeOfList;
return GetNode (nextHopList[index]) ;

}

Listing 5: Chord: Closest preceding peer algorithm
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3 Measurement and Evaluation

3.1 Measurement Setup

To evaluate the implementation of the extended MP2PSIP RELOAD stack, this document
presents several measurements taken from emulated RELOAD overlays. Two devices were
used to emulate small RELOAD overlays. First, an enroliment server running on an Ubuntu
(10.04) Linux OS, with 8GB RAM at 2 * 2.4Ghz. Second, a Windows 7 OS device with 8GB
RAM at 4 * 2.66Ghz processing power emulating the RELOAD peers. Both devices are con-
nected via 802.3u Ethernet in the same IP domain.

The test application is a thin console client of RELOAD that is automatically executed by a
Python script. The logging functions of the stack were reduced to a minimal amount of data,
thus to minimize its influence to measured delay times. The test application uses the same
Concurrency and Coordination Runtime (CCR) [16] library for logging as the RELOAD stack
for asynchronous messaging. Hence, the logging results were written asynchronously without
blocking the main thread of the RELOAD stack.

Event though the test application is reduced to the minimal functions to emulate a RELOAD
overlay, each initialized RELOAD peer consumes an amount of approx. 35 MB RAM. The large
size due to the dynamical load of several .Net framework modules at runtime. Consequentially,
the maximal number of peers that can be evaluated on the test device is limited. For the
following measurement result the maximal number of peers is reduced to 100 emulated peers
including the bootstrap peer. This setup guarantees that the measurement results are not
affected by exhausted memory capacities.

The following measurement results for joining the overlay and for storing/fetching data values
are the average result of 50 independent runs.

3.2 Joining a RELOAD overlay

The joining procedure that was measured combines the following steps:

e Contacting the enroliment server for configuration and authentication
e Attaching the bootstrap peer including onwards forwarding to the admitting peer
e Attaching to a set of RELOAD peer to enrich a peers routing table

e Joining the admitting peer to finally participate the overlay
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Figure 3: Measurement result: Average delay to join a RELOAD overlay

After the successful Join request to the admitting peer, the joining peer is ready to take its
place in the DHT. The routing table will contain up to three successors and predecessor and
additional 8 fingers. It becomes part of the overlay routing and is responsible to store values
in its address range. Hence, the key-handover from the admitting peer to the joining peer and
the RELOAD procedure to publish its arrival in the overlay (sending Update messages to peer
in routing table) was not included in the measurements.

The measurement results in figure 3 present the average delay times to join a RELOAD overlay.
The ordinate shows the average delay in time in total seconds to depending on the total number
of peers shown in the abscissa. Additionally, at each 10th peer the standard deviation in
total seconds is indicated. The resulting graph shows a rapid linearly growth until an amount
around 10 peers, followed by a more moderate increasing joining times afterwards. The joining
procedure takes ~ 0.87s for the first peer and increases to ~ 1.5s at 99th peer joining. A
small overlay can not use the advantage of a logarithmic scaling finger table. In an overlay
participated by around 7 peers each peer has a direct connection to all other peers because its
knows its next three preceding and succeeding peers. Hence the time to join simply increases
because of the additional hops. As the number of peers growths, the more imported becomes
the finger table for the routing decision. A routing decision via the via finger table may causes
(one or two) additional hops to reach the destination. This behavior is represented by the
measurement results. The delay times to join a RELOAD overlay is growing, but remains in an
interval of approx. 1.2s to 1.5s. A further measurement setup with a superior amount of peers
should validate that joining delays will increase logarithmically.
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Figure 4: Measurement results: Average delay to store (a) and resolve (b) a SIP record

3.3 Storing and Resolving Records

The second measurement in this document presents the average delay times to store a SIP
record in the overlay and to resolve the latter to a contact address. The registration of a SIP
record is achieved by a single Store request routed throughout the overlay to storing peer. The
procedure to resolve a SIP record to a contact address is more complex. If a SIP registration
is of type sip_registration_uri, the initial fetch request on a SIP URI returns another SIP URI
that need to be resolved again until a SIP record resolved to a sip_registration_route type. The
latter contains a list of RELOAD Destinations and corresponding contact preferences. In the
simplest case, the list contains a single node ID of the RELOAD peer to be called. A calling
peer then performs an AppAttach request routed to that node id. The corresponding answer
message contains the contact address (ICE candidate) to called peer. For the measurement
results presented in figure 4, the SIP record is directly stored as sip_registration_route type,
thus having just two operations to resolve a SIP URI.

The measurement results in figure 4a present the average delay in milliseconds to store a SIP
registration while increasing number of peers. Additionally, the graph shows standard variation
at each 10th peer. The storing times are slightly increasing to an amount of 50 peers. At
an amount of 60 peers, the storing delay is flattening and remains constant until the 99th
peer storing a SIP record. This behavior due to slowly adapting routing tables of the peers
compared to the frequency of new appearing peers. The Chord maintenance routines are a
factor 10 slower than the frequency of new peers joining the overlay. Established peers might
have out of date routing tables causing the longer routing of messages. This effect decreases if
the overlay has a greater amount of peers. The attach request send to gather new fingers while
joining the overlay, already return viable set of successors. Explained with a counter example,
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if a peer is joining an overlay of 20 peers, the pre-joining attach requests to enrich its finger
table might return just two different successors due to large gaps in the address space. Those
already established peers will update their finger tables through the fix fingers procedure and
will obtained a more suitable set of fingers.

The relatively high standard variation reflects the randomized assignment of node IDs. In an
iteration of measurement a store by peer N might routed to a peer with a node ID close to N,
in another iteration, the same store request might be routed to the almost furthermost node ID
compared to N.

Analogously, the measurement results in figure 4b presents the average delay time for a Fetch
request with subsequent AppAttach procedure. As expected, the delay to resolve a SIP record
to a contact address increases linearly to an amount of 40 peers and further remains constant.
This due to the same effects as explained for the storage. Further measurements with an
amount of thousands of peers will show that the storing and resolution delay will continue
logarithmically.

3.4 Joining RELOAD from a mobile device

The third measurements presented in this work shows the average delay to join a RELOAD
overlay from a mobile device with a subsequent registration of a SIP record. The measurement
setup is slightly different compared to setup of the previous results. The mobile device will join
the overlay as a RELOAD client. The mobile clients joining the overlay over TLS perform the
same enrolliment procedure as the RELOAD peers. Peers joining the overlay over TCP just skip
contacting the enrollment server and use a local configuration file. After enroliment, the mobile
client sends a RELOAD Attach request to the bootstrap peer which will forward the request
to the admitting peer of the mobile client. The corresponding answer message attaches the
mobile client to the overlay and completes its joining procedure. The mobile devices were
connected via a 802.11 interface. A measurement of the delay times through a 3G network
was out of scope of this evaluation.

The following measurement results shown in figure 5 presents the average delay time in total
seconds to join a RELOAD overlay and to store a SIP record over TLS and TCP. Thereby
both graphs compare two different mobile devices in dependency to the size of an emulated
overlay. The overlay is emulated as described in the measurement setup 3.1 for the previous
measurements. However, the measurement results represent the average delay times of 10
independent iterations. The two mobile devices have different hardware capabilities. The first
device has 256MB RAM with a Samsung S3C6410 core at 800Mhz (ARMv6). The second
device has 512MB RAM with a QSD8250 SnapDragon at 1 Ghz (ARMv?7).
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Figure 5: Measurement results: Joining and storing delay from a mobile device via 802.11

The average joining delays over TLS shown in figure 5a of both devices are relatively large
compared to the joining delays over TCP. While the 1Ghz devices needs approx. 4.8s to join,
does the 800Mhz devices take an amount of ~ 11s to connect to the overlay. The large joining
times due from the effort to establish a secure TLS connection with the overlay peers. The
1Ghz Snapdragon architecture benefits from the ARMv7 NEON [17] engine providing a more
efficient floating point unit. The same measurement performed over TCP remains constantly
around ~ 0.625s and supports the assertion of the complexity to establish a secure connection
from a mobile device. It is suspected that the TLS library is not optimized for usage on devices
with limited computing capacities and hence cause those large delays for connection estab-
lishment. Overall, the average joining times seem to a constant complexity. Actually, the time
to setup a secure connection is a factor of 10 to 30 times greater than the subsequent routing
of overlay messages - the RELOAD Attach request.

The average delay for storing a SIP record is shown in figure 5b. It also compares the average
delay needed by both mobile devices in dependency to the overlay size over TLS and TCP. In
contrast to the joining procedure a store request takes mush less time if the overlay consists of
just a single peer, thus the bootstrap peer. The mobile device with 800 Mhz needs a average
delay of ~ 0.48s and the test device with the 1Ghz Snapdragon processor ~ 0.38s to store a
value over TLS and ~ 0.25s over TCP. In this test setup, a mobile client has already established
a TLS connection to the bootstrap peer that takes the role of the admitting peer of the client.
Hence, it can use an exiting connection to send the store request that will be processed by the
bootstrap in its additional role as the storing peer. If the number of peers increases the average
storing times are increasing as well if TLS is used as transport protocol. If the admitting peer
is any other peer than the bootstrap, the mobile client has to establish another TLS connection
to its admitting peer. This procedure is not yet finished on sending the store request containing
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the SIP registration. This causes the large delay times shown in figure 5b commencing at 2th
peer in the overlay with delays about ~ 3.5s up to 3.9s for the 1GhZ SnapDragon and ~ 7.9s
to ~ 8.3s for the Samsung device. The storage of values over TCP is unaffected of burden to
establish a second connection and remains constant with a delay around 0.25s. If the size of
the overlay is greater than 30 peers, the probability that the bootstrap peer is also the admitting
peer decreases linearly and forces the mobile client to establish a second connection.
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4 Conclusion and Outlook

This work was dedicated to the implementation of extension to the MP2PSIP RELOAD stack.
The RELOAD stack is now enabled to seamlessly integrate further RELOAD Usages and Kind
definitions. The stack interface to upper layer applications provides a generic mechanism to
process any kind of application data supported by the stack. A renewed message transport
module is now following the protocol standards. A on top Usage layer allows a seamless
implementation of further RELOAD Usages and its defined Kind data structures. A new storage
module is separated from the RELOAD topology-plugin and is enabled to store any Kind of
data. A policy module is now controlling the RELOAD access control policies and is enabled
to execute ECMAScricpt codes used for new policies not implemented by the RELOAD core
classes. The Chord Finger Table is now actively used and maintained by the stack and enables
a scalable overlay routing.

The evaluation of the MP2PSIP RELOAD stack showed that the advantages of a Chord finger
table are noticeable if the number of joining peers exceeds than 40-50. As all peers have
an adequate number of routing table entries, the delay of routing of overlay messages was
constant until the maximum amount of 100 peers evaluated in this work. Further measurement
performed by mobile devices revealed that the joining and storing procedures are 10 to 30
times slower if TLS is used as the underlying transport protocol. This is reasoned by less
computing power of mobile devices and a may inefficient implemented TLS stack.

It is future work to emulate RELOAD overlay of much larger numbers of peers that will validate
the logarithmic scaling of this Chord based overlay. Therefore, the RELOAD stack should
be adapted to be executable on a Linux OS upon the .Net cross-platform Mono[18]. Further
evaluation could be performed using the Planet-Lab [19] environment to emulate thousands of
peer at various geographical locations. Finally, an implementation of the DisCo specification
will demonstrate that distributed conferences in P2P scenarios will provide a better scalability
compared to centrally managed approaches.
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